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Abstract

In order to monitor the changes of the glaciers in the Gongga Mountain region on the south-eastern
margin of the Qinghai-Tibetan Plateau, 74 monsoonal temperate glaciers were investigated by comparing
the Chinese Glacier Inventory (CGI), recorded in the 1960s, with Landsat MSS in 1974, Landsat TM in
1989, 1994, 2005, and ASTER data in 2009. The remote sensing data have been applied to map the glacier
outline by threshold ratio images (TM4/TMS5). Moreover, the glacier outlines were verified by GPS survey
on four large glaciers (Hailuogou, Mozigou, Yanzigou, and Dagongba) in 2009. The results show that the
area dominated by the 74 glaciers has shrunk by 11.3% (29.2 km®) from 1966 to 2009 Giamer area on the
eastern and western slope of the Gongga Mountains decreased by 14.1 km?* (5.5% yﬂ 1966) and 15.1 km?
(59 % lyf 1966) respectively. The loss in glacier area and length is respectively 0.8 km® and 1146.4 m
(26.7 m/yr) for the Hailuogou glacier, 2.1km?and 501.8 m (1 1.7m/yr) for the Mozigou Glacier, 0.8 km? and
724.8 m (16.9m/yr) for the Yanzigou Glacier, and 2.4 km® and 1002.3 m (23.3 m/yr) for the Dagongba
Glacier. Decades of climate records obtained from three meteorological stations in the Gongga Mountains
were analyzed to evaluate the impact of the temperature and precipitation on glacier retreat. During 1966-
2009, the mean annual tem jrature over tl:z 2?1’1’1 and western sIope{ of the Gongga Mountains has been
increasing b); ?!2}.}:0-1-0-&5 and 0.13 °C/10 yrs, respectively. Moreover, it-was-stable-inthe mean annual
precipitation. This evidence indicates that the warming of the climate is probably responsible for the glacier
retreat in the study region.

Key words: Glacier change; GPS; RS; Climate change; Gongga Mountains
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1. Introduction

Glaciers are a critical component of the earth system and the present accelerated melting and retreat of
glaciers has severe impacts on the environment and human well- bemg, including vegetation patterns,
economic livelihood, natural disasters, and the. water-energy suppl!( (UNEP, 2007). Changes of glaciers in
mountainous regions are widely recognized as one of the best natural indicators of global climate change
(Oerlemans, 1994, 2005), and the decline in glacier extent in mountains and other regions -a-l-se-contributesto
sea level rise (Arendt et al., 2002; Larsen et al., 2007; Schiefer et al., 2007). The response of a glacier to
climate change depends on its geometry and on its climatic setting (Oerlemans, 2005). Extensive
meteorological experiments on glaciers have shown that the primary source for melt energy is solar
radiation but that fluctuations in the mass balance through the years are mainly due to temperature and
precipitation (Qerlemans, 2005; E}arf‘;lzll and Smeets, 2001). Recently, many records of glacier changes in
the global have been obtained by fieldwork investigation, ground and aerial photographic measurements,
and high-resolution remote sensing monitoring (Barry, 2006, DeBeer and Sharp, 2007; Racoviteanu et al.,
2008; Paul and Andreassen, 2009; Shangguan et al., 2007). All the results indicate the general trend of a-
g1a01er..w'recess,10g:-and- only a few glaciers-are advancing. The monsoon temperate glaciers, with ;[eh‘;g-h
rate of accumulation and ablation and a high mass-balance amplitude (Braithwaite and Zhang, 2000; Kaser
et al,, 2006):i5'm0re active than cold and continental glaciers, and thus /1»( more sensitive to the changing
climate (Su and Shi, 2000).

In China, numerous glaciers exist within and around the Qinghai-Tibetan Plateau. Established in the
1960s, the first Chinese Glacier Inventory (CGI) was compiled using aerial photography -date, and the
results formed a significant step in integrating knowledge of glaciers in China (Shangguan et al., 2006).
The data were subsequenﬂy abridged into 2 Concise CGI, published in Chinese (2005) and in English
(2008) (Shi et al., 2009), in order to make the glacier inventory more accessnt:f and better adapted for
assessing glacier response to climate change (Shi et al., 2009). I-n—efder-lo krrowﬁ're accurate information of
glacier status after 30-40 years of pronounced glaciers changes in and respontho the USGS-led project
GLIMS (Global Land Ice Measurements from Space) (Haeberli et al., 2000; Paul et al., 2004), the new

Chinese Glacier Inventory was started in 2006 using the new multi-spectral satellite data with a high spatial

resolution.

Glacier inventories m-tgl?’.l-‘s-l:egxon...haue—exiﬁted- in the Gongga Mountains where typical monsoon
eyest 4w
temperate glaciers are widely developed since the 1930s (Heim, 1936; Anderson, 1939). Cui (1938)

reported comprehensive information relating to the glaciers investigations in the Gongga Mountains. In

recent decades, more investigations have been conducted in-different-ways-ia-thisregion. For instance, Su

et al. (1992) presented new data about glaciers changes which was mainly based on the field investigations

including repeated surveys expeditions to the Qinghai-Tibetan Plateau by the Chinese Academy of

Sciences (1981-83) and by Sino-Soviet joint glaciological expedition to the Gong ‘ga Mountains in 1990.
- . . m(“r”’

Four years later, more glacier parameters in the Gongga Mountains were-aeeomptiisited by Pu in 1994 (Pu,

1994), based on the topographic map derived from acrial photographs acquired in the 1960s. Using the

¥ A cyow mran 7&:,;///4/
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steady-state equilibrium line altitude (ELA) method and the observed melting data, Xie et al. (2001)
discovered that the mass-balance in Hailuogou (HLG) Glacier (one of the large glaciers in the Gongga
Mountain) was about -488 mm/yr from 1990 to 1998, and concluded that the negative mass balance of the
HLG Glaciellzjl? caused by an increase in ablation. The elevation change of ablation area of HLG Glacier
was measured as -1.1+0.4 m/yr from 1966 to 2009}53;’GPS surveys (Zhang et al., 2009). The study on the
relation between HLG Glacier shrinkage and hydrological response showed an-increasing trend-of storage
loss during the last 20 years (Liu et al,, 20‘1’22‘ }1'?, al. (2010a) summarized the fluctuations of HLG
Glacier during the Holocene and gonmderedi gla;:_ :,hf.ihfi:lges of HLG leaCIer were mainly influenced by
climatic fluctuation. However, most of these-researches~were focusmg ona smgle glacier in the Gongga
Mountains, and there was little systematic and comprehensive study on the change of length and area of
glaciers, especially by using the remote sensing imag;E: Using multi-temporal remote sensing data in
different periods, including Landsat MSS (Multispectral Scanner), TM, ETM+ (Thematic Mapper Plus),
ASTER (Advanced Spaceborne Thermal Emission and Reflection) and CGI data based on topographic
maps derived from aerial photographs, this study is an attempt to accyrately investigate changes of all of
glaciers in the Gongga Mountains since the 1960s, and to a?sz:’s-:(ﬁ;: reason for these changes, especially
their relation to global climate change.
2. Study area are

The Gongga Mountains (29-}2:‘1;], 101°30-102°10F) i situated on the south-eastern margin of the
Qinghai-Tibet Plateahl (Fig. 1), -#e hig}‘lggt peak (Mount Gongga) has an elevation of 7556 m as.l,
Geomorphologically, Gongga Mountains j¢ located at the transition zone between the Sichuan Basin and

matd

the Qinghai-Tibet Plateau and climatically between the warm-wet m?nsgﬁ _%i‘matic region of the eastern
subtropics and cold-dry region of the Qinghai-Tibet Plateau. The%Gongga

ountains is not only controlled
by the monsoon of Southern Asia and the monsoon of Eastern Asia, but also influenced by the Qinghai-
Tibet plateau monsoon and the westerly circulation (Li et al., 2010b). The annual precipitation is ~1871
mm at 3000 m a.s.l. on the eastern slope of the Gongga Mountains and ~1173 mm at 3700 m a.s.1 on the
western (Su et al., 1992). The mean annual air temperature is 3.7 °C on the eastern slope (3000 m a.s.1.) and
only 1.9 °C on the western (3700 m a.s.l.) (Su et al., 1992).

According to the CGI (Pu, 1994), 74 glaciers with a total area of 257.7 km® are distributed in this region,
containing five valley glaciers with lengths of more than 10 km, mcludmg Halluogou (HLG) &laeier,
Mozigou (MZG) Glacter, Yanzigou (YZG) Glaeier, Nanmenguang;m (NMGG) Gh‘a’c'lfr on the eastern slope
an ADaGongba (DGB) Glacier on the western slope. The glacier in this region j# classified as summer-
accumulation type (Su et al., 1996; Xie et al., 2001), which has more accumulation in summer than winter
nthe-whelearea-ofaglaeter (Ageta and Higuchi, 1984). They are characterized by a high flow velocity,
rich accumulation and heavy melting. Many moraines are distributed around the glacier snouts, and both
terminal and lateral moraines along the western slope are more developed than those along the eastern

slope.
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3. Data Sources and Methods

The changes in the glaciers were determined by comparing glacier area and length for multi-temporal
spaceborne images, including Landsat MSS, TM, ETM+, ASTER and CGI (Table 1). The glacier outlines
from the CGI (Pu, 1994) were interpreted and measured by stereophotogrammetry from aerial photographs
at a scale of 1:60 000 taken during I}.%GG and corrected by aerial photographs and field investigation. As the

first CGI is the oldest archlven to analyze changes to glaciers in the west of China (e.g. Shangguan et al.,
2006, 2007 and 2009; Liu et al., 2010), we digitized the glacier outlines of the first CGI as-wecterfiles and

took them as the basic andreference data to analyze later changes in the Gongga Mountains glaciers.
st

The usee Landsat MSS/TM/ETM+ scenes were downloaded from USGS (United States Geological
Survey) webserver. Their quality is good, details can be found in Table 1. These data include one Landast
MSS image (1974), three Landsat TM images (1989, 1994 and 2005) a'r’ld one Landsat ETM+ image (2002).
Two ASTER images with no clouds and minimal seasonal snowg were provided by the NASA (National
Aeronautics and Space Administration) /METI (Ministry of Economy, Trade and Industry). Some historical
data (mass balance data, meteorological data} were also summarized to analyze fluctuations of glaciers in
the Gongga Mountains.

ws? 5
T e DEM (Digital Elevation Model) at 20-m resolutlon/ constructed from the digitized contour line of

o 1984

the topographic map fes-1989 with a scale of 1: SOOOOfwas used to analyze the topographic features of the
glaciers (e.g. slope, aspect, elevation). All datasets (DEM, remote sensing images, results of CGI) were
spatially lfefererllfed to the lecal Universal Transverse Mercator coordinate system (UTM zone 47N,
WGS84), and resampled to 15 m resolution,Se-erder to easc the calculation of changes in the glaciers. The
residual Root Mean Square error (RMSe) of verification points, when compared with Landsat ETM+, was
usually less than 1.2 pixels or 18 m.

In this study, automated glacier mapping from multi-spectral satellite data was applied to track the
glacier change. This technique was developed Hall et al. (1987), who suggested that the ratio of TM band
4 to TM band 5 could provide improved contrast (relative to using a single TM band) between glaciers
which are surrounded by ablation areas of debris, or till-laden glaciers. At present, the method of band ratic
is widely used in the glacier inventogf 5of the whole world (Khromova et al., 2003; Paul and Kiib, 2003;
Aizen et al., 2006; Raup et al., 2007; Paul and Andreassen, 2009; Svoboda and Paul, 2009).

‘For 4he Landsat TM, the band ratio of TM3/TM5 or TM4/TMS5 was selected for glacier mapping. A

dnd
threshold (Table 2) was set by TM4/TM5>2.4, xhatwvas more accurate than TM3/TMS in this region, and

an additional threshold in TM1 (DNs > 59) was set to improve glacier mapping in cast shadow (Paul and
Kb, 2005). This method is simple to apply, and the result is accurate for debris-free glaciers (Albert, 2002;
Andreassen et al., 2008). Glacier mapping by spectral band combinations image (TM3/TMS5 or TM4/TM3)
is accepted to be the most efficient method for debris-free glaciers (Paul, 2002), but it is not suitable for
debris-covered glaciers, which are generally mapped manually. Glacier mapping with ASTER was done
using threshold band ratio (Table 2) of the third band (red band) and the fourth band (SWIR band), a

vlq. (‘e»
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159  method which was already successful in other regions (e.g. Paul, 2002; Paul and Kiib, 2005; Raup et al.,
160 2007; Svoboda and Paul, 2009). Svoboda and Paul (2009) have discussed glacier mapping with Landsat
161  MSS, and obtained satisfying results on southern Baffin Island, Canada. We chose their method to extract
162  glacier extent from Landsat MSS. The specific method is as follows: a decision-tree classifier that utilizes
163 multiple thresholds (Table 2) was used because MSS has no SWIR band; instead of a SWIR band, an NIR
164  (near-Infrared) band was used for the band ratio (MSS3/MSS4); and an additional threshold in the first NIR
165  band (MSS3) was applied to remove wrongly classified rocks in shadow (Svoboda and Paul, 2009).

166 However, many glaciers in the Gongga Mountains are debris-covered, and all methods mentioned above
167  make it difficult to detect glacier outlines. Consequently, ma(jnual fim‘?g was implemented to correct the
168  mapping results. Finally, we_put all the digital glacier outlines 1nto a Geographic Information System (GIS)
169 and-*-;hen calculated the cflanges during the years 1966-2009.

170 alysis of the corresponding change in glacier area consistently indicates a great percentage of area loss

Ve~
171 in last 43 years. However, some uncertainties and limitations of the glacier mapping could be derived.

172 Generally, debris cover, snowfields, water bodies are the unavoidable factors affecting the accuracy of the
173 mapping of glacier outlines and also hardly to evaluate. Another important uncertainty in the area ii‘lange
174 assessment is derived from the comparison of different data sources. Errors in glacier mapping weze caused
J]‘ﬁ; by low image resolution and by co—reglstraum; (f;e et al., 2006; Hall et al.,, 2003; Shangguan et al., 2009).
The comparatively low resolution (80m) of the Landsat MSS image ]K not as accurate as TM and ASTER
177 images, especially for the smaller (area < 0.1 km®) and debris-covered glamer outhines, Similar problems
178  were also reported by Hall et al. (2003) in Austria and Svoboda and Paul (2009) in Canada, but they
179 considered that Landsat MSS images are available for most parts of the world with an archive making up
180  for the deficiency of data in the 1970s. In order to verify and improve the accuracy of glacier outlines,
181  fieldwork was conducted (Fig. lc). Five glaciers (HLG, MZG, YZG, DGB and XGB Glacier{ were
182  surveyed in April 2009 using dual differential GPS (SF-2040G, single-level positioning accuracy <10cm),
183 and, the results showed that there is about £ 30 mdztéc’v;m the length and 0.5% in the area, when
184  comparing our 100 surveyed points with glacier mapping generated from ASTER data in 2009.
185 4. Results
186  4.1. New glacier inventory data in 2009 art
187 ¢ fhe 76 glaciers in the Gongga Mountains (Fig. 2a), 51.3% of all glaciersﬂsmaller than 1 km?* and
188  contribute to 7.1% to the total area, while 6.5% giacwrsainger than 10 km? and contribute 8 45.7% of the
189  total area. The distribution of the number and area of glac1ers by eevered-by- elevatl}:)en (and the"medlan
190  altitude) is depicted in Fig~2b. There are 25 glaciers with approximately 50% of fotal area distributed
191  between 5200 m and 5400 m.%There is only one glacier reaching higher than 6000 m and one glacier
192 reaching lower than 4000 m. On the eastern slope (Fig. 1b), there are 36 glaciers covering an area of 139.9
193 km? with a mean area of 3.9 kn®* and-tl?e mean climatic equilibrium line altitude (ELA) of ~4900 m. There
194 are 40 glaciers with a total area of 87.6km” distributed on the western slope, with a mean area of only 2.1

195  km’ and a mean climatic ELA of ~5100 m. The mean aspect of each glacier is calculated following Paul
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(2007). The orientation of glaciers by number and area is shown in Figure 3; south-western and south-
eastern sectors niake ueglalf tlle number of glaciers, dominating 78% of the area (Fig. 3a and b), and there
are no glac:ielrs::J ix;ﬂ th’;‘noxftﬁl{‘é:n ar:é. north-eastern sectors. Furthermore, the area glaciers covered on the
south-eastern sector obviously exceeded half of the total area (Fig. 3b), and the number of glaciers in the
southern sector account for about 20% of all glaciers, while their area contributes to 7.5% (16.9 km?) of
total. The orientation distribution shows that the locations of glaciers dependent on local topographical
constraints (Andreassen et al., 2008). The mean slope of glaciers in the study region is less than 45°, and
most glaciers areas range between 25° and 40°, .

4.2, Glacier changes

The analysis of glacier area from 1966 (CGI) to 2009 (ASTER) reveals some interesting changes, as
shown in Table 3 and Table 4. The sample of 74 glacier units from the 1966 CGlcovers a total area of
257.7 km?® (mean glacier area: 3.5 km?). The area of the largest glacier (YZG Glacier) is 30.1 km’, and the
minimum area of glacier is only 0.11 km’. Whereas, the area of 76 glacier units ﬁ‘om,ﬁ;009 ASTER
inventory is 228.5 km® (mean glacier area: 3.0 km?), in which the maximum glacier is 25.5 km® and the
smallest glacier is only 0.05 km”. The total area loss of the glaciers is about 29.2km?(11.3% of total area in
1966) in a decreasing of 0.7 km*yr from 1966 to 2009. The rate of area change (-1.3 km®/yr) iae 2005
to 2009 is the fastest in the whole period, while the rate during 1994 to 2005 is the slowest, at -0.5 km’Ar.
Due to the-sffeet-of glacier retreat, one glacier on the western slope was separated into two smaller glaciers
in 1974-1989 i iwo nglaciers (YZG Glacier) on the eastern slope were respectively separ?rted into two
and three eanes 4+ 1989-2009. Twe small glaciers on the western slope with northern aspect disappeared
between 1994 and 2005. Therefore, the number of glaciers has increased by two during the period 1566-
2009. The trend that most of the glaciers covering the Gongga Mountains have decreased in size is
remarkablg’ (Fig. 2/ Table 3 and 4).

On the castern slope of the Go £ a Mountaing, the sarrfple of 33 glaciers with an area of 155.1 km? in
1966 has increased to 36 glaciers,with anéaz%gﬁof 139.9 km? in 2009, and the total area loss is 15.2 km®
(accounting for 5.5% of the area in 1966). On the western slope, the sample of 41 glaciers with a total area
of 102.6 km® in 1966 has decreased to 40 glaciers with an area of 87.6 km” in 2009, and the area loss
contributes to 5.9 % of total in 1966, Glacier size strongly affects the percentage loss ;:f glacier area. From
1966 to 2009, the area loss in the size classes <0.5 km?, 0.5-1 km?, 1-5 km?, 5-10 km?, and >10 km?’, equals
6.3%, 10.8%, 34.8% , 21.3% and 26.8%, respectively (Table 4). The shrinkage of the glaciers in the size
class of 1-5 km® contributes to about 1/3 of the total area loss, (Fig. 2a; Table 4). All glaciers in
northwestern aspect are located on the western slope, and are small glaciers (<5 km?). The shrinkage of
these glaciers is stronger than forpother, orientation’in this region. The mean slope of all glaciers in this
region ranges between 15° and 45°, and Blaciers with the mean slope of 35-40° (covering an area of 37.9%
in 1966) exhibit the largest shrinkage.

o
4,3, Exemplary glacier change ﬁlﬁi“ .
W
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Four glaciers with length of 10 km (the HLG, MZG, YZG and DGB Glaciers) are located in the
investigation area and account for 39.4% (89.6 km?) of the total glacier area in 2009. We studied their area
changé and ﬂ'on: variations in detail.

4.3.1, HL.G Glacier

As a famous tourist attraction in China, many glaciologists (Heim, 1936; Cui, 1958; Su et al., 1992; Liu et
al., 2010) have described the HLG Glacier in different ways. For example, the length of the HLG Glacier
wa?e ab’c:uti; };Blfm 1936 (Heim, 1936), decreased about 1 km from the 1930s to 1960s (Su et al., 1992),
and fm'bher-to-mﬂy 11 km in 2609. Our investigation indicates thaty from 1966 to 2009, the total retreat of
the HLG Glac1er }8’ about 1146.4 m (about 26.7 m/yr), which can be separated into 336.5:60 m, 393.4=30
m, 188.3+30 m, 103.8+£30 m, 124.6x15 m, for periods of 1966-1974, 1974-1989, 1989-1994, 1994-2005
and 2005-2009, respectively (Fig. 4a and b; Table 5). The highest retreat rate occurred during the period
1989-1994. Our results are in agreement with previous studies (Su et al., 1992; He et al., 2008;, Liu et al.,
2010; and Li et al., 2010a). Moreover, its area has shrunk by 3.1 % (from 26.1 km? in 1966 to 25.3 km? in
2009) since 196?‘(Tab]e 6).

4.3.2. MZG Glacier

The terminu/s’. ?fgtrhi i\’/‘%‘% glacier retreated about 501.8 m from 1966 to 2009 (Fig. 4c and d; Table 5).
This relatively tew-vate may be attributed to its higher mean elevation and larger accumulation area ratio
(0.75) than that of the HI.G Glacier. The area shrinkage of 7.7 % from 1966 to 2009 {Table 6), however, is

larger than that of the HLG and YZG Glaciers. By comparing rglggefiensing images from 1974, 1989,
1994, 2005 and 2009 with CGI, we found that some snowfields-hide parts of the MZG glacier perimeter
in the images before 2009, and the snowfields might be included in determination of the glacier outline.
When the :snowﬁeld's7 melted away in 2009 (Fig. 5a), the-exact glacier outline exhibited a sudden shrinkage.
In Figure 5a (Uncertain area), although some glacier change was found, we could not confirm whether the
MZG glacier has been already separated into two parts due to a steep cliff (Fig. 5b and c).
4.3.3. YZG Glacier |

The terminus of the YZG Glacier retreated 724.8 m (about 16.9 m/yr) during the period 1966-2009,
including 204.9+£60m, 181.7+30m, 97.8430m, 172.8+30m, 67.6:15m in the periods 1966-74, 1974-1989,
1989-1994, 1994-2005 and 2005-2009, respectively (Fig. 4e and f; Table 5). T  tor h}nus retreat rate
(25m/yr) was at its maximum between 1966 and 1974. The area of the glacier changed from 30.1 km? in
1966 to 20.2 km? in 2009. Furthermore, the YZG Glacier had-been separated into three parts between 1966
and 2009, in which two glaciers were separated from the YZG Glacier during the period 1989-1994 (Fig.
6a and b) and 1994-2009 (Fig. 6b c and d). '-H're'ﬁd photography in 2009 also illustrates this evidence (Fig.
6e). These three glaciers cover areas of 20.2 km®, 2.9 km® and 6.0 kny?, respectively.
43.4. DGB and XGB Glacier N 1 ey

The DGB Glacier and XGB Glaciers formed ese single glacier before 17th century. However, that
separated into fwo independent glaciers during the earl)b }:{th to middle 16th century (Li, 1996). According

to the description of Heim (1936), the DGB Glacier £5 about 10 km long, a tongue of 2 km, and the
Lt 1
it ¥ MJ
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terminus ends at a height of 3809) {n} i% Su et al. (1992) have also described the situation of the glacier.
They stated that the overlap of the-frestrand #ke older moraines formed a great cone, which was about 240
m above the valley floor, and there was no distinct boundary between the present terminus and the fresh
moraines around the DGB Glacier. According to our results, the term1¥us of the B/«B Glacier has retreated
about 1002.3 m (Fig. 4g and h; Table 5) from 1966 to 2009, and i% Iocated at a-height of about 4000 m a.s.k.
in 2009, which is approximately 200 m higher than that in 1936. The length of the glacier was reduced by
about 685.7 m in the period 1966-1989 and 316.5 m in the period 1989-2009. The total arca of DGB
Glacier has reduced by 2.4 km® (11.2%), from 21.5 km? in 1966 to 19.1 km® in 2009 (Table 6), the area
shrinkage during the period 1966-1989 accounts for 78% of the total area loss. Although the shrinkage rate
on the western slope was generalir‘%hir'f‘h?n th?t on the eastern side, the terminus of DGB Glacier
remained relatively stable during I_aw:_a_ds:a_because the ablation zone was covered by a thick debris
layer. The field investigation in 2009 showed that the surface elevation of DGB Glacier is about forty
meters lower than its fresh lateral moraines. The XGB Glacier is smaller than the DGB Glacier, and is also
debris-covered glacier. The terminus of the XGB Glacier retreated about 378 m in the last 43 years, and
total area had diminished by -14.6% (from 6.7 km?in 1966 to 5.7 km’ in 2009).
5. Discussion
5.1 Regional climate, topographic and glacier changes

In this study, temperature and precipitation data are from three meteorological stations (Fig. 1a and b),
which are Wto the glaciers in the Gongga Mountains. They are Hailuogou meteorological
station (3000 m a.s.1.) on the eastern slope (Fig. 1b) and Jiulong meteorological station (2993 m a.s.l.) and

Xindugiao meteorological station (3640 m a.s.l.) on the western slope (Fig. la). Climate records of these

stations (Fig. 7) were analyzed to evaluate the impact of the temperature and precipitation on glacier retreat.

The mean annual temperature of all three stations has increased over the past 50 y?ags, and the warming
rate of the HLG metec}rological station (0.21 °C per decade) is faster than those ofj}Jiuiong and Xindugiao
meteorological station (0.13 °C per decade). In the south-eastern margin of the Qinghai-Tibetan Plateau,
evidence of long-term climate change, derived from tree-rings (He et al., 2003) and ﬁ;\e ice core (Thompson
et al., 2000) also indicates that there is a rapid warming trend'i‘:fr. past millennium. The mean annual
precipitation-data did not exhibit a significant incremental trend (Fig. 7) in the last 50 years. Mass-balance

4

modeling (Oerlemans, 2001; Braithwaite and Zhang, 2000), indicatgs that a 25% increase in annual
o fre T T
precipitation is typically needed to compensate for the mass loss due tewa uniform 1 'C warming. In the

Gongga Mountains, the mean annual temperature has increased by 0.5 'C since the 1960s, while the mean
annual precipitation has increased by 1 %. As a consequence, the increasing amount of precipitation could
not compensate for the mass loss due to the temperature increase in the Gongga Mountains. Therefore, we
propose that the glacier area shrinkage of 11.3% in the Gongga Mountains is attributed to the increase of
temperature (Fig. 8). (o
Taking the topographical features of this region into account, the Gongga Mountains 46 approximately

north-south, and the number of glaciers is respectively 36 and 40 on the eastern and western slope in 2009.
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The rate of area loss on the western slope (5.89%) is a little bit faster than that on eastern slope (5.48%) of
the Gongga Mountains. However, the mean annual temperature rise is faster on the eastern slope than on
the western slope. The mean glacier size on the western slope (2.2 km?) is smaller than that on the eastern
slope (3.9 km®). The smaller glaciers on the western slope may be more sensitive to the changes of climate
than the larger glaciers on the eastern slope. The different retreat rates on both slopes can be interpreted by
the difference of glacier size. Considering the largest glaciers changes, climate warming has resulted in
sustained glacier retreat through 43 years, but the topographic factor is also not neglected. For example, the
HLG, and YZG glacier are located on the eastern slope, but the terminus of HLG glacier (3015 m a.s.1) is
lower than YZG glacier (3726 m a.s.l.). Additionally, the orientation of HLG and YZG gIacier} J.é ggxtheast
and -northeast.r{%(‘)se can explain that the shrinkage of HLG glacier is morem than the YZG glacier.
The rate of glacier retreat in the Gongga Mountains (Table 3 and Fig. 8) was 0.6 km/yr from 1966 to 1974,
slightly slowed down during the period 1974-1989, and then became intensive in the period between 1989
and 1994. It was at its slowest (0.5 km®*/yr) from 1994 to 2005, and after 2005, became its most intensive, at
1.3 km*yr. In order to explore‘ causes of glacier reduction in different time intervals, the meteorological
data of Jiulong station, which‘h;‘s-the longest and most reliable series data from 1953 to 2009, were
averaged vnwt-hathe same time interval as glacier reduct}on (Flg 3). In comparison with glacier reduction
(Fig. 9), tt~is-obvious+marl the annual temperature ha&-the-ﬂame trend as the glacier reduction (Fig. 8), and
annual precipitation has a significant negative correlation with the retreat rate of glacier area. The increase
of precipitation probably weakens the rate of glacier reduction; in contrast, the decrease of precipitation
aggravates the rate of glacier reduction. Therefore, the decrease in precipitation and increase of temperature
giffzd thte la’n;%est rate of glacier reduction (1.3 km®/yr) during the period 2005 -2009 (Fig. 8). This result
conselidates the rescarch of Yao et al, (2004), who divided the glacier reireat into several stages when
studying glaciers in the southeast Tibetan Plateau and Karakorum Mountains.
In general, the quantitative relationship between the glacier termini fluctuations and climate change is
complicated by a time lag between climate change and glacier response (Jéhannesson, 1989). The time lag
4&%& affected by several conditions, such as glacier size, glacier bed slope, and glacier type. Porter {1986)
?x%r{gse&-a phase lag of about 10-15 yrs by studying glacier changes in the Alps using acidity level
variation method. Wang and Zhang (1992) considered that there was a phase lag of 12-13 years for glacier
advance to climatic change in the Northern Hemisphere by analyzing numerous glacier advance and
positive mass-balance. The lag of the monsoonal temperate glaciers of the Gongga Mountains should be
shorter than those of other glaciers because of the characteristics of the glaciers, —
When the Gongga Mountains glaciers are grouped, according to size classes (accordmg to their CGI area)
{(Table 4), it shows that glaciers with small sizes had a more notable reductlorhthan large glaciers. For
instance, the shrinkage of the small glacier (area < 1 km®) was the ;gers‘tfg;eus and some of the smallest

glaciers have vanished. Although the area of the large glaciers (area > 10 kin®) dominated the total area, the

glaciers of 1-5 km? contributed about 35% to the total area recession. This evidence suggests that smaller
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glaciers are more sensitive to climate change, especially to short-period and small-amplitude climate

change.
5.2, Comparison of glacier changes in Gongga Mountains with other regions
In the Gangrigabu Mountains, Liu et al. (2006) conclude that the glaciers, which are also monsoonal
temperate glaciers, have retreated 13.8% (about 2.1 % per decade) in area and 9.8% (about 1.5 % pre
decade) in volume, respectively, from 1915 to 1980. The glaciers in the west Kunlun Shan (WKS), which
are extreme continental type glaciers, have decreased by about 0.4 % in area during the period 1970-2001
(Shangguan et al., 2007). According to Shangguan et al. (2006), the glacier (sub-continental type glacier)
area has decreased by 4.1 % {about 1.4 km® per decade) in the Karakoram Mountains between 1969 and
1999. Li et al. (2008) summarized the current status of the cryosphere in China and its changes based on the
Jatest available data. The investigation indicated that glacier areas in China have shrunk about 2-10% over
the past 45 yr and total arca has receded by about 5.5% (Li et al., 2008). Moreover, Kang et al. (2004}
suggested that the area change of monsoonal temperate, sub-continental and extreme continental type
glacier is -8.9%, -6.0% and -2.4% from the 1960s to 2000, respectively, Those results indicate that the
change of mon.soonalltemperate type glacier is remarkable. Comparing with above researches, the glacier
retreat in the Gongga Mountains (11.3% reduction in glacier area from 1966 to 2009, and about 2.6 % per
decade) is similar to the same glacier type:'ll’aster than continental glaciers type in the west of China.
Glaciers in the Gongga Mountains, typical monsoonal temperate glaciers, have abundant summer
precipitation and higher ice-layer temperature above -1°C, by inference, larger flow velocity and ablation
intensity (Su and Shi, 2002). Therefore, the glaciers in the Gongga Mountains are naturally sensitive to
climatic change.
6. Conclusion

In this study, we present the results of the new glacier inventory of the Gongga Mountains, with area
228.5km? of 76 glaciers in 2009, and serial glacier mapping resuits from different data sources since the
1960s, including a statistical analysis of the inventory data and a calculation of area and length changes
from 1966 to 2009. The glacier area of 74 glaciers in the Gongga Mountains shrank by -11.3 % (about 29.2
km?) or about -2.6 % per decade since 1966. The number of glaciers has shrunk from 76 to 74 in 1966, as
two small glaciers (< 1 km?) have vanished and four new glaciers were separated from large glaciers during
the period 1966-2009. The retreat rate of glacier area during 1966-2009 is higher than most other regions in
China. Moreover, the area loss is more notable on the western slope (-3.9 % in 1966) than on the eastern
slope (-5.5% in 1966). The rate of glacier reduction is notable between 1966 and 1994, became slower
during the period 1994-2005, and reached its fastest during the years 2005-2009. This trend of glacier
reduction is similar to other glaciers on the southeast of the Qinghai-Tibetan Plateau, and th; Il;gcli}lction is
mainly caused by the increase of temperature. Moreover, the glacier reduction on the western is faster than
that on the eastern Qv: ich can be explained by the difference of topography and glacier size. Although, the
terminus and area of the largest glacier is a visible retraction, the smaller glaciers also make important

contributions to area changes, especially to response to climate changes, because the smaller glaciers are
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more sensitive to climate change than larger glaciers in local region range and short timescale. However,
we have procured many significative and interesting results. Many open questions still need to be solved
(e.g. spatial resolution of remote sensing images; the different of fieldwork; accuracies of glacier mapping).

In the future, the monitoring of the glacier changes will be a long-time and hard work, especially for alpine

glaciers.
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594

595 Table 4 Comparison of glacier area for 74 glacier units from three different inventories: CGI (1966), Landsat MSS (1974),
596 Landsat TM (1989,1994 and 2005) and ASTER 2009.The area in 1966 is used as reference for area comparisons.
Interval Number in 1966 Area (ki) Area change (km®)
area (km?) (n) (%) 1966 1974 = 1989 1994 2005 . 2009 09-05 05-94 94-89 89-74  74-66  Total Qs._uv Area change (%)
<0.5 22 297 6.9 6.6 6.5 59 5.5 5.1 -0.4 -0.4 -0.6 ~0.1 -0.3 -1.8 -6.3
0.5-1.0 16 21.7 11.5 11.1 9.8 9.5 88 84 -0.4 -0.7 0.3 -1.3 -0.4 -3.3 -10.8
1.0-5.0 24 324 63.5 61.9 58.3 56.9 55.1 534 -1.7 -1.8 -14 -3.6 -1.6 -10.1 -34.8
5.0-10.0 6 8.1 43.6 425 408 398 39.0 374 -1.6 -0.8 -1.0 «1.7 ~L.1 -6.2 213
>10.0 6 8.1 132.2 130.3 127.4 127.0 125.1 124.3 -0.8 -1.9 ~0.4 -2.9 -1.9 -7.8 -26.8
Total 74 100.00 257.7 2524 2428 239.1 233.5 228.6 -4.9 -5.6 3.7 -9.6 -5.3 -29.1 -100
Area change (%) 2.0 2.1 -1.5 -3.7 -2.0 -11.3 -
597
598 Table 5 Terminal retreat of four typical glaciers
Terminal retreat {m) Total of
Glacier terminal retreat  Terminal retreat
name 1966-74 1974-89  1989-94 1994-2005 2005-09 (m) (m/yr)
HLG -336.5 -393.4 -188.3 -103.8 -124.6 -1146.4 26.7
MZG -120.6 -87.9 -109.9 -61.5 -121.8 -501.8 11.7
YZG -204.9 -181.7 97.8 -172.8 -67.6 -724.8 16.9
DGB -408.7 -277. -117.8 -131.0 -67.8 -1002.3 23.3
599
600
601  Table 6 Area changes of four typical glaciers
) Area of glacier (km®) Area change of Glacier (km?) Area
Glacier Total ofarea  change
name 1966 1974 1989 1994 2005 2009 1966-74 1974-89 1989-94 1994-2005 2005-2009  changes Qﬂspu (%)
HLG 26.1 26.0 258 256 254 253 -0.1 -0.2 -0.2 -0.2 -0.1 -0.8 -3.1
MZG 276 273 26.2 26.1 259 25.5 -0.3 -1.1 -0.1 -0.2 -04 -2.1 -7.7
YZG' 30.1 29.7 29.6 26.6 20.3 20.2 -0.4 -0.1 0.2 -0.3 -0.1 -1.1 -3.7
DGB 21.5 20.5 19.6 19.5 19.4 19.1 -1.0 -0.9 -0.1 -0.1 -(.3 ~2.4 -11.2
602 * Including two small glaciers
603
604
605

606
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566  Fig. 5. (a) ASTER image showing the MZG Glacier in 2009 and the area where it is uncertain if the glacier has separated. (b and c). Field photo shows the
567  terminus of the MZG Glacier in 2009.

568 :
569  Fig. 6. The changes to the YZG Glacier between 1966 and 2009. a, b and ¢ are TM image of the YZG glacier in 1989, 1994 and 2005 respectively. d is ASTER
570  image of the YZG Glacier in 2009. e is Photo of the YZG Glacier in 2009. Yellow ellipse indicates one small glacier separated from the YZG Glacier between
571 1989 and 1994. Red ellipse indicates another small w_mowow separated from the YZG Glacier between 1994 and 2009; number 1 stands for red ellipse and number

572 2 stands for yellow ellipse in Fig. d and e.




574  Fig.7. The meteorological data of Gongga Mountain during 1960-2009.
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579 Fig. 9. The relation between glacier retreat and climate change. Bar is glacier retreat; Black dash line is mean precipitation; Black Solid line is mean temperature
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582 Table 1 Data sources used in this study

Image Path/row Daie Resolution or scale  Quality  Cloud Source
cover
Topographic map - 1971 1:100000 - Chinese military geodetic service
DEM - 1989 20m or 1:50000 - Topographic map
CGI - 1966 1:1060000 - Aerial photographs
Landsat 2 MSS 140739 1974/01/21 80m 5 0% USGS/NASA
Landsat 5 TM 131/39 1989/01/02 30m 9 0% USGS/NASA
Landsat 5 TM 131/39 1994/09/05 30m 7 0% USGS/NASA
Landsat 5 TM 131739 2005/02/07 30m 7 11% USGS/NASA
Landsat 7 ETM+ 131/39  2002/01/06 30m 6 0% USGS/NASA
Terra ASTER - 2009/05/23 15m 7 3% NASA /METI
583 , . ‘
584
585 Table 2 Thresholds used for glacier mapping for all investigated Sensors
Sensor Snow and ice* Snow and ice in shadow
ASTER ASTI/AST4=1.8 AST1 > 47
™ TM3/TM5222.4 TM1> 59
MSS MSS3/MSS84= 2.0 MSS3>22
586 *Partly includes rocks in shadow.
587 Table 3 Results of glacier mapping in 1966-2009
Time Glacier count Total area Mean glacier area  Area change*  Rate of area change (km?/yr)
(km?) (km?) (km?)
1966 74 257.7 ] - -
1974 74 2524 34 52 -0.7
1989 75 242.8 32 -9.6 -0.6
1994 76 239.1 3.1 -3.8 -0.8
2005 74 233.6 3.1 -5.5 -0.5
2009 76 228.5 3.0 -5.1 -1.3
total -28.2 ~0.7
588 *Area change is obtained by subtracting total area from two neighboring periods.
589
590
591
592

593
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564  Fig. 4. Area changes and terminal retreat of the HLG (a and b), MZG (¢ and d), YZG (e and f) and DGB (g and h) Glaciers since 1966.
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555  Fig.1. (2) Showing the location of the Study region and two meteorological stations; (b) Glacier extent in Study region with Landsat TM band 543 (as RGB):
556 NO.1 Hailuogou Glacier, NO.2Mozigou Glacier, NO.3Yanzigou Glacier, NO.4Nanmenguangou Glacier, NO.5Xiaogongba Glacier and NO.6Dagongba Glacier;

557 () Glacier outlines and field GPS survey data in 2609.
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558

559 Fig. 2. (a) Bar graph showing the normalized part {total = 100%) on the glacier area and number per size class for a sample of 75 glaciers, (b) Glacier area and

560  number with zonal altitude at intervals of 200 m.




