The Cryosphere Discuss., 5, C1785–C1792, 2012 www.the-cryosphere-discuss.net/5/C1785/2012/ © Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "Relation between surface topography and sea-salt snow chemistry from Princess Elizabeth Land, East Antarctica" by K. Mahalinganathan et al.

K. Mahalinganathan et al.

v.wintergreen@gmail.com

Received and published: 23 January 2012

Response to Reviewer #1

We thank the reviewer for his thoughtful comments and suggestions that helped improve the quality of our manuscript. We have answered all the comments pointed out by the reviewer and improved the quality of the manuscript.

Summary

This paper presents a detailed field study of the variations in ionic snow chemistry along a portion of the East Antarctic coast. Specifically, the paper examines the various

C1785

environmental factors (wind patterns, distance from the coast, elevation, slope) that may best explain the observed variations in the seasonal and annual levels and ratios of sodium, chlorine and sulfate deposited in snow. The authors hypothesize that the combined effects of converging winds (from the coast, and katabatic from the inland ice) and slope control on air mass transport result in localized chlorine depletion in snow.

Overall assessment

This is not a ground-breaking paper, but it does offer a new interpretation for some spatial variations in Antarctic snow chemistry which, to the best of my knowledge, has not been offered before. The findings may be applicable elsewhere in Antarctica and could serve, for instance, to guide the optimal choice of ice-coring sites (for paleo-climate/ paleo-atmospheric studies) or interpret glaciochemical records obtained from such cores. The snow chemistry data are new for this otherwise poorly studied sector of East Antarctica. The methods employed for obtaining or interpreting the data, however, are not new. In the conclusions, the authors offer a hypothesis to account for some of the observed spatial variations in snow chemistry documented in coastal Antarctica. The hypothesis is not strikingly new, as it refers to known processes (e.g., heterogeneous phase reactions of sea-salt and acidic aerosols). However it does stress the potential importance of slope aspect in controlling ionic fractionation in snow, which has not been previously highlighted, to my knowledge. In this regard, the conclusions of the paper are substantial.

Response: We have addressed the seasonal variations as mentioned by the reviewer in the point of discussion to consolidate our conclusions. The full chemistry dataset will be available on public domain of NADC (National Antarctic/Arctic Data Centre) at www.ncaor.gov.in/nadc_web within a year. However, data will be made made available immediately on request.

Generally, the presentation of results is adequate. The text is concise and reasonably

clear. The quality of the English is highly variable, however, and there are many sentences that are constructed in an odd and confusing way, which makes reading at times difficult (see below). Some words are used inaccurately. A thorough editorial reading for improving the language alone would be desirable. I also find some minor issues with certain figures (see detailed comments below).

Response: An experienced professional has reviewed the revised manuscript to improve the language. The revised manuscript addresses all the issues with figures and tables.

Point of discussion: The interpretation offered by the authors for the pattern of chlorine depletion in snow with distance from the coast rests partly on the supposition that the mechanisms involved are seasonal in nature, either because the CI-depleting chemical reactions are different (H2SO4 vs. HNO3 reactions; discussion page 2977, line 8) or because of seasonal interactions between coastal and katabatic wind regimes. Now if the d18O and ionic profiles shown on Fig. 2 are indeed representative of the snow isotopic and chemical stratigraphy along the traverse, and if the winter-summer contrasts are so clearly delineated in snow cores, then it should be possible, in principle, to compute seasonal (summer, winter) averages of sodium, chlorine and sulfate levels at the various sampling sites from these data. This could then allow the authors to verify if the observed chlorine depletion pattern in the mean annual Na/CI ratios (Fig. 4) is more pronounced in one season, rather than the other, and this would in turn help clarify the process(es) responsible for the depletion. It seems such an obvious thing to do that I wonder why it wasn't done, or presented. The authors should consider looking at these seasonally-resolved variations, or explain if there are valid reasons for not doing so.

Response: We agree with the reviewer's point. We have calculated the seasonal concentrations of sea-salt ions and interpreted the seasonal trend of Cl/Na ratio based on these values. The values of average summer and winter Cl/Na varied in response to the seasonal sea-salt inputs. However, the chloride depletion (or sodium enrichment) predominantly existed on the steep slopes irrespective of the time of the year. We have

C1787

included the discussions on the seasonal differences in concentrations of sea-salt in the revised manuscript.

Detailed editorial comments:

There are many many sentences that could be improved in the text for clarity. It would take a lengthy review (too long to be posted here) to correct all language ambiguities. I strongly encourage the authors to get a professional writer to review and edit the quality of the English in the manuscript before submitting the final version.

Response: An experienced professional has reviewed the revised manuscript to improve the language quality.

Abstract, line 5: The word "snow" is missing: "....variations in Cl-/Na+ ratio in snow have been attributed..."

Response: Sentence corrected.

Note: The abstract in its present form does not really describe how slope may affect sea salt chemistry in snow, which is really what the authors get into in their discussion. I recommend modifying the abstract to shorten the descriptive sentences (line 8-14) and expanding on the nature of the hypothesis offered by the authors on the role of slope aspect on snow chemistry (their discussion on page 2978, lines 1-19). This is the real substance of the paper.

Response: The abstract is modified. The descriptive sentences have been removed and the nature of the hypothesis is included as suggested.

Page 2969, line 9: With regards to this sentence: "A thorough knowledge of all these parameters are critical, for instance, in calculating the precise mass balance of the ice sheet..." It is not clear to me how sea salt chemistry relates to ice sheet mass balance.

Response: Sentence corrected. We convey that the studies on snow accumulation are

critical in understanding the ice sheet mass balance whereas studies on snow chemistry variations are important in understanding the past changes in chemical composition of ice.

Page 2972, section 2.1., line 16: The word "annuity" is inappropriate. An annuity is a financial concept. In the context of this sentence, I suggest instead: "... δ 18O values were used to delineate individual years in the snow cores along the transect..."

Response: We have removed the term "annuity" and have changed the sentence as suggested in the revised manuscript.

Page 2973, first paragraph, line 1: Remove the citation (Ciciarelli 1991). One does not need to cite an authority for such a simple concept as the definition of a slope. The next sentence ("The relationship between...") and accompanying citation is equally superfluous: The conversion of a slope gradient into an angular measure is just basic math: it does not need to be justified by a reference.

Response: We have removed the citations as suggested. We explain in brief the determination of slope aspect ratio in terms of m/km in the revised manuscript.

As long as the use of units for the slope (m/km or degrees) is consistent in the text, that is all that matters. Presently the text mixes both usages. Maybe distinguishing between "slope" and "slope angle" in the text would help.

Response: We consistently use slope aspect ratio in terms of m/km for explanation purposes in our revised manuscript.

Page 2973, section 3, line 13: Replace "dramatic" (too subjective) by "steep".

Response: Replaced the word "dramatic" by "steep" as suggested by the reviewer.

Page 2973, section 3, line 17: This paragraph repeatedly refers to "seasonal variations" in snow chemistry, whereas Fig. 3 does not discriminate between seasons. It would be better to speak of "seasonal range" of variations, as this is what the box and whisker

C1789

plots show.

Response: As suggested by the reviewer, we have used the term "seasonal range" in order to show the seasonal range of sea-salt concentrations in the box and whisker plots. We also present the seasonal concentrations of the sea-salt ions in the revised manuscript.

Page 2973, section 3, line 27: Replace "reduced" by "declined".

Response: Replaced the word "reduced" by "declined" as suggested.

Page 2975, section 4.2, line 20 and after. The expression "chlorine depletion events" is questionable. The word "event" suggests some punctual episode with a finite duration. There is nothing in the data or discussion that supports the view that chlorine depletion occurs in an episodic (rather than continuous) fashion. I recommend dropping the word "event".

Reponse: We agree with the reviewer's definition of "event". We have removed the term from the manuscript.

Page 2977, line 4: The sentence that refers to chlorine depletion in the tropics seems out of place in this discussion. Also, it creates confusion as the next sentence after it (which begins by "Ma et al. (2010) have shown that...") refers to coastal Antarctica.

Response: We have removed the sentence referring to tropical chloride depletion.

Suggestions about Tables and Figures:

Table 1, footnote: When referring to the significance levels, use "95%" and "99%" instead of 0.05 and 0.01. This is closer to standard usage.

Response: Standard usage followed as suggested. The significance levels 0.05 and 0.01 now reads as "95%" and "99%" in the revised manuscript.

Table 2: It would be simpler to put the mentions "slope", "slope and distance from sea", and "slope, distance from the sea and elevation" directly under column header 1, rather than as footnotes.

Response: Corrections made in Table 2. We have removed the footnotes and the models are named as suggested under the column header "Model".

Figure 1. Many of the fonts used in the figure are far too small to be readable. In particular, the wind rose is much too small. I suggest enlarging the wind rose as an inset.

Response: Figure improved as suggested by the reviewers. A large wind rose with bigger fonts and a close up view of the sampling transect appear in the improved figure.

Figure 2. Presenting the d18O and ionic profiles as "Representative" is demanding an act of faith on the part of the reader. It would be preferable to show several such examples (maybe taken at different distances from the coast) to convince the reader that the ones are indeed "representative".

Response: We agree with the reviewer's comment. The new figure contains δ 180 and ionic profiles from three different locations (26 km, 90 km and 160 km) based on nearness to the sea as suggested.

Figure 3. The whiskers in box-and-whisker plots do not represent outliers, but the upper and lower quartiles of the distribution. The outliers are the symbols (in this case: "x") that plot outside the whiskers. The caption is incorrect.

Response: Mistake corrected. The corrected caption now reads as "The square and the line inside the box represents mean and median respectively; the whiskers outside the box represent the upper (99%) and lower (1%) quartiles and the "x" shows outliers.

Figure 5. The ternary plots are almost too small to read. It might be better, for the sake of clarity, to plot the topographic profile (divided in a, b and c sectors) in a panel, and the ternary plots (enlarged, and labeled a, b and c) in separate panels on their own.

Response: We have improved the figure by enlarging the ternary diagrams with separate labels as suggested. The slope values shown on the topographic profiles are for specific segments. This is made clear with dashed lines in the improved figure.

C1791

Also, it is not clear if the slope values that are shown on the topographic profile are values for specific segments, or mean slope values for sectors a, b and c. This could be clarified in the figure caption.

Interactive comment on The Cryosphere Discuss., 5, 2967, 2011.