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[ like the approach that Roberts et al. are taking to interpolate sparse ice-thickness

information in Aurora Subglacial Basin. Even though the amount of glacier physics
incorporated into the interpolation scheme is not exhaustive, nevertheless it does a
much better job than traditional spatial interpolation schemes based on no physics.

Building on earlier work by Warner and Budd (2000), the basic idea is that steady-
state volumetric ice flux in any flowband can be estimated kinematically from
upstream area and accumulation rate. When ice is frozen to bedrock, and the
Shallow Ice Approximation (SIA) is applicable, ice flux can also be estimated
dynamically from the local ice thickness and slope. By knowing the flux
kinematically, and knowing the local ice slope from altimetry, it is then possible to
estimate the ice thickness.

Using ice physics is good, and the simplest historical way to introduce ice physics
has been to assume that the ice is perfectly plastic with a yield stress 7. In that case,
by assuming that the yield stress is reached everywhere at the base, i.e. o=pgDVS,
the depth D(x,y) can be estimated as

D =[70/(pg)] (VS)™. (1)
Only the surface slope is needed, and 1 (in the coefficient [70/(0g)]) is the adjustable
parameter that plays the role of ceff in the current manuscript.

Has anyone attempted to infer bedrock using (1)? If so, does a simple plastic
scheme perform better than an inverse-cubic law, i.e. are the major gains obtained
by introducing at least some ice physics, or by then refining the physics?

By assuming the SIA, this current manuscript (and Warner and Budd, 2000) offer
a more-sophisticated physics-based interpolation scheme. [ would also be curious
to see how much improvement the SIA approach makes in comparison to a plastic
scheme. [ suspect that that this improvement in sophistication also makes a big
difference.

My only concern about the paper is the non-intuitive nature of the units for cetf and
t(xy). I have a bit of trouble gaining much insight from an “effective flow
parameter” coefficient cetf that has units of m3/5 yrl/s, and a “thickness factor” that
has units of m2/5 yr-1/5,

[ think the work could be made more accessible to readers by non-dimensionalizing
the flux equation and expressing the adjustable parameter ceff in terms of a
traditional enhancement factor in Glen’s flow law. Here’s how I would suggest.



Glen’s law for SIA is often written as

¢, =EA0)0, (2)
where ¢ _ is the shear strain rate, E is the flow enhancement factor, 6is temperature,
and ox; is shear stress. After setting shear stress to be

o(x,y,2) = =pg(S - 2)VS (3)
where S(x,y) is surface elevation, and integrating from the bed a couple of times, the
dynamic ice flux is found to be
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where D(x,y) is the ice thickness. Essentially, Roberts et al. have re-arranged this
equation to express D as a function of flux g and slope VS. Their equation (1) is
equivalent to

q(x,2) =

(n+2) q(x,y) s

2EA,;(0)(pg)" vs[”
The first factor on the right becomes their cef, and the second factor becomes t(x,y).

(This is all old stuff straight out of Paterson. Ijustwant to express the origin of
their Equation (1) a little bit more clearly.)
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If they were to nondimensionalize Equation (4) or (5) by choosing a characteristic
ice thickness D, a characteristic surface slope o, and a characteristic temperature
6, then a characteristic horizontal scale L. arises naturally from a.=D.,/Lc, and a

characteristic ice softness Ac arises through Ac=A(6:). A characteristic ice flux also

arises from
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Then write each dimensional variable in terms of the characteristic value (which
carries the dimensions) and a nondimensional variable (indicated with a tilde) that
should be of order unity, carrying the relative fluctuations around the characteristic
values, i.e.

x=LX y=L)y

D(x,y) = D, x D(3.5)

VS(x,y) = a, x V8(%,7)

0, =0 x0,

Aeﬁ'(e) =A XAy 0)

q(x,y) = q, xq(x.y) (7)
After substituting (6) into (3) or (4), collecting all the characteristic numbers, and
recognizing that by the way it is defined, g. cancels out the other characteristic
numbers, we are left with
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Equation (8) has several advantages.

* The adjustable coefficient is clearly related to well-known glaciological
parameters, the nondimensional flow enhancement factor E, and the softness
parameter A in Glen’s law.

* The appearance of Zleﬂ (éc) in the coefficient more directly indicates that
deviations from linearity (or indeed from a coefficient of unity) can also be
caused by spatial differences in deep ice temperature. However, if one
decides to overlook temperature differences in the deep ice across the basin
(for now), then Aeﬂ (éc) =1 everywhere, and the flow law enhance factor E is
the only player.

* The variables on both sides are now dimensionless numbers that should vary

around unity. If the SIA applies, if 6=6,, and if E=1, then a correlation between
1/(n+2)

Dvs [Z](fc,jz) /|V§(5c,5))|n] will have a 1:1 slope with zero intercept.
¢ Itshould be more transparent to readers that when the coefficient

~ -1/
Co = (EAeﬁ,) 1 5differs from unity, the fitting procedure is sweeping up all

discrepancies from SIA (basal sliding, transient flow, softer ice, etc) into the
enhancement factor E.

If the editors and authors are convinced that this would be a clearer presentation
format, [ think that all that would need to be changed would be the figure labels. A
few paragraphs should also be added to explain the goals and benefits of the
nondimensionalization.

Here are some editorial details.

Page 659 line 1
“...data ... were first mapped ...”

Page 659 last line
The inverse cubic relation is introduced here without explanation or citation.

Perhaps cite Lythe et al. (2001) here.

Page 659 line 1
“...data ... were first mapped ...”

Page 660, first 2 paragraphs.



Both high values of t and low values of t that fail to follow the straight line occur
near ice ridges and domes. The fact that both extremes occur in the same generic
terrains may deserve some additional comment beyond just attributing the failure
to low slope in the first case, and low flux in the second case. Flux and slope are both
low near all ridges and domes. Perhaps, more fundamentally, as Equation (8)
(above) suggests, the failure arises because the SIA does not apply there? Or is it
simply because the method can become unstable in slow flow in the presence of
data errors, in spite of the 1/5 power?

4 lines above 2.1
- misplaced “only”. Text should read “... these criteria exclude only ...”

Equation (2)
What happens if ti =t, in the denominator?

Below (2)

“...summations range over all streamlines involving p and using ...”
Presumably p is on only one flowline. How do other flowlines get involved? It
would be helpful to explain if some lateral averaging scheme is being introduced
here.

Below (3)
- misplaced “only”. Text should read “... method varies only ...”

Section 3. line 2
“...data around the test point are excluded ..."

Page 663 2nd Jast line -
“...data from the flight lines were mapped ...”

Page 664, line 5
Needs hyphen “...simple inverse-distance cube method ...”

Page 664, line 26 -
Misplaced “only, and mis-spelled “increasing”. Text should read
“... with the biases increasing only slowly ..."

Page 664, line 27 -
Should have hyphen in “ ... an inverse-distance method ...”

Tables 2, 3, and 4 -
[t would be helpful if the captions explained or defined r and r? respectively.



Figure 3a
The figure seems to call for 3 straight lines, perhaps with nearly flat lines for small
and large t?



