3D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy.

N. Calonne, C. Geindreau, F. Flin, S. Morin, B. Lesaffre, S. Rolland du Roscoat and P. Charrier.

Auxiliary Materials

Table of Contents and General Information

Table of Contents

List of the 35 samples used in the study p. 3
Computed values for the 35 samples used in the study p. 4
Detailed information on sample Fr (PP) p. 5
Detailed information on sample P04 (DF) p. 6
Detailed information on sample P11 (RG) p. 7
Detailed information on sample H02 (MF) p. 8
Detailed information on sample E2b (FC) p. 9
Detailed information on sample Grad3 (DH) p. 10

General Information

In the following, we provide the list of the samples used in this study with related information (Table 1) and values of permeability, density and specific surface area (Table 2). For each snow type [Fierz et al., 2009], a typical microtomographic sample is presented together with its REV estimate in term of permeability:

- Figures 1.a-6.a: 3D images of the snow sample. The color levels of the images corresponds to the curvature field, which allows an easy representation of the 3D structure from planar images.
- Figures 1.b - 6.b: Estimations of the REV (the smallest fraction of the sample volume from which a variable representative of the whole can be determined) with respect to the permeability. It is estimated by calculating values of permeability from several subvolumes of increasing sizes. The REV is reached as soon as values remain constant when sub-volumes of calculations increase. In each figure, the permeability value computed on the largest volume size corresponds to that given in Table 2.

List of the 35 Samples Used in the Study

Sample name	Snow type	Voxel size $\left(\mu \mathrm{m}^{3}\right)$	Remarks	Main References
Fr	PP	4.91	Sampled at Col de Porte¹, 14 February 2002.	Calonne et al., 2011
101	PP	4.91	Sampled at Col de Porte, 15 h after the snowfall.	Flin et al., 2004
103	PP	4.91	62 h after the snowfall, under isothermal conditions at $-2^{\circ} \mathrm{C}$.	Flin et al., 2004
104	PP	4.91	81 h after the snowfall, under isothermal conditions at $-2^{\circ} \mathrm{C}$.	Flin et al., 2004
108	DF	4.91	297 h after the snowfall, under isothermal conditions at $-2^{\circ} \mathrm{C}$.	Flin et al., 2004
115	RG	4.91	806 h after the snowfall, under isothermal conditions at $-2^{\circ} \mathrm{C}$.	Flin et al., 2004
119	RG	4.91	1381 h after the snowfall, under isothermal conditions at $-2^{\circ} \mathrm{C}$.	Flin et al., 2004
121	RG	4.91	1694 h after the snowfall, under isothermal conditions at $-2^{\circ} \mathrm{C}$.	Flin et al., 2004
123	RG	4.91	2026 h after the snowfall, under isothermal conditions at $\mathbf{- 2}^{\circ} \mathrm{C}$.	Flin et al., 2004
P03	PP	8.48	Girose glacier ${ }^{2}$, 20 cm depth, 17 March 2009.	Flin et al., 2011
P04	DF	8.588	Girose glacier, 40 cm depth, 17 March 2009.	Flin et al., 2011
P06	RG	6.158	Girose glacier, 60 cm depth, 17 March 2009.	Flin et al., 2011
P07	RG	8.609	Girose glacier, 70 cm depth, 17 March 2009.	Flin et al., 2011
P08	RG	8.552	Girose glacier, 100 cm depth, 17 March 2009.	Flin et al., 2011
P09	RG	6.158	Girose glacier, 120 cm depth, 17 March 2009.	Flin et al., 2011
P10	RG	6.103	Girose glacier, 165 cm depth, 17 March 2009.	Flin et al., 2011
P11	RG	8.588	Girose glacier, 65 cm depth, 1 March 2009.	Flin et al., 2011
P14	RG	6.154	Girose glacier, 80 cm depth, 1 March 2009.	Flin et al., 2011
P15	RG	6.158	Girose glacier, 170 cm depth, 1 March 2009.	Flin et al., 2011
H00	RG	8.609	Sieved snow, followed by isothermal conditions.	Flin et al., 2011
H01	MF	8.609	Grain coarsening of water-saturated snow and drainage after 1h.	Flin et al., 2011
H1-2	MF	8.590	Grain coarsening of water-saturated snow and drainage after 6h.	Flin et al., 2011
H02	MF	8.590	Grain coarsening of water-saturated snow and drainage after 24h.	Flin et al., 2011
H03	MF	8.609	Grain coarsening of water-saturated snow and drainage after 48h.	Flin et al., 2011
H05-G	MF	9.46	Grain coarsening of water-saturated snow and drainage after 142h.	Flin et al., 2011
Chamair	MF	10	Grain coarsening of water-saturated snow and drainage.	Coléou et al., 2001
E2b	FC	4.91	3 weeks under a $\mathrm{TG}=16 \mathrm{Km}^{-1}, \mathrm{~T}_{\text {mean }}=-3^{\circ} \mathrm{C}$, sampled in the middle of the layer.	Flin et al., 2008
0A	RG	8.392	Sieved snow, following by isothermal conditions.	This study
1A	RG	8.395	3 days under a $\mathrm{TG}=43 \mathrm{Km}^{-1}, \mathrm{~T}_{\text {mean }}=-4^{\circ} \mathrm{C}$, sampled in the middle of the layer.	This study
2A	FC	8.373	6 days under a $T G=43 \mathrm{Km}^{-1}, \mathrm{~T}_{\text {mean }}=-4^{\circ} \mathrm{C}$, sampled in the middle of the layer.	This study
3A	DH	8.400	9 days under a $\mathrm{TG}=43 \mathrm{Km}^{-1}, \mathrm{~T}_{\text {mean }}=-4^{\circ} \mathrm{C}$, sampled in the middle of the layer.	Calonne et al., 2011
4A	DH	8.397	13 days under a $\mathrm{TG}=43 \mathrm{~K} \mathrm{~m}^{-1}$, $\mathrm{T}_{\text {mean }}=-4 \mathrm{C}^{\circ}$, sampled in the middle of the layer.	Calonne et al., 2011
5A-G	DH	9.655	17 days under a $\mathrm{TG}=43 \mathrm{~K} \mathrm{~m}^{-1}, \mathrm{~T}_{\text {mean }}=-4 \mathrm{C}^{\circ}$, sampled in the middle of the layer.	This study
7A-G	DH	9.672	21 days under a $\mathrm{TG}=43 \mathrm{Km}^{-1}$, $\mathrm{T}_{\text {mean }}=-4{ }^{\circ} \mathrm{C}$, sampled in the middle of the layer.	This study
Grad3	DH	10	8 days under a $\mathrm{TG}=100 \mathrm{Km}^{-1}, \mathrm{~T}_{\text {mean }}=-5^{\circ} \mathrm{C}$.	Coléou et al., 2001

Table 1: List of the 35 snow samples used in the present work. Snow type is defined according to the International Classification for Seasonal Snow on the Ground [Fierz et al., 2009]: PP, Precipitation Particles; DF, Decomposing and Fragmented precipitation particles; RG, Rounded Grains; FC, Faceted Crystals; DH, Depth Hoar; MF, Melt Forms. Lines with gray background correspond to samples for which detailed information is provided below.

[^0]
Computed Values for the 35 Samples Used in the Study

Sample name	Snow type	$K_{x} \times 10^{-9}\left(\mathrm{~m}^{2}\right)$	$K_{y} \times 10^{-9}\left(\mathrm{~m}^{2}\right)$	$K_{z} \times 10^{-9}\left(\mathrm{~m}^{2}\right)$	SSA ($\mathrm{m}^{\mathbf{2}} \mathrm{kg}^{-1}$)	Density ($\mathrm{kg} \mathrm{m}^{-3}$)
Fr	PP	3.58	3.77	3.69	55.30	120.49
101	PP	3.83	2.22	3.33	55.79	102.90
103	PP	3.79	3.93	4.03	41.37	123.34
104	PP	4.23	4.16	4.06	42.48	113.43
108	DF	4.60	4.38	4.79	29.32	147.71
115	RG	4.54	4.70	4.79	23.32	172.76
119	RG	4.73	4.82	4.84	19.90	192.48
121	RG	4.73	4.93	4.36	19.23	198.62
123	RG	2.82	2.62	2.47	17.24	256.30
P03	PP	2.42	2.38	2.06	50.91	134.55
P04	DF	6.14	6.38	4.62	25.36	157.54
P06	RG	0.64	0.65	0.59	21.59	354.51
P07	RG	2.45	2.44	1.83	17.15	280.05
P08	RG	1.09	1.08	0.96	14.57	379.00
P09	RG	1.26	1.29	1.04	12.29	396.14
P10	RG	1.55	1.68	1.38	10.46	396.07
P11	RG	0.46	0.45	0.40	20.76	413.75
P14	RG	0.90	0.88	0.80	18.13	352.68
P15	RG	1.54	1.54	1.73	16.09	315.54
H00	RG	0.45	0.44	0.43	17.34	431.36
H01	MF	0.48	0.45	0.48	6.99	550.93
H1-2	MF	0.75	0.75	0.74	7.69	503.80
H02	MF	1.22	1.22	1.27	6.18	471.70
H03	MF	1.80	1.88	1.73	5.25	498.11
H05-G	MF	3.96	4.57	4.87	3.78	471.70
Chamair	MF	0.57	0.51	0.54	8.49	525.90
E2b	FC	5.71	4.87	5.62	15.43	239.70
0A	RG	0.76	0.78	0.70	27.68	314.81
1A	RG	1.75	1.74	1.64	23.37	275.01
2 A	FC	1.95	1.95	2.02	20.75	282.71
3A	DH	2.98	2.89	3.08	18.18	274.82
4A	DH	2.71	2.61	3.18	15.19	315.36
5A-G	DH	3.77	3.70	4.39	14.89	284.09
7A-G	DH	3.92	3.95	4.84	13.42	311.23
Grad3	DH	0.65	0.63	1.06	21.84	369.18

Table 2: List of the snow samples and types with the corresponding computed values of the permeability in the x , y and z direction (K_{x}, K_{y} and K_{z}), the Specific Surface Area (SSA) and the density. All these values were computed on the largest volume available of each sample, which is at least equal to REV of the three variables. Snow type is defined according to the International Classification for Seasonal Snow on the Ground [Fierz et al., 2009]: PP, Precipitation Particles; DF, Decomposing and Fragmented precipitation particles; RG, Rounded Grains; FC, Faceted Crystals; DH, Depth Hoar; MF, Melt Forms. Lines with gray background correspond to samples for which detailed information is provided below.

Sample Fr - Precipitation Particles (PP)

Figure 1.a: 3 D visualization of the microtomographic image (size $=1192^{3}$ voxels, 1 vox. $=4.91 \mu \mathrm{~m}$).

Figure 1.b:
Dependency of \mathbf{K} estimates with sample size.

Sample P04-Decomposing and Fragmented precipitation particles (DF)

Figure 2.a: 3D visualization of the microtomographic image (size $=512^{3}$ voxels, 1 vox. $=8.588 \mu \mathrm{~m}$).

Figure 2.b:
Dependency of \mathbf{K} estimates with sample size.

Sample P11-Rounded Grains (RG)

Figure 3.a: 3D visualization of the microtomographic image (size $=512^{3}$ voxels, 1 vox. $=8.588 \mu \mathrm{~m}$).

Figure 3.b:
Dependency of \mathbf{K} estimates with sample size.

Sample HO2 - Melt Forms (MF)

Figure 4.a: 3D visualization of the microtomographic image (size $=651^{3}$ voxels, 1 vox. $=8.590 \mu \mathrm{~m}$).

Figure 4.b:
Dependency of \mathbf{K} estimates with sample size.

Sample E2b - Faceted Crystals (FC)

Figure 5.a: 3D visualization of the microtomographic image (size $=1200^{3}$ voxels, 1 vox. $=4.91 \mu \mathrm{~m}$).

Figure 5.b:
Dependency of \mathbf{K} estimates with sample size.

Sample Grad3 - Depth Hoar (DH)

Figure 6.a: 3D visualization of the microtomographic image (size $=600^{3}$ voxels, 1 vox. $=10 \mu \mathrm{~m}$).

Figure 6.b:
Dependency of \mathbf{K} estimates with sample size.

[^0]: ${ }^{1} 1325 \mathrm{~m}$ altitude, Chartreuse range, France.
 ${ }^{2} 3200$ m altitude, Ecrins range, France.

