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Abstract

The role of glaciers as temporal water reservoirs is particularly pronounced in the
(outer) tropics because of the very distinct wet-dry seasons. Rapid glacier retreat
caused by climatic changes is thus a major concern and decision makers demand
urgently for regional/local glacier evolution trends, ice mass estimates and runoff as-5

sessments. However, in remote mountain areas, spatial and temporal data coverage
is typically very scarce and this is further complicated by a high spatial and temporal
variability in regions with complex topography. Here, we present an approach on how
to deal with these constraints. For the Cordillera Vilcanota (Southern Peruvian Andes),
which is the second largest glacierised Cordillera in Peru (after the Cordillera Blanca)10

and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-
decadal collection of available glacier and climate data from multiple sources (satellite
images, meteorological station data and climate Reanalysis), and analyze them for
respective changes in glacier area and volume and related trends in air temperature,
precipitation and specific humidity. In general, the climate data show a moderate (com-15

pared to other alpine regions) increase in air temperature, weak and not significant
trends for precipitation sums, and an increase in specific humidity at the 500 hPa level.
The latter is consistent with observed increase in water vapour at the tropopause level
during the past decades. It is likely that the increase in specific humidity played a major
role in the observed massive ice loss of the Cordillera Vilcanota over the past decades.20

1 Introduction

Mountain glaciers are a major fresh water resource for people living in, nearby or in
the adjacent lowlands of mountain ranges (Barnett et al., 2005). Observed worldwide
glacier retreat is thus an important concern for the availability of fresh water in these
areas. In the tropics, late 20th century glacier retreat has been observed to be par-25

ticularly pronounced (IPCC, 2007). Moreover, because of the distinctive outer tropical
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hydrological seasonality, which is characterized by one dry and one wet season (Kaser,
2001), glacier melt water often provides a critical source of fresh water in these regions
during the dry season (Bradley et al., 2006, 2009).

While the observed global mean trend for glacier retreat is clear, the significance
varies between regions and locations (WGMS, 2009). An adequate spatial and tem-5

poral coverage of measurements is required to derive trends for a specific region or
single glaciers. However, most mountain regions worldwide and particularly the tropics
lack continuous (long-term) measurements of glacier mass balance and/or climate vari-
ables. Nevertheless, as outlined above, particularly in these regions, implementation
of adaptation measures to reduce adverse impacts of climate change requires deci-10

sion and policy makers to be informed of regional/local glacier and climate trends. The
science community is therefore challenged to provide estimates and assessments of
trends and scenarios for regions with incomplete or weak data. Adequate approaches
need to be developed and applied that can deal with incomplete data and allow for ro-
bust trend estimations of glacial and climatic changes and related impacts for specific15

regions.
This study focuses on the data scarce area of the Cordillera Vilcanota (CV) in the

Southern Peruvian Andes. The CV is the second largest glacierised mountain range
in Peru, and also comprises the Quelccaya Ice Cap (QIC), which is the largest tropical
ice cap on Earth. The glaciers of the CV provide water for the relatively densely pop-20

ulated Cusco region. For the CV, only very few long-term (decadal-scale) climate and
glacier data are available. This is remarkable in view of its size and socio-economic
importance (e.g. Vergara et al., 2007), and also in contrast to the Cordillera Blanca
(Central Peru), where several glacier measurement and observation programs were
initiated during the past decades and are still running (e.g. Ames et al., 1989; Kaser et25

al., 2003).
In this study, we present an approach that allows providing a regional baseline for

climate and glacier trends for the data scarce area of the CV. Past time series of obser-
vations and measurements from multiple sources, which are often made for reasons

389

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/387/2012/tcd-6-387-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/387/2012/tcd-6-387-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 387–426, 2012

Glacier changes and
climate trends

derived from multiple
sources

N. Salzmann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

others than providing climatic baseline data, are collected, quality checked, homoge-
nized and analysed. The results eventually can serve to inform decision makers who
are initiating climate change adaptation measures. The approach possibly also pro-
vides a blueprint for studies in other regions with similar challenges.

The paper starts with a description of the CV area (Sect. 2) and continues with a re-5

view of glacier and climate data from multiple sources available for this region, including
inventories, satellite and GPR data for the glaciers and station and Reanalyses data
for the climate (Sect. 3). The data are then prepared to serve as a baseline for conse-
quent change assessments and trend analyses (Sects. 4 and 5). Finally in Sect. 6, the
results are critically discussed and causally related.10

2 Study area: Cordillera Vilcanota – Quelccaya region

The CV is located in southern Peru (about 14◦ S/71◦ W) in the Region Cusco, at the
eastern margin of the Andes where it marks the highest elevation above the Amazon
basin. The glacierised mountain range is arc-shaped, extending some 60 km east-
west, and encompassing a high plateau region at about 4500 m a.s.l. and above. The15

most striking landscape feature of this altiplano region is the Laguna Sibinacocha, a
15 km long glacial lake that is used for hydropower generation. The highest peak of
the mountain range is Nevado Ausangate (6384 m a.s.l.) and glacier tongues currently
terminate at about 4700 to 5000 m a.s.l. The QIC is the largest tropical ice cap on Earth
and situated at the south-eastern margin of the CV. It has been extensively studied in20

the context of climate-glacier interactions, starting in the 1970s (Hastenrath, 1978;
Thompson et al., 1979). Thompson and colleagues drilled the first ice cores in tropical
regions at Quelccaya and unfolded paleo-climate and glacier history (e.g. Thompson
et al., 1984, 1985).

The drainage system of the CV is relatively complex, with glaciers draining into Rı́o25

Paucartambo and later Rı́o Urubamba and the Atlantic ocean towards north and north-
west, into Rı́o Vilcanota and later Rı́o Urubamba and the Atlantic towards south and
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northwest, Rı́o Corani, San Gabán and the Atlantic towards northeast, and into Lago
Titicaca towards southeast (Fig. 1). Socio-economically, Rı́o Vilcanota, fed by the
glaciers of CV is an important river in the region and used for hydropower, agriculture
and household consumption.

Other than those carried out on the QIC, there are very few glaciological studies5

available for the CV region. This is remarkable given that this is the second largest
glacierised mountain range in Peru (following the Cordillera Blanca) and given its im-
portance for local and regional freshwater, irrigation and hydropower. Morales-Arnao
and Hastenrath (1999) provided an estimate of the glacier area for 1975 (579 km2),
and Mark et al. (2002) presented a paleo-glaciological study for the western part of10

the Cordillera. Huggel et al. (2003) assessed glacier changes between 1962 and 1999
but only for a smaller part of the mountain range, i.e. those glaciers draining into Rı́o
San Gabán towards northeast. They found that the glacier area has been reduced
by as much as 48 % during this period (from 52.8 km2 in 1962 to 27.6 km2 in 1999).
A comprehensive study on recent glacier changes in the entire CV, however, is still15

lacking.
The CV is situated in a climatologically complex zone, influenced by tropical and extra

tropical upper level large-scale circulation as well as synoptic-scale systems (Garreau,
2009). During the wet season, the CV lies at the northern boundaries of the Bolivian
High and is thus mainly influenced by easterly flow that extends to 21◦ S. During the20

dry season, easterly flow continues to predominate, while the subtropical westerly jet
also influences the region (Garreau, 2009). Low-level flow transports most of the water
vapour and thus controls precipitation, adding even more complexity. The high altitudes
of the CV remain very dry during most of the year because of the low temperatures, low
air density and high radiation. Only convective storms and moisture transported from25

the Amazon basin by upper level easterlies lead to significant precipitation between
December and March (Vuille et al., 2008; Falvey and Garreau, 2009). The CV region
is further also influenced by interannual variability patterns caused by the El Nino –
Southern Oscillation (ENSO).
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Given this climatological pattern, accumulation on the CV glaciers is mostly limited
to austral summer months, while different ablation processes (melt and sublimation)
are active all-year round.

3 Available observational data

3.1 Glacier data5

3.1.1 Glacier inventory (aerial photographs)

The national glacier inventory of Peru is the first region-wide catalogue of glaciers. It is
based on aerial photographs and includes complete coverage of the CV for 1962 (Ames
et al., 1989). The inventory provides information on geographic location, minimum and
maximum glacier elevation, glacier width, length and area, and aspect for each of the10

about 460 glaciers of the CV.

3.1.2 Satellite images

For the present study Landsat-TM5 satellite images from 25 July 1985, 23 July 1996
and 4 August 2006 were acquired. The spatial resolution of the images is 30 m.
Landsat-MSS images from this region exist from the mid-1970s but were not used15

here due to their reduced spatial resolution. The Landsat images from 1985, 1996 and
2006 represent favourable conditions for glacier mapping and, together with the glacier
inventory data, they allow for an assessment of glacier changes spanning more than
half a century.

For studying changes of the QIC at higher temporal resolution, additional Landsat20

images of 1975, 1991, and 2000, as well as ASTER images of 2004, 2006, 2008 and
2009 were used. These images were all taken during dry winter season between end
of May and beginning of August.
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As a topographic basis the SRTM-3 digital elevation model (DEM) at 90 m spatial
resolution and the ASTER GDEM at 90 and 30 m spatial resolution, respectively, were
used. Vertical errors of SRTM are ±16 and ±6 m for absolute and relative accuracy,
respectively (Rabus et al., 2003). For the ASTER GDEM, a vertical error of 20 m at
95 % confidence level is provided officially (ASTER Validation Team, 2009) but some5

studies have stressed the partly large errors of this DEM (Reuter et al., 2009).

3.1.3 Ground Penetrating Radar data

In addition to the more generally available inventory and satellite data listed above, for
the current study also Ground Penetrating Radar (GPR) data were available. The GPR
campaign was performed on the QIC in 2008 to assess the thickness of ice along a10

transversal profile (Fig. 2). A Narod Geophysics type georadar transmitter with 5 Mhz
antennas and oscilloscope receiver was used. Data were collected at 10 m spacing
along a single transect and all points were georeferenced using a hand-held GPS re-
ceiver (accurate to about 5–10 m). The transect was approximately 2.3 km long, begin-
ning at the ice cap summit and extending west towards the margin. A two-way travel15

time was calculated from the first reflection off the bed, and translated this travel time
to an ice depth using a constant radar velocity of 0.168 m ns−1. Based on this velocity,
a 1/4 wavelength resolution of 8.4 m was calculated.

3.2 Climate data

3.2.1 Meteorological stations20

The National Meteorological and Hydrological Service of Peru (SENAMHI) maintains
a network of climate stations in the Cusco area. Several records start as early as
1965, but many stations were shut down in the meantime, most have several major
data gaps and a lot of the stations had even been out of order for several years during
the politically unstable time in the 1980s. There are 30 stations located in the area of25
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the CV at altitudes above 4000 m a.s.l., and several of them even above 4300 m a.s.l.,
nearly corresponding to the elevation of lowest glacier termini of the CV. All climate
stations provide measured air temperature at 07:00/13:00/19:00 PET, minimum and
maximum air temperature and daily or semi-daily precipitation sums. A small number of
stations also provide other variables, including dew point, air pressure or wind velocity5

and direction. In addition, there are also some precipitation stations in the area.

3.2.2 NCEP/NCAR Reanalysis

In remote high-mountain regions, and generally in data-scarce areas, global reanal-
yses are often the only continuous long-term data series available. They provide a
continuous stream of three-dimensional fields of meteorological variables of the past10

through advanced data-assimilation techniques of available observations (Bengtsson
and Shukla, 1988). The space and time resolution of the generated data is determined
by the model. It is furthermore independent of the number of observations, because
areas void of observations are filled with dynamically and physically consistent model-
generated information (Bengtson et al., 2004).15

Here, we use the NCEP/NCAR Reanalysis 1 (see Kalnay et al., 1996), a global
reanalysis with a horizontal resolution of T62 (about 210 km), 28 vertical layers and
with a record starting in 1948. The variables six-hourly, daily and monthly averages
are provided. We use four grid boxes from the Cusco area (10–15◦ S; 75–70◦ W) for
air temperature and specific humidity, where the latter variable influences the energy20

balance of tropical glaciers significantly (Kaser, 2001).
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4 Methods

4.1 Glacier changes (area and volume)

4.1.1 Glacier area estimation

Satellite images have been extensively used for the assessment of glacier areas. Suc-
cessful results have been achieved with Landsat-TM data using the image ratioing5

method by dividing band TM4 by TM5 (Paul et al., 2002; Raup et al., 2007). This
method has also been applied in this study. For glacier mapping in the Cordillera
Blanca (Peru), Racoviteanu et al. (2008) and Silverio and Jacquet (2005) used a Nor-
malized Difference Snow Index (NDSI). In a methodological study on QIC, Albert (2002)
showed that results from the NDSI and the TM4/TM5 method yield a difference of only10

∼2 % in glacier area.
Through all periods of glacier mapping, including the 1962 inventory, debris covered

glacier parts were not considered. Because of the typically steep slopes and high
altitudes in the study area, debris cover is of little importance in the CV. Consistency of
methods is thus maintained over the analyzed period.15

4.1.2 Glacier volume estimation

Volume estimates for glaciers are difficult and fraught with considerable uncertainty,
in particular for larger unmeasured regions. A popular yet debated method applies
scaling laws between area and volume, based on calibration from measured glaciers
(Bahr et al., 1997). More recently, methods have been developed to compute ice thick-20

ness along glacier flow lines and volume estimates based on thickness interpolation
algorithms (Farinotti et al., 2009; Linsbauer et al., 2009). These studies found that
thickness estimates typically lie within an error range of 20–30 %.

Here, we used an approach based on Haeberli and Hoelzle (1995), using glacier
inventory parameters to estimate ice thickness and volume. The average ice thickness25
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hf along the central flow line can be expressed as:

hf =
τ

f ρ ·g ·sin·α
(1)

Where τ =mean basal shear stress along the central flow line, f = shape factor (taken
as 0.8 for all glaciers); ρ=density of ice (900 kg m−3, as an average value based
on field data from other glaciers in Peru) ; g=gravitational acceleration (9.81 ms−2);5

α=average surface slope of the glacier. Basal shear stress is commonly considered to
vary within 0.5 and 1.5 bar (Paterson, 1994), with values of ∼1 bar as a first approxima-
tion and average for valley glaciers (Binder et al., 2009). Haeberli and Hoelzle (1995)
presented an empirical relation between τ and ∆H , the difference between maximum
and minimum glacier elevation. However, this relationship is established primarily from10

a dataset of mid-latitude glaciers. Little is known about the basal shear stress values
of tropical glaciers, which are generally characterized by high mass balance gradients
(Kaser and Osmaston, 2002; Huggel et al., 2003) and relatively small ∆H. For the
1962 glacier inventory data of the CV region, we calculated a mean ∆H of 412 m,
with a standard deviation of 282 m. Based on that and the relationship after Haeberli15

and Hoelzle (1995) we assessed a reasonable range of average basal shear stress
of 0.8≤ τ ≤1.2 bar. For QIC, where we have GPR ice thickness measurements (see
Sect. 3.1.3) available for validation, we performed several calculation runs using the in-
dicated range of τ and found best agreement of modelled and measured ice thickness
for τ =1.2 bar (see also Sect. 5.1). However, to account for variations of mean basal20

shear stress on the different glaciers and to generally increase robustness of results,
we also assessed ice thickness (and volume) by using τ =1 bar. Eventually, to calcu-
late the average ice thickness for the entire glacier based on the ice thickness hf along
the central flow line, hf is multiplied by π/4, assuming a semi-elliptical cross-sectional
glacier geometry (Haeberli and Hoelzle, 1995). Ice volumes then simply result from25

calculated ice thickness and respective glacier areas.
The ice thickness estimates for 1962 were based on the corresponding glacier in-

ventory data and the application of Eq. (1) for every single glacier, using τ =1 bar
396
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and τ = 1.2 bar. The ice thickness estimates for 2006 were based on five represen-
tative glaciers only, using the area information provided by the aforementioned satellite
images. The ice thickness difference between 1962 and 2006 was calculated using
Eq. (1). The average thickness reduction was found to be between 10 and 20 % for this
40-yr period. Accordingly, we applied a thickness-volume scaling using a thickness re-5

duction of 20 % for the 1 bar case, and a 10 % thickness reduction for the 1.2 bar case,
in order to provide a lower and upper estimation of ice volumes for 2006.

4.2 Preparation of climate records for trend analyses

Reliable climatic trend analyses require long-term, quality checked and homogenized
climate time series to avoid trends caused by non-climatic factors (Begert et al., 2005).10

In the frame of an ongoing climate change adaptation programme (PACC; Salzmann
et al., 2009) a large number of the time series from the meteorological stations in the
Cusco and Apurimac Regions and the neighbouring areas have been quality checked
(Schwarb et al., 2011). As aforementioned, most of the records, however, are not
long enough or continues to allow for reliable trend analyses. Therefore, we have re-15

constructed one continues, long-term time series of one station to enable subsequent
trend analyses for the CV area. For the reconstruction we have chosen the station
Santa Rosa (−14.6◦ S/−70.8◦ W), which is located at 3940 m a.s.l., and among the clos-
est stations to the CV. Data gaps (the years between 1965–1994 for air temperature,
respectively between 1965–1970 and 1981–1989 for precipitation) have been recon-20

structed by using a number of nearby stations, situated within a radius of about 80 km
from Santa Rosa (see Fig. 1): Ayaviri (3920 m a.s.l.), Chuquibambilla (3950 m a.s.l.),
Llally (4190 m a.s.l.), Progreso (3965 m a.s.l.) and Pucara (3910 m a.s.l.). For precipi-
tation, the station Nuñoa (4135 m a.s.l., at about 20 km distance from Santa Rosa) was
additionally considered. From each of these stations an estimation value for Santa25

Rosa was calculated using linear correlation, based on common observation time se-
ries. A minimum of two observations per month (for air temperature), or three (for total
precipitation sums), was used from the nearby stations. The arithmetic mean of all
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estimation values was then used as the reconstructed monthly air temperature mean
and monthly total precipitation sum for the station Santa Rosa.

The NCEP/NCAR Reanalysis provide data at different sigma levels. The upper,
glacierised parts of CV are located at an altitude of around 5600 m a.s.l. Because
this is close to free-atmosphere conditions, here, we used the 500 hPa atmospheric5

level corresponding to about 5850 m a.s.l. of the NCEP/NCAR Reanalysis, instead of
the NCEP/NCAR surface height fields at around 3500–4000 m a.s.l. for the CV area.
Regarding record length, the NCEP/NCAR Reanalysis provide in principle data since
1948. However, before the Geophysical Year in 1958, only very few radiosonde mea-
surements were taken in the southern hemisphere (e.g. Chen et al., 2008). Because10

radiosonde data are a primary input for the free atmosphere data in Reanalysis, the
homogeneity of specific humidity in the upper-level troposphere in Reanalysis must be
questioned for the years before 1958 (Paltridge et al., 2009; Chen et al., 2008). For
specific humidity, thus we only used data since 1958 in our study. Although we are
aware that there is again a step towards increased homogeneity since 1979 due to the15

assimilation of satellite observations (Bengston et al., 2004; Vey et al., 2010), for the
following analysis we will use the Reanalysis between 1958 and 2009.

On these prepared continuous long-term time series, we calculated temporal trends
using simple linear regression and provide the trend magnitudes and the estimates
of significance. We consider the trends to be statistically significant if the p-value is20

smaller than 0.05.

5 Results

5.1 Glacier changes (area and volume)

Over the entire glacierised area of CV, our results indicate that glaciers have changed
only marginally between 1962 and 1985 (Table 1). Between the mid-1980s and the25

mid-1990s, however, 100 km2 of ice has been lost, corresponding to a 23 % reduction
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since 1985. The following ten years until 2006 continued to show strong glacier retreat,
yet at a lesser rate than during the previous ten years. Over the two-decadal period a
reduction of 14 % is observed compared to 1996 and a reduction of 33 % compared to
1985 (and 1962).

The more detailed data available for the QIC and the Qori Kalis outlet glacier show5

that the individual glacier behaviour corresponds well to the greater picture of the entire
CV (Table 2). As for the rest of the mountain range, the QIC area did not significantly
change between 1962 and 1985. The strong glacier retreat started there also in the
mid 1980s. The total glacier area of Quelccaya was reduced by 23 % between 1985
and 2009, a somewhat lower value than for the overall CV.10

In terms of ice volume loss it is clear that it also must had been very strong over
the past two decades, irrespective of the uncertainties involved in volume estimation.
For 1962, our estimates suggest an ice volume in the order of 17 to 20 km3. For 2006,
the corresponding range is 9.2 to 12.4 km3, resulting in a volume loss of about 40–
45 %. Since glacier area did not change much between 1962 and 1985, volume losses15

likewise must have taken place primarily since the mid-1980s.
For validation of the modelled ice thickness, we used ice thickness measurements

from the GPR campaign on QIC in 2008 (Fig. 2). Measurements show an ice thickness
maximum of approximately 150–170 m in a slight overdeepening near the summit. En-
hanced scattering is evident in the second half of the radar transect (beyond ∼1200 m20

horizontal), and may be the result of increased meltwater in the surface snowpack or
underlying ice. Despite this increased scattering, bed reflections are apparent and
show decreasing thickness towards the ice cap margin, reaching a minimum value of
approximately 50 m at the end of the transect and the margin of the ice cap. Measure-
ments in 1978/79 on QIC by Thompson et al. (1982) show maximum ice thickness of25

about 180 m in the saddle between the summit and the North domes, which support
our results.

For the north-western side of the ice cap with Morojani and Morojani-2 glaciers
(Fig. 2) GPR measured average ice thickness is about 90 m. For the corresponding
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sites on the two glaciers, from the summit of the ice cap to the glacier terminus, Eq. (1)
indicates average ice thickness between 75 and 99 m, depending on glacier and shear
stress value. As mentioned in Sect. 4.1.2 best agreement was found for τ =1.2 bar.

5.2 Climatic trends

For air temperature, both station and NCEP/NCAR Reanalysis data, show positive5

trends for the analysed time windows (Figs. 3 and 4), with, however, different signifi-
cance levels. Figure 3 shows the linear trends for minimum and maximum air tempera-
ture. A clear positive trend (p-value=0) is found for maximum air temperature (Fig. 3b),
while the trend for minimum air temperature (Fig. 3a) is weak and not significant. Be-
cause of the distinctive seasonality (cold-dry and warm-wet) in the study area, which10

influences the glacier regime significantly, trends were also calculated for seasonal
means. For maximum air temperature, we found positive and significant trends (except
for DJF) for all seasons (Fig. 3d, Table 4). The trend for minimum air temperatures
(Fig. 3c, Table 3) shows only a slight increase during DJF and SON, and no trend (not
significant) during MAM, and a negative trend (not significant) for JJA.15

The monthly mean air temperature trends from the NCEP/NCAR Reanalysis (Fig. 4,
Table 5) show good agreement with the station data. There is a significant positive
trend for all seasons, with absolute changes in the same ranges as for Santa Rosa
station. Note, however, that the absolute changes for the Reanalysis data span 12 yr
more (data since 1948).20

For seasonal precipitation sums, the station Santa Rosa (Fig. 5, Table 6) shows slight
negative linear trends for all seasons, however, they are only significant during SON.
Changes for precipitation are thus not as obvious as for air temperature.

Specific humidity from the NCEP/NCAR Reanalysis shows a significant, positive,
linear trend for all seasons (Fig. 6, Table 7). Unfortunately, there are no reliable station25

data for specific humidity available in the region that could be used for cross-checking.
On a larger geographical scale, however, Vuille et al. (2003) provide evidence for a
positive humidity trend for the Central Andes, in both the CRU dataset (1950–1994 and
1979–1995) and the ECHAM4-T106 climate simulation for 1979–1998.
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6 Discussion

6.1 Glacier area and volume change

The observed changes and rates of changes in glacier area and volume of the CV are
very high, particularly since mid 1980s and compared to numbers from the European
Alps. While we found a reduction of area of about 30 % and of volume of about 40–45 %5

between 1985 and 2006 for CV, Zemp et al. (2006) report for the period between 1975
and 2000 a reduction of glacier area of about 22 % and of volume of about 30 % for the
European Alps. The stronger retreat pattern of the outlet glacier of Qori Kalis compared
to the ice cap, including an earlier onset of accelerated glacier retreat, is likely related
to the formation of a glacier lake at the glacier terminus, and the different hypsometries10

(Mark et al., 2002). Our results on glacier changes in the CV corroborate findings from
other glacierised Cordilleras in Peru, but also add new insights. The Cordillera Blanca
is by far the most studied glacierised Cordillera of Peru, both historically and at present.
Consistent with our results for CV, studies from the Cordillera Blanca reveal little change
between 1970 and 1986 (Georges, 2004; Silverio and Jacquet, 2005). Studies in the15

Cordillera Blanca furthermore indicate that the 1930s and 1940s were characterized
by significant glacier loss, resulting in growth and formation of many glacier lakes, with
severe disasters due to lake outburst floods (Carey, 2005). There are no corresponding
documents available for this period for the CV, probably due to its remote location.

For both Cordilleras of Peru, the strong recent glacier shrinkage has likely started20

in the second half of the 1980s. The glacier shrinkage in the CV appears to have
been somewhat stronger than in the Cordillera Blanca. While a reduction in area of
12–22 % between 1970 and 2003 is reported for the Cordillera Blanca (Racoviteanu
et al., 2008), corresponding values from the CV are approximately 30 % higher. It
should be noted that there is one reference (Morales-Arnao and Hastenrath, 1999)25

that indicates for the CV a glacier area of 579 km2 for 1975. This is much higher
than our relatively constant values found between 1962 and 1985 of 440 and 444 km2,
respectively. However, this is likely due to a differently defined spatial domain of the CV
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area in their study compared to the present one), or due to reduced accuracy of the
lower-resolution Landsat-MSS satellite images used for the study in 1975.

There are very few glacier volume change estimates available for other mountain
ranges in Peru. Mark and Seltzer (2005) assessed volume changes for three individual
glaciers in the Cordillera Blanca between 1962 and 1999. Their estimates are broadly5

consistent with ours. For Nevado Coropuna, an ice-capped volcano 270 km southwest
of the CV, in a much drier climate, Peduzzi et al. (2010) estimated an ice volume of
4.62 km3 for the 2000s with an average ice thickness of 81 m and an error margin of
about ±20 %, using a statistical relation between ice thickness, elevation, slope and as-
pect. While a reduction of glacier area of 60 % was mapped for the period 1955–2008,10

there was a 18 % loss estimated for the corresponding volume. However, the glacier
area reported by Peduzzi et al. (2010) for Cordillera Coropuna in 1955 (122.7 km2) is
probably about 40 km2 (or 48 %) too large due to strong snow cover on aerial pho-
tographs (P. Peduzzi and W. Silverio, personal communication, 2008). According to
the data from Peru’s glacier inventory (Ames et al., 1989) the area of the glaciers on15

Nevado Coropuna was 82 km2 in 1962 (see also Racoviteanu et al., 2007). Peduzzi et
al. (2010) furthermore indicate a glacier area of 80.1 km2 for 1980, followed by strong
retreat resulting in an area of 65.5 km2 by 1996. Hence, by correcting the figures for the
1950s/1960s for Coropuna from 122 to 82 km2, a consistent pattern of glacier changes
from north to south Peru is found, which shows that glacier areas were relatively stable20

between the 1960s and 1980s, followed by a period of strong glacier retreat that con-
tinues until today. This is notable because the three Cordillera regions (i.e. Cordillera
Blanca, Vilcanota, Coropuna) are under the influence of considerably different climatic
regimes.

It is widely recognized that regional glacier volume estimates are associated with25

large uncertainties, due to the inability to directly and precisely measure the ice di-
mensions, and the need to extrapolate ice thickness by using semi-empirical formula.
Likewise, we made our used assumptions explicit. In our modelling approach, the basal
shear stress is a sensitive parameter for the volume estimates. Yet, we evaluated our
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modelled shear stress using GPR ice thickness measurements on the QIC to constrain
a reasonably appropriate value. Confidence in our estimates furthermore is given by
a recent study on Jostedalsbreen ice cap in Norway, where found shear stress values
are similar to ours on Quelccaya (Meister, 2010). To our knowledge, there are no other
references of estimates of basal shear stress for tropical glaciers available, and con-5

sequently, a range of uncertainty of about 20 % needs to be considered. We therefore
used different values to indicate the likely range of ice volume.

Similarly, for mid-latitude glaciers, recent modelling studies computing ice thickness
along glacier flow lines indicate error ranges of 20–30 % (Farinotti et al., 2009; Lins-
bauer et al., 2009). Another approach using measured length changes showed that10

modelled glacier volumes may be within a 30% error margin in a reasonable case, but
in less optimal cases may vary as much as several factors (Lüthi et al., 2010).

In summary, we accept that our absolute volume estimates for each time step are
uncertain, but the relative ice volume change between time periods is robust and plau-
sible given the vigorous loss in area.15

6.2 Climatic trends

Based on the data used in our study, there is a significant linear air temperature in-
crease found since the 1950s and 1960s, with greater changes for maximum than for
minimum air temperature, and a slight negative (non-significant) trend for precipitation.
These findings correspond with results from other studies in this region (Vuille et al.,20

2003; Francou et al., 2003). However, compared to air temperature trends in other
mountain regions such as the European Alps (Begert et al., 2005; Auer et al., 2007)
the trends for the CV are relatively small, nevertheless consistent with continental-scale
analyses (IPCC, 2007).

In order to account for data inhomogeneity and uncertainty inherent to our remote25

setting, and to reduce uncertainties, we used a multi-data-source approach and pre-
processed the data adequately prior to their use. The general agreement in the mag-
nitude and significance of the trends found for climate variables from different sources
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make these trends plausible. As such, this study presents probably the most con-
vincing regional estimates for the CV area, and to our knowledge, there are no bet-
ter observations available than used in this study. ERA-40 Reanalysis (Uppala et al.,
2005), another well known global Reanalysis was not included in this study, because
the ERA-40 is know to be generally less homogeneous than the NCEP-NCAR Reanal-5

ysis (e.g. Chen et al., 2008).
With the Santa Rosa meteorological station, which is about 80 km away from the

CV, we have chosen among the closest stations to the CV. Since in the tropics air
temperature is relatively persistent within horizontal distances (Sobel et al., 2001), we
consider a distance of 80 km reasonable. The vertical distance between the station10

and the glacier terminus can be compensated by using the regionally derived lapse-
rate value (0.5 ◦C/100 m) reported by Urrutia and Vuille (2009).

6.3 Relation between observed climatic trends and glacier changes

The relatively slight negative trend of precipitation and the moderate increase of air
temperature found for the CV can not in full explain the observed substantial ice losses.15

In the following, we therefore try to further discuss and complete the observed changes.
Area and volume changes of a glacier are related to climatic variables through its

energy and mass balance. Negative changes in the mass balance of a glacier result ei-
ther from increased ablation or decreased accumulation, which are mainly determined
by precipitation and air temperature. For the tropical and subtropical Andes, Francou20

et al. (2003) concluded that precipitation and cloud cover changes were minor in the
20th century and it is thus unlikely that decreased accumulation explains the observed
glacier retreat in the region. In contrast, they found a positive trend for air temperature
and conclude that glacier retreat is mainly caused by increased ablation, rather than
decreased accumulation. The trends that are indicated by our data for CV are consis-25

tent with these conclusions, and the slight (non-significant) decrease in precipitation
we note over the past decades (Fig. 5) is unlikely to account for all the glacier retreat.
In the following, we will thus turn our discussion on the effects of climatic changes on
the ablation processes.
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The most important terms able to significantly influence the surface energy balance
of a tropical glacier are net solar radiation (QR), net longwave radiation (QL) and, to
a lesser extent, the turbulent sensible (QH) and latent heat fluxes (QLE), as measured
by Hastenrath (1978) for QIC and by Sicart et al. (2005) for Zongo glacier in Bolivia.
Air temperature is typically highly correlated to various components of the energy bal-5

ance. However, as the measurements by Sicart et al. (2008) show, air temperature in
the tropics is poorly correlated to net short wave radiation, particularly for short time
steps, and is thus a weak index for the energy balance. In relation with QR, albedo is
another important factor. On tropical high-elevation glaciers, there are different factors
that can modify albedo, including changes in precipitation in relation with air tempera-10

ture (rain or snow) and factors like debris cover, dust and soot. The latter factors are of
minor importance at the CV due to its high altitude, and the absence of high rock faces
around the glaciers. Moreover, to our knowledge there is no specific long-term albedo
information available for the CV. For precipitation only a very slight trend is observed
at the operational meteorological stations of SENAMHI (Fig. 5). However, there is a15

significant air temperature increase observed in both data sets. Using the lapse-rate
values of Urrutia and Vuille (2009) to translate the upper-air temperature data to glacier
terminus elevation, the mean temperature stays well below 0 ◦C, and maximum air tem-
perature is well above 0 ◦C (while minimum air temperature shows no significant trend).
Consequently, it can be inferred that the relation between liquid and solid precipitation20

arriving at the glacier surface has not changed during the past decades and the aver-
age albedo has not or only moderately been modified. Therefore, it can be assumed
that most of the precipitation still falls in the form of snow, and average albedo is thus
only moderately changed by the observed air temperature increase. Nevertheless,
Bradley et al. (2009) report an increase in freezing level heights for the Quelccaya Ice25

Cap, implying that air temperature increase in the future could have a more important
effect on albedo and thus on QR, as the snowline moves upwards. Bradley et al. (2009)
had based their study on an analysis of daily maximum air temperatures only.

In addition to the global mean air temperature increase during the last 150 yr, a
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significant increase has also been observed for water vapour, another and even more
effective Greenhouse Gas (IPCC, 2007). Increased water vapour is mainly observed
in the tropopause and in the lower stratosphere (Dessler et al., 2008). Dessler et
al. (2008) also found particular high values for regions slightly south of the equator. The
CV, located at about 14◦ S and with glaciers at very high altitudes (between about 47005

and 6384 m a.s.l.), is close to this zone of largest changes in specific humidity. The
NCEP/NCAR Reanalysis for the Cusco area shows an increase in specific humidity
(q) at the 500 hPa level since 1958, also consistent with the observations and analyses
from Dessler et al. (2008). This increase of q can significantly influence QLE, which
would attenuate the typically negative latent heat flux on high altitude tropical glaciers,10

and in turn make more energy available for melting (e.g. Wagnon et al., 1999). An
increase in q leads additionally to an increase in incoming long wave radiation (Ruck-
stuhl et al., 2007; Ohmura, 2001), which leads often to an increase in air temperature
near the surface. Depending on the effective quantity of specific humidity available, an
increase in long wave radiation can lead to melting or sublimation and thus to a mass15

loss of glacier ice. Therefore, we argue here, that the increase in water vapour dur-
ing the past decades exerted an important control on the massive ice loss observed
in the CV, particularly before 2000. This argument is strengthened by the fact that
tropical glaciers in general respond relatively rapidly to changes in atmospheric condi-
tions (typically within a few years) because of their usually small sizes (e.g. Bahr et al.,20

1998). This rapid response time can furthermore also explain the more rapid retreat of
glaciers as observed since the 1980s.

7 Conclusions and perspectives

In this study we presented a multi-sources approach allowing the generation of a data
baseline for regional glacier and climatic trend analyses in a data scarce mountain25

area. We assimilated and analyzed a comprehensive data collection of glacier and
climate observations for the CV region (Southern Peruvian Andes), which exemplifies
a remote, data scarce mountain region, with major socio-economic importance due
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to its water resource. For such regions, there is an increasing demand by decision
and policy makers for information about climatic changes, related impacts and future
scenarios. Such demands will even increase in the future with regard to ongoing in-
ternational efforts (e.g. Adaptation Fund (AF) and the new Climate Fund under the
United Nations Framework Convention on Climate Change, UNFCCC) for developing5

and implementing adequate adaptation measures, on regional and local levels.
The trends we found in our study are generally in line with continental and re-

gional trends from other studies. Glacier ice reduction is slightly higher than in other
Cordilleras in the region, and higher than e.g. in the European Alps. At the same time,
air temperature trends are positive, but weaker than for Europe, while precipitation10

sums remained about stable. Furthermore, we found an increase of specific humidity
for the area of CV, which may explains part of the observed substantial ice loss.

Assuming that the observed climatic trends will continue in future in the CV region
the impacts would affect the four seasons differently as outlined in the following and
with implications to be considered in any adaption strategy plans: Austral winter (JJA),15

generally a very dry season would not be much influenced by increasing q, because
the large positive radiation balance would be cancelled out by the large negative long
wave radiation. For austral spring (SON) and fall (MAM) precipitation events might
become more frequent, and it will be critical whether they hit the ground as rain or
as snow because of the large albedo difference and its impact on the mass balance.20

With increased humidity, long wave energy loss would generally be small, but in spring
and fall, any assessment remains difficult. For Austral summer (DJF) the picture is
different and assessments somewhat simpler. This season is characterized by large
precipitation events. With a trend towards even moister austral summers, the long wave
radiation balance would be even more often balanced and in combination with clear-25

sky conditions from time to time (which is possible with convective regimes), short wave
radiation would be favoured as melt energy and cause an increase in melt. However,
if q increases to very high amounts, it could also lead to increased precipitation (as
projected by many GCMs) and tip the system.
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These complex interactions between climate and glaciers also show clearly the need
for long-term in-situ measurements in order to better understand the effective ongoing
processes and to provide a data baseline that allows for reliable projections of future
glacier and runoff evolution. Therefore, in July 2010, a new glacier monitoring network
was initiated on two glaciers in the CV, within the frame of the PACC project. Moreover,5

in May 2011, on one of the glaciers a climate station was installed by SENAMHI. More
specific insights on local climate and glacier evolution at CV are thus to be expected in
the forthcoming years.
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Table 1. Results of glacier mapping and ice volume estimates. The 2006 volume numbers
marked with ∗ are lowermost and uppermost estimates, i.e., by assessing a 20 % thickness
reduction for the 1 bar case, and a 10 % thickness reduction for the 1.2 bar case, thus en-
compassing the uncertainties related to basal shear stress and reduction in glacier thickness
between 1962 and 2006.

Year Glacier area Percent of Total glacier volume Total glacier volume
(km2) initial area (%) (km3, τ =1 bar) (km3, τ =1.2 bar)

1962 440 100 17.0 20.4
1985 444 101
1996 344 78
2006 297 68 9.2∗ 12.4∗
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Table 2. Loss of glacier area between 1962 and 2009 for QIC and Qori Kalis, an outlet glacier
of the ice cap.

Year Quelccaya Ice Percent of initial Qori Kalis glacier Percent of initial
Cap area (km2) area (%) area (km2) area (%)

1962 57.5 100
1975 56.2 98 0.92 100
1985 55.7 97 0.84 91
1991 47.9 83 0.76 83
2000 45.9 80 0.59 64
2004 45.4 79 0.58 63
2006 44.2 77 0.53 58
2008 42.8 74 0.49 53
2009 42.8 74 0.49 53
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Table 3. Minimum air temperature, Santa Rosa station (partly reconstr.).

year p-value trend magnitude [◦C]

DJF 0.005 0.7
MAM 0.95 0.06
JJA 0.46 −0.36
SON 0.014 1.43
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Table 4. Maximum air temperature, Santa Rosa station (partly reconstr.).

year p-value trend magnitude [◦C]

DJF 0.056 0.7
MAM 0.001 0.95
JJA 0.002 0.9
SON 0.001 0.7

417

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/387/2012/tcd-6-387-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/387/2012/tcd-6-387-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 387–426, 2012

Glacier changes and
climate trends

derived from multiple
sources

N. Salzmann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. Monthly mean air temperature, NCEP/NCAR Reanalysis.

year p-value trend magnitude [◦C]

DJF 0.0 0.88
MAM 0.0 0.73
JJA 0.0 0.8
SON 0.0 0.94
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Table 6. Precipitation sums, Santa Rosa station (partly reconstr.).

year p-value trend magnitude [mm]

DJF 0.09 −83
MAM 0.15 −56
JJA 0.15 −17
SON 0.043 −70
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Table 7. Specific humidity, NCEP/NCAR Reanalysis.

year p-value trend magnitude [g kg−1]

DJF 0.0 0.5
MAM 0.001 0.36
JJA 0.006 0.28
SON 0.0 0.5
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Fig. 1. Upper left: overview of study site; upper right: satellite view on the CV (Landsat-TM5,
4 August 2006) with major river catchments indicated. The glacier outlines of 2006 are marked
with a black line. Lower right: a close-up of the QIC with the dashed line indicating the location
of the GPR profile taken in 2008.
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Fig. 2. Ground Penetrating Radar (GPR) profile taken on QIC in 2008 along an east-west
profile. The exact location is indicated in Fig. 1.
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Fig. 3. Monthly minimum (a) and maximum (b) air temperature for Santa Rosa station and the
seasonal trends (c, d). Dashed lines indicate where trend is not significant (cf. also Tables 3
and 4).
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Fig. 4. Linear trends for mean seasonal air temperature at 500 hPa level from NCEP/NCAR
Reanalysis. Dashed lines indicate where trends are not significant (cf. Table 5).
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Fig. 5. Linear trend for seasonal precipitation sums from the station Santa Rosa. Dashed lines
indicate where the trends are not significant (cf. Table 6).
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Fig. 6. Linear trend for seasonal mean of specific humidity from NCEP/NCAR Reanalysis.
Dashed lines indicate where the trends are not significant (cf. Table 7).
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