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Abstract 1 

 2 
Snow depth variability over small distances can affect the representativeness of depth 3 

samples taken at the local scale, which are often used to assess the spatial distribution of 4 

snow at regional and basin scales. To assess spatial variability at the plot scale, 5 

intensive snow depth sampling was conducted during January and April 2009 in 15 6 

plots in the Rio Ésera Valley, central Spanish Pyrenees Mountains. Each plot (10 × 10 7 

m; 100 m2) was subdivided into a grid of 1 m2 squares; sampling at the corners of each 8 

square yielded a set of 121 data points that provided an accurate measure of snow depth 9 

in the plot (considered as ground truth). The spatial variability of snow depth was then 10 

assessed using sampling locations randomly selected within each plot. The plots were 11 

highly variable, with coefficients of variation up to 0.25. This indicates that to improve 12 

the representativeness of snow depth sampling in a given plot the snow depth 13 

measurements should be increased in number and averaged when spatial heterogeneity 14 

is substantial.  15 

Snow depth distributions were simulated at the same plot scale under varying 16 

levels of standard deviation and spatial autocorrelation, to enable the effect of each 17 

factor on snowpack representativeness to be established. The results showed that the 18 

snow depth estimation error increased markedly as the standard deviation increased. 19 

The results indicated that in general at least five snow depth measurements should be 20 

taken in each plot to ensure that the estimation error is < 10%; this applied even under 21 

highly heterogeneous conditions. In terms of the spatial configuration of the 22 

measurements, the sampling strategy did not impact on the snow depth estimate under 23 

lack of spatial autocorrelation. However, with a high spatial autocorrelation a smaller 24 

error was obtained when the distance between measurements was greater. 25 

 26 

Key words: snow distribution, plot scale, spatial correlation, field survey, sampling 27 

strategies 28 

 29 

 30 

1. Introduction 31 

Accurate assessment of snow depth and its distribution can aid in the forecasting of 32 

water resources, the monitoring of natural hazards, and assessment of plant and fauna 33 
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 3 

phenology (Haefner et al., 1997; López-Moreno et al., 2007 and references therein). 1 

Despite recent advances in remote sensing and the development of automated nivo-2 

meteorological stations, which provide operational tools for snow analysis, the manual 3 

collection of point snow depth and density data is still widely used.. Networks of 4 

automated nivo-meteorological stations (e.g. SNOTEL in the U.S.; BERMS in Canada; 5 

MIS, ENET and ANETZ in Switzerland) provide real-time monitoring of snowpack 6 

characteristics at high temporal resolution (Fassnacht et al., 2003), but these are 7 

sparsely distributed and may not adequately represent surrounding areas (Erickson et al., 8 

2005; Neumann et al., 2006). To overcome these spatial inadequacies additional ground 9 

observations are often required (Molotch and Bales, 2005; Dressler et al., 2006; 10 

Neumann et al., 2006). 11 

Estimation of the distribution of snowpack depth is typically based on statistical 12 

(e.g. binary regression trees) relationships between geo-referenced snow data and terrain 13 

characteristics derived from a digital elevation model (DEM). This enables the 14 

extrapolation of snowpack estimates to unsampled areas (Elder et al., 1998; Erxleben et 15 

al., 2002; López-Moreno and Nogués-Bravo, 2006). Manual measurements are also 16 

commonly used to calibrate and/or verify snowpack energy balance models, 17 

implemented to estimate snowpack properties at temporal and spatial resolutions greater 18 

than those that can be feasibly sampled (Cline et al., 1998; Molotch and Bales, 2005). 19 

The manual collection of snow measurements is often difficult, as it can involve 20 

sampling in cold, rugged and isolated environments, sometimes in dangerous terrain. In 21 

addition, selection of the optimum sample size is not trivial (Rovansek et al., 1993). It is 22 

necessary to consider the appropriate number and distribution of samples necessary to 23 

adequately assess the spatial variability of snow depth in a given area (Watson et al., 24 

2006). To capture the influence of terrain a representative field data set should also span 25 

Eliminado:  Satellite and/or 
aerial imagery are not yet widely 
accessible, and have limited utility 
in rugged mountain terrains 
(Chang and Li, 2000)

Eliminado: 200

Eliminado: Field surveys must



 4 

the plot, slope and valley scales (Jost et al., 2007). Terrain variability and vegetation 1 

also influence the scale over which snow data are correlated (Deems et al., 2006). 2 

Discrepancies between snow depth estimates and the ground truth may lead to 3 

spurious interpretation of the relationship between the snowpack and terrain 4 

characteristics. At the plot scale (i.e. areas on the order of 100 m2 where the snow 5 

surface seems homogeneous from the perspective of a surveyor) it is important to 6 

ensure that each sample is representative of its immediate surroundings, as there may be 7 

hidden variability resulting from the presence of boulders, branches and vegetation on 8 

the ground, and the effects of wind redistribution. These and other factors may lead to 9 

large and unknown variability in snow depth over very short distances, so a single 10 

sample is often inadequate to provide an estimation of snow depth for a given plot with 11 

a specified accuracy. This problem is usually overcome by increasing sample replication 12 

and averaging measurements made at different locations within a plot. 13 

If a variable does not exhibit spatial autocorrelation, the estimation error 14 

decreases as the sample size increases, and thus the average of a number of samples will 15 

better represent the ground truth than a single measurement. The standard error (SE) of 16 

a sample mean (i.e. the standard deviation of the error in the sample mean relative to the 17 

population mean) can be estimated (Eq. 1, Nielsen and Wendroth, 2003) as a power 18 

function of the sample standard deviation estimate (s) and the sample size (n): 19 

5.0
n

s
SE =  (Eq. 1). 20 

An approximate sample size can be inferred for achieving a desired level of accuracy in 21 

estimating the mean, depending only on the standard deviation of the population; 22 

however, this relies on estimation of the standard deviation. As with most 23 

environmental variables, snow properties (including snow depth) show a degree of 24 

spatial autocorrelation; hence, consecutive or adjacent measurements are not completely 25 
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 5 

independent. Autocorrelation can severely affect the estimation of sample variances and 1 

standard deviations, resulting in uncorrected sample estimates significantly 2 

underestimating the true (population) values. The degree of autocorrelation is not 3 

known a priori, so it is impossible to determine in advance the optimum sample size for 4 

achieving a certain degree of accuracy in estimating the mean. 5 

As autocorrelation decreases with the distance between sampling points, the 6 

sampling size, the distance between points and the sampling strategy (e.g. the spatial 7 

pattern of sampling) must be considered. In snow sampling these parameters are often 8 

decided subjectively rather than being derived statistically and very little literature can 9 

be found as guidance to increase the efficiency when sampling snow depth. 10 

The aim of this paper is to quantify the spatial variability of snow depth at a 10 11 

m × 10 m plot scale, and to isolate the effect of the sampling size and strategy on the 12 

estimation of the mean snow depth under controlled conditions of snow variability and 13 

spatial autocorrelation. To address these issues two intensive snow depth sampling 14 

surveys were conducted in a Pyrenean mountain valley and a synthetic data set was 15 

constructed to assess the influence of the sampling size and strategy on the estimation of 16 

the mean under controlled conditions. 17 

  The first and second sections of the results describe the observed variability of 18 

snowpack and its influence on estimation of the snowpack depth at the plot scale. The 19 

third section presents the results from analysis of the synthetic plots, aimed at isolating 20 

the effects of snow depth variability and the degree of spatial correlation on the standard 21 

error of the average. 22 

 23 

2. Data sets 24 
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The snow surveys were conducted in the headwaters of the Ésera River in the central 1 

Spanish Pyrenees Mountains in January (12–16) and April (21–24) 2009. These dates 2 

were selected to obtain snow depth data under contrasting snow conditions. In January 3 

the intensity of incident solar radiation is low and relatively homogeneously distributed 4 

across the study area, and the cold early winter temperature maintains a strong thermal 5 

gradient within the snowpack. In April the intensity of the incoming solar radiation is 6 

much greater, and the aspect and forest canopy have a major influence on the spatial 7 

distribution of snow. The warmer temperatures at this time induce snowmelt at many 8 

locations, and reduce thermal gradients within the snowpack. In the latter period the 9 

snowpack is isothermal in most plots (Fassnacht et al., 2010). 10 

Fifteen 10 × 10 m plots were randomly selected across the study area. The plot 11 

size was selected to match that of the most detailed digital elevation model (DEM) 12 

available for the Pyrenees, and also to represent a suitable grid size for snow depth 13 

estimations in mountain ranges worldwide. Plots were established along a transect of 14 

seven kilometers between the Hospital de Benasque and the Aigualluts sites, covering 15 

an altitudinal gradient of 340 m from 1735 to 2075 m a.s.l. (Table 1). Eight of the plots 16 

were located in forest openings where the size of the open area was less than twice the 17 

height of the surrounding trees (Pinus uncinata and silvestris of 5-15 m in height), and 18 

seven were in open areas where the size of the open area was more than five times the 19 

height of the surrounding trees. Each plot was divided into a grid of 1 m × 1 m squares, 20 

which were sampled at each corner to yield a set of 121 data points. The average of 21 

these 121 replicates was taken to accurately represent the snow depth in the plot (ground 22 

truth).  23 

In addition to the measurement data a synthetic data set was constructed to 24 

assess the influence of the sampling size and strategy on the estimation of the mean 25 
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under controlled conditions. For the synthetic data set 5000 simulations of a random 1 

spatial field of 10 m ×10 m were drawn for each combination of 10 standard deviation 2 

classes (steps of 0.025 from 0.025 to 0.25cm) and 4 levels of spatial autocorrelation, 3 

giving a total of 200,000 simulations. Standard deviation classes and levels of 4 

autocorrelation were defined according to the maximum snow depth variability and 5 

spatial autocorrelation observed in the sampled plots in the study area.Autocorrelation 6 

in the spatial fields was represented by a Gaussian semivariogram (Cressie, 1993), with 7 

the partial sill parameter equal to the square of the standard deviation (the variance of 8 

the set) and four levels of the range parameter (from 1 m for low autocorrelation to 10 9 

m for very high autocorrelation). The simulated spatial fields were obtained using the 10 

sequential Gaussian simulation algorithm, as implemented in the function predisct.gstat 11 

of the gstat package (Pebesma, 2004); the R language was used for statistical analysis 12 

(R Development Core Team, 2010). 13 

 14 

3. Statistical analysis 15 

Snowpack variability was assessed by comparison of the distribution of depths and 16 

histograms of the data. Comparison of the characteristics of the histograms derived from 17 

the data from the forest openings with those derived from the open areas could provide 18 

insights into the role of the forest canopy in snowpack variability at the plot scale. 19 

The presence of spatial correlations at the plot scale was determined for each 20 

sampling plot using a semivariogram. The semivariogram plots the average 21 

semivariance between pairs of points as a function of the distance between them. 22 

Relevant parameters of the semivariogram are the sill (the maximum value of 23 

semivariance), the nugget (the value of semivariance at the discontinuity at the origin), 24 

and the range or correlation length (the distance at which the difference in the 25 
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semivariance from the sill becomes negligible). In models with a fixed sill the range is 1 

the distance at which this is first reached; for models with an asymptotic sill the range is 2 

conventionally taken to be the distance when the semivariance first reaches 95% of the 3 

sill (Isaaks and Srivistava, 1989). Here a circular semivariogram model was used.  4 

Figure 1 illustrates semivariograms of two different empirical semivariogram (dots) and 5 

fitted circular semivariogram model (blue line) of two sampling plots in January (left) 6 

and April (right). While the range of the autocorrelation was similar in both dates, the 7 

high nugget value of January revealed a stronger autocorrelation at short distances.  8 

Subsets of different sample sizes (from n = 1 to n = 121) were randomly 9 

extracted from each plot to assess the relationship between the error of the estimate 10 

mean snow depth and the sample size. To obtain a robust estimation of SE this process 11 

was repeated 50 times for each plot using different random subsets. The same analysis 12 

was applied to the synthetic datasets to isolate the effects of the field variance and the 13 

spatial autocorrelation on the error of the mean snow depth. Because of the large 14 

number of simulations the effect of various sampling strategies could be assessed. A 15 

sample size of five replicates was used with 10 different spatial configurations and 16 

varying distances between the measurements, as follows: i) random; ii) one row at 1 and 17 

2 m distance; iii) a +-shape (a central point and measurements toward the four cardinal 18 

directions) at 1, 2 and 5 m; iv) an L-shape (northward and eastward points from a 19 

central point) at 1, 2 and 5 m; and v) the four corners plus the central point. 20 

 21 

4. Results 22 

4.1. Plot scale variability 23 

The mean, standard deviation, coefficient of variation (CV) and semivariogram range 24 

for the 15 plots are shown in Table 1; Figure 2 shows the associated snow depth 25 
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histograms. In January 2009 there was moderate variability in the snow depth among 1 

the plots, with a mean plot depth of 73–134 cm. Moreover, there was marked variability 2 

at the plot scale, with coefficients of variation ranging from 0.04 to 0.20 (mean 0.12). 3 

Despite this variability, the shape of all histograms was leptokurtic, indicating that most 4 

of the snow depths were included in only a few depth classes. 5 

The mean snow depth among plots was more variable in April than in January, 6 

ranging from 65 to 253 cm. Snow accumulation increased in most of the plots, and the 7 

increase was substantial in 8 plots. Only in the two plots at the lowest altitudes (plots 1 8 

and 2) did snow depth decrease slightly. The average within-plot variability (CV) was 9 

similar in April to that in January (mean CV = 0.12), but the range was greater, from 10 

0.03 in plot 12 to 0.25 cm in plot 1. The marked leptokurtic shape of the histograms 11 

observed for the January data was not as evident in April. The semivariogram range 12 

varied from 1.3 to 10 m in January, and from 4.7 to 10 m in April. A range of 10 m 13 

indicates that the range over which autocorrelation is significant is greater than the 14 

maximum possible distance between points in the plots. Overall, the spatial 15 

autocorrelation was less in January (mean range = 3.8 m) than in April (mean range = 8 16 

m). In January the spatial autocorrelation was greater in the forest openings (mean range 17 

= 5.3 m) than in the open areas (mean range = 2.4 m). In April the spatial 18 

autocorrelation was very similar in the forest openings (mean range = 7.5 m) and the 19 

open areas (mean range = 8.4 m). 20 

Despite the altitudinal range covered by the survey being relatively low (1735 to 21 

2075 m a.s.l.), the effect of elevation on the mean snow depth in both January and April 22 

(Fig. 3A) was statistically significant (p < 0.05). The overall micro-scale variability of 23 

snow depth, measured by means of the CV, tended to decrease as the snowpack depth 24 

increased (Fig. 3B). The CV was statistically correlated (α < 0.05) with mean snow 25 
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depth, with r values of –0.47 and –0.46 for January and April, respectively. The location 1 

of the plot in a forest opening or an open area appeared to be the most influential factor 2 

explaining the degree of variability in January. At that time the average accumulation of 3 

snow in the forest opening plots (104 cm) was very similar to that in the open areas (108 4 

cm), but the CV in the open areas (0.10) was lower than in forest openings (0.14). A 5 

one-way ANOVA test confirmed that the differences in the coefficient of variation of 6 

snow depth between the two environments were statistically significant. In April, 7 

despite the CV being greater for forest openings (0.12) than open areas (0.10), the 8 

ANOVA test did not indicate a significant difference between the two environments. 9 

The semivariogram range in each plot was not related to the snow depth (Fig. 2C), but 10 

was significantly (p < 0.05) positively correlated with the CV (Fig. 2D), such that the 11 

plot variability decreased the spatial autocorrelation. 12 

 13 

4.2 Implications of sample size for snow depth estimation 14 

A random extraction of subsets of n = 1 to n=121 samples was replicated 50 times and 15 

the means were compared with the ground truth mean (n=121). Replicates allowed for 16 

robust estimation of the mean standard error and its range of variability for different 17 

sample sizes. Figure 3 shows the decrease of the mean error, plus the 25th and 75th 18 

percentiles, as a function of the sample size from the 15 plots assessed in January and 19 

April 2009. The decrease of the mean standard error expected from a purely random 20 

sample (according to the power function shown in Eq.1) is also shown for comparison. 21 

The error decreased rapidly from small sample sizes, and the 5% mean standard error 22 

was achieved with only four samples in each of January and April, or seven and eighth 23 

samples, respectively, for a significance level of α = 0.25 (75th percentile). The 24 
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observed mean error was systematically higher than obtained from the purely random 1 

sampling in January, while in April they were more similar. 2 

Figure 4 shows the mean, 25 and 75th percentiles of error for the 15 plots. 3 

Variability amongst analyzed plots informs that sample size may affect in a different 4 

manner to snow depth estimation at the plot scale. Figure 4(A) shows the average error 5 

as a function of both the sample size and the CV. Figure 4(B) displays the average error 6 

as a function of the sample size and the spatial autocorrelation (the range of the 7 

correlation length) per plot. To more clearly depict patterns of change the data were 8 

smoothed using a locally weighted scatterplot smoothing- LOESS smoother (Cleveland, 9 

1979) with 1 polynomial degree for a sampling proportion of 0.1. For both sampling 10 

occasions (January and April 2009) the standard error tended to be higher in plots with 11 

larger coefficients of variation and spatial correlation (Fig. 5a and 5b). In plots under the 12 

later conditions the estimate of snow depth from a single measurement could differ from 13 

the ground truth value by more than 10% in January and 18% in April. In these cases 14 

estimates of snow depth could contain significant errors (> 10%), even with multiple 15 

measurements. Conversely, in those plots where snow measurements showed a low CV 16 

and low spatial autocorrelation, the standard error was notably lower than shown for the 17 

plot average in Figure 4. Under such conditions the error could drop below 5% with 18 

only a single measurement. 19 

 20 

4.3 Effect of coefficient of variation, spatial autocorrelation and sampling strategy on 21 

snow depth estimation 22 

 23 
In natural situations completely random sampling of snow is rarely achievable because 24 

of a variety of difficulties including terrain complexity. Thus, in most real-world studies 25 

a specific sampling strategy is used, such as taking a number of samples in a line, plus 26 
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or an L It is plausible that a particular sampling strategy is better able to capture the 1 

spatial variability in an autocorrelated field. To assess this possibility we simulated 2 

200,000 plots composed of 121 points with an equal average snow depth (100 cm), but 3 

with differing levels of standard deviation and spatial autocorrelation. 4 

The mean standard error for various levels of standard deviation and spatial 5 

autocorrelation for the random sampling is shown in Figure 6. Figure 7 shows the 6 

example of 4 levels of standard deviation for various levels of spatial autocorrelation. 7 

Both figures (Figs. 6 and 7) demonstrate that variability in snow depth at the plot scale 8 

(measured by the standard deviation) explained the different degrees of accuracy 9 

relative to the ground truth data. Thus, the 4 degrees of spatial autocorrelation provided 10 

almost identical patterns of a decrease in error as sample size increased and standard 11 

deviation decreased. Variability in the decrease in mean standard error with sample size 12 

depended largely on the standard deviation of the spatial field, while the extent of 13 

spatial correlation was far less important. However, differences were also found for 14 

varying levels of spatial autocorrelation, and the mean standard error was slightly lower 15 

in cases with higher autocorrelation because of their implicit lower spatial variability. 16 

When the standard deviation exceeded 0.1 cm a single measurement provided a mean 17 

error > 10%, and the error approached 20% when the standard deviation was 0.2 cm. 18 

The decrease in error according to sample size approximated the theoretical exponential 19 

decay for a purely random variable. From Figure 7 it can be seen that 4 measurements 20 

per plot resulted in errors < 5% if the standard deviation was < 0.1 cm. Five 21 

measurements were needed to achieve a similar accuracy with a standard deviation of 22 

0.15 cm, while 7 or 8 measurements were needed for a standard deviation of 0.2 cm. 23 

Five measurements provided error estimates < 10% for all degrees of spatial 24 

autocorrelation tested. 25 
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Figure 8 shows the variability of the mean standard error amongst the 5000 1 

simulations for different sample sizes at 4 levels of standard deviation (0.05, 0.1, 0.15 2 

and 0.2 cm) and the same level of spatial autocorrelation (semivariogram range = 4 m). 3 

The average values shown in figures 6 and 7 can mask substantial variability (Fig. 8), 4 

and even with a low standard deviation (i.e. 0.05 or 0.1cm) inaccurate snow depth 5 

estimates are possible if the sample size is < 4 measurements. In the case of plots with 6 

large snow depth variability, a small number of measurements may lead to marked 7 

deviation from the ground truth mean. Thus, there was a 25% probability of an error 8 

approaching 10% if less than five measurements were used when the standard deviation 9 

exceeded 0.1 cm. In general, Figure 8 suggests that a single measurement is highly 10 

unreliable as an estimate of snow pack depth at the plot scale. There was 10% 11 

probability of an error of 9, 16, 23 and 32% for standard  of 0.05, 0.1, 0.15 and 0.2 cm, 12 

respectively. 13 

Snow depth estimates from 5 measurements using 10 different configurations of 14 

shape (row, L-shape, +-shape and random) and distance between measurements (1, 2 15 

and 5 m) were compared with the ground truth mean. In Figure 9 each panel represents 16 

a given combination of three standard deviations (0.05, 0.125 and 0.2 cm) and 2 levels 17 

of spatial autocorrelation (semivariogram range = 1 and 10 m). With no spatial 18 

autocorrelation the sampling strategy did not impact on the snow depth estimate. 19 

However, with a high spatial autocorrelation a smaller error was obtained when the 20 

distance between measurements was greater, as shown with sampling at the center and 21 

the four corners of the plot 5 m away, in a “+” shape (configurations 10 and 6 in Fig. 9). 22 

For all the three spatial configurations (line, “+” or “L” shapes) the largest errors were 23 

obtained when the distance between measurements was only 1 m. Random sampling 24 

and a 2 m spacing provided intermediate levels of accuracy, with the measurements 25 
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along a line being slightly more accurate than the “+” or “L” configurations. Under high 1 

snow variability condition (sd = 0.2), the results indicate that a 5 m spacing of 2 

measurements could result in an improvement in mean snow depth estimates of 3 

approximately 5% relative to a spacing of 1 m, while changing the spacing from 1 to 2 4 

m could increase accuracy up to 3%. 5 

 6 

5. Discussion 7 

The data from two snow surveys (January and April 2009) showed that there was 8 

marked variability in the snowpack depth within each of the 10 × 10 m study plots. 9 

Such heterogeneity can prevent accurate estimates of snow depth being obtained. To 10 

improve the accuracy of snowpack estimates, it is necessary to average several 11 

measurements taken within each plot. 12 

The two surveys undertaken in the present study were not sufficient to provide 13 

evidence of seasonal patterns, but differences between the two sampling periods were 14 

observed. It has been found that within a few months snow density and temperature can 15 

change markedly (Fassnacht et al., 2010), and similar variability was found in this study 16 

with respect to snow depth variability at the plot scale, the spatial autocorrelation of 17 

snow depth, and the role of the forest canopy. All these factors can affect the minimum 18 

sample size and/or the sampling strategy necessary to satisfactorily represent snow 19 

depth at the plot scale. 20 

Previous studies have identified large spatial variability at the plot scale 21 

(Tarboton et al., 2000; Pomeroy et al., 2001; Anderton et al., 2002), which is a 22 

consequence of the particular characteristics of the terrain, the amount of accumulated 23 

snow, and the influence of surrounding forest. The presence and quantity of boulders, 24 

branches and irregularities in the terrain clearly influenced the variability among the 25 
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plots in the study area. For each of the surveys a statistically significant correlation was 1 

found between the mean snow depth and the variability in each plot. An explanation for 2 

this relationship is that irregularities in the terrain are constant in size, and thus their 3 

relative influence on the snow depth decreases as the snowpack depth increases 4 

(Fassnacht and Deems, 2006; López-Moreno and Latron, 2008). In both surveys higher 5 

snow depth variability was found in the plots located in forest openings relative to those 6 

in open areas. This can be explained in part by the horizontal and vertical structure of 7 

trees within forest stands, local shadow effects (Musselman et al., 2008) and the 8 

emission of long-wave radiation from surrounding trees, differential ablation rates as 9 

consequence of litter on the snow, and the increased probability of the presence of tree 10 

branches and/or stumps on the ground (Pomeroy et al., 2001; Stähli et al., 2009). 11 

However, certain plots in open areas exhibited the greatest variability among all plots in 12 

April 2009; these plots were located at the lowest altitudes, where the snowpack was 13 

thinner and local topography had a greater influence.  14 

Semivariograms have been used to detect significant spatial autocorrelation 15 

(Essery et al., 1999; Deems et al., 2006; Jost et al., 2007, Kronholm and Birkeland, 16 

2007), but in most cases have been used at the slope scale. Watson et al. (2006) and Jost 17 

et al. (2007) assumed variability at the plot scale to be random, and analyzed variability 18 

at the watershed-scale from stratified data, using multiple replicates at the plot scale to 19 

conduct geostatistical analyses to assess local variability. In this study we found that 20 

spatial autocorrelation occurred at the plot scale, but varied markedly among plots and 21 

tended to be greater in the forest openings. This is probably because of a spatial trend in 22 

forest canopy processes affecting the energy balance and wind redistribution, including 23 

shadow and wind shield effects, and the emission of long-wave radiation. As in this 24 

study, Holmgren et al. (1998) recognized the existence of well-defined sills for the 25 
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residual spatial variances at a range of about 10 m. For  an area with a sparse canopy, 1 

Deems et al. (2006) showed that the correlation length was a function of canopy 2 

structure and terrain, and was in the order of 15 to 20 m. However, using spectral 3 

analysis Trujillo et al. (2007) did not find a clear relationship between topographic 4 

relief and the correlation length. For the same study sites the spatial memory of snow 5 

depth in the forested areas was similar to the vegetation height field, and increased in 6 

open areas as a consequence of wind redistribution (Trujillo et al., 2009). Moreover, it 7 

is logical to assume that the range actually be much greater if a slightly larger plot 8 

overlapped both vegetated and open areas. This is a particularly relevant question as the 9 

considered plot is of larger size than considered in this study. 10 

To obtain reliable snow depth estimates at a 10 × 10 m plot scale it is necessary 11 

to make multiple measurements. With a single measurement the estimation of snow 12 

depth in the plot is likely to be highly biased. The deviation from the ground truth mean 13 

with different sample sizes was mostly associated with snow depth variability at the plot 14 

scale. From the data obtained it was possible to infer a relationship between the degree 15 

of spatial autocorrelation and the mean standard error. However, this may have been a 16 

consequence of the relationship in this data set between the CV and the semivariogram 17 

range. A sensitivity analysis conducted with multiple simulations of snow depth for 18 

various autocorrelation ranges showed that the effect of autocorrelation on estimates of 19 

the mean was much lower than the standard deviation of the field. However, in the 20 

presence of spatial autocorrelation the sampling strategy became a relevant factor; snow 21 

depth estimates improved by maximizing the distance between sampling points within 22 

the plot and increasing the number of measurements. Specific configurations of the 23 

snow measurements did not make a significant difference to the quality of the estimates. 24 

Overall, results suggests that snow sampling should prioritize the collection at least five 25 
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snow depth measurements at a minimum2 meters spacing to represent a 10 x10 meters 1 

plot sized area. The specific numbers presented here relating sample size and snow 2 

depth estimates are closely related to the topographic and climatic characteristics of the 3 

study area, and the specific plot size considered in this study. The aim of this research 4 

was not to provide guidance for sampling in other geographical areas or surface terrain 5 

characteristics, but highlights the usefulness of considering this type of analysis during 6 

the planning of snow surveys. Initial measurements of numerous snow depths at the plot 7 

scale can be used to determine the measurement variability of a location, and can help to 8 

decide how many samples should be taken to represent each survey point. This 9 

approach should improve the representativeness of the dataset. A better understanding 10 

of the factors that influence the spatial and temporal patterns of snowpack variability 11 

and spatial autocorrelation at the plot scale will aid efforts to obtain high quality snow 12 

datasets. We have presented information of 15 plots in two different periods of the year. 13 

However, we could find a larger range of variability and spatial correlation if a more 14 

detailed temporal resolution of the surveys, and a higher variety of environments (i.e. 15 

sub-canopy plots, high mountain areas, etc) would have been sampled. Further research 16 

could be addressed to analyze the dynamic nature of the variability (in space and time), 17 

which could reveal additional information for improving the accuracy of snow depth 18 

estimation.  19 

 20 

6. Conclusions 21 

Based on a 1 m sampling resolution, snow depth exhibited marked variability at 22 

a 10  × 10 m plot scale, especially in forest openings. This variability explains the need 23 

to average several measurements in each plot to obtain a reliable estimate of the snow 24 

depth. The number of measurements needed depends on the degree of variability of the 25 

Con formato: Inglés (Estados
Unidos)

Con formato: Inglés (Estados
Unidos)

Eliminado: particular distance 
(minimum 

Eliminado: )

Eliminado: ,

Eliminado: m



 18 

snowpack at the plot scale, and the desired accuracy. In this study five measurements 1 

produced an error of < 10% even under high variability conditions. With high micro-2 

scale variability the collection of 8 measurements reduced the error to 5% in more than 3 

75% of cases. Snow depth variability is often spatially autocorrelated. With no spatial 4 

autocorrelation the sampling strategy did not impact on the snow depth estimate. 5 

However, with a high spatial autocorrelation a smaller error was obtained when the 6 

distance between measurements was greater. In such cases spacing the measurements 7 

within the plot independently of the spatial configuration enhanced the accuracy of the 8 

snow depth estimates. Thus, under high spatial autocorrelation (semivariogram range= 9 

10m) and high snow variability condition (sd = 0.2 cm), the results indicate that a 5 m 10 

spacing of measurements could result in an improvement in mean snow depth estimates 11 

of approximately 5% relative to a spacing of 1 m, while changing the spacing from 1 to 12 

2 m could increase accuracy up to 3%.  13 

 14 
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Figure legends 1 

Figure 1. illustrates semivariograms of two different empirical semivariogram (dots) 2 

and fitted circular semivariogram model (blue line) of two sampling plots in January 3 

(left) and April (right). 4 

Figure 2. Histograms of the 121 measured snow depths (standard deviation units) for 5 

each of the 15 plots distributed in various classes for a) January and b) April. 6 

Figure 3. Relationships between (A) snow depth and altitude, (B) snow depth and 7 

coefficient of variation, (C) snow depth and semivariogram range, and (D) coefficient of 8 

variation and semivariogram range. 9 

Figure 4. Decrease in snow depth estimation error at the plot scale for various sample 10 

sizes. The thick line is the average error, and the thin lines are the 25th and 75th 11 

percentiles obtained from 50 replications. The grey dashed line is the error calculated 12 

according to a power law. 13 

Figure 5. Average error for various sample sizes according to (A) the coefficient of 14 

variation and (B) the spatial autocorrelation. The white areas correspond to ranges of the 15 

y-axis without data in one of the surveys. 16 

Figure 6. Average error for various sample sizes derived from simulated plots 17 

according to various standard deviation levels and 4 classes of spatial autocorrelation. 18 

Figure 7. Examples showing the decrease in average error according to sample size for 19 

4 standard deviation levels with various classes of spatial autocorrelation. 20 

Figure 8. Variability in error estimates among the 5000 simulations involving various 21 

sample sizes and 4 levels of standard deviation. The solid lines indicate the average, the 22 

dashed lines indicate the mean, the boxes indicate the 25th and 75th percentiles, and the 23 

bars indicate the 10th and 90th percentiles. 24 

Figure 9. Impact of sampling strategy on error estimation at the plot scale. 25 
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 1 

plot Cover X Y Elev. mean std dev CV Range mean std dev CV Range
1 open 795640 4732341 1731 91 9.8 0.11 6.8 65 16.5 0.25 10.0
2 forest 796103 4732552 1737 73 10.8 0.15 6.5 72 11.6 0.16 5.5
3 forest 796284 4732200 1782 78 11.9 0.15 2.7 125 13.1 0.10 4.8
4 open 796327 4732421 1742 92 12.0 0.13 1.3 140 20.9 0.15 10.0
5 forest 796886 4732093 1857 134 15.9 0.12 10.0 235 20.9 0.09 4.7
6 open 797519 4731981 1873 132 9.2 0.07 1.5 204 16.2 0.08 10.0
7 forest 797888 4732159 1855 110 21.8 0.20 9.5 253 41.6 0.16 9.5
8 open 798317 4731997 1831 110 13.9 0.13 2.7 144 35.2 0.24 10.0
9 forest 798582 4731948 1838 114 16.2 0.14 2.1 185 43.1 0.23 10.0
10 open 798967 4732043 1864 72 10.1 0.14 1.5 131 9.1 0.07 9.6
11 forest 799116 4731778 1884 103 9.2 0.09 4.9 132 18.1 0.14 10.0
12 open 799274 4731735 1894 125 4.9 0.04 1.5 194 6.4 0.03 6.0
13 forest 799557 4731319 1944 113 17.6 0.16 1.6 227 21.2 0.09 8.3
14 open 800476 4730879 2025 126 11.4 0.09 1.1 211 10.3 0.05 4.7
15 open 800672 4730441 2075 118 10.7 0.09 2.9 221 16.3 0.07 7.1

open average 108 10.2 0.10 2.4 164 16.4 0.12 8.4
forest average 104 14.8 0.14 5.3 176 24.2 0.14 7.5
Total average 106 12.4 0.12 3.8 169 20.0 0.13 8.0

January

Table 1. Summary data for the study plots. Location and main statistics: mean (cm), standard deviation (std dev), coefficient of 
variation (CV), and semivariogram range.

AprilUTM Coordinates
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