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Abstract

Glacier calving and retreat constitute a substantial portion of the ablation of tidewa-
ter glaciers and is therefore of interest in climate models in order to get more accu-
rate predictions of future development of glaciers and their contribution to sea level
rise. We use photogrammetry, global navigation satellite system, surface elevation and5

bathymetric data from Kronebreen to test a crevasse-depth calving model, investigate
meteorological controls on near terminus velocity fluctuations and finally short-term
and longer term (multi annual to decadal) controls of the front positions and calving.
The relationship between velocity structure, crevasse formation, and calving events at
Kronebreen is found to be more complex than outlined in the crevasse-depth calving10

model. Surface meltwater is found to be closely connected to velocities, but no direct
relationship between velocity variation and calving could be seen along the investi-
gated transect. On a long term basis the front positions of Kronebreen are results of
a combination of several factors, particularly the interplay with the confluent glacier
Kongsvegen, and change in discharge fluxes as a result of surge dynamics. Yet the15

bed topography is found to be an important control on the retreat of this glacier, similar
to several other tidewater glaciers.

1 Introduction

Glacier calving constitutes a substantial portion of the ablation of high-latitude glaciers
and ice sheets. More than 60% of the glaciers in Svalbard terminate in tidewater and20

thus exposed to calving and estimated to constitute 17–25% of the ablation of those
glaciers (Błaszczyk et al., 2009). A major part of those are also found to be surge-
type (Lefauconnier and Hagen, 1991; Sund et al., 2009) and are thus subject to large
variations in calving rate.

Calving fluxes can undergo rapid changes in response to both external forcing (such25

as increases in atmospheric and oceanic temperature) or internal dynamics (such as
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surges), and are therefore a major source of uncertainty in predictions of future sea-
level rise (e.g., Meehl et al., 2007; Howat et al., 2007; Wingham et al., 2009). Improved
predictions of future glacier mass changes and associated sea-level change will de-
pend upon a deeper understanding of calving and associated dynamic processes, and
our ability to represent these processes in prognostic ice sheet models.5

Field and remote sensing studies have shown that calving is a complex and diverse
family of processes, with a broad range of environmental controls (Van der Veen, 2002;
Benn et al., 2007a). This complicates any attempt to represent calving losses using
formulations simple enough to incorporate in time-evolving ice-sheet models. Many
“calving laws” have been proposed, most of which are based upon empirical relation-10

ships established for small populations of glaciers or, in some cases, a single glacier
(e.g., Brown et al., 1982; Sikonia, 1982; Warren et al., 1995a; Van der Veen, 1996;
Alley et al., 2008). These laws tend to break down when applied to other glaciers, and
none offers a robust, general means of parameterizing calving in all settings. In an
attempt to overcome the limitations of empirical “calving laws”, Benn et al. (2007b) pro-15

posed a physically based calving criterion, based on the idea that the first-order control
on the position of a calving front is the velocity structure of the glacier tongue. Calving
is assumed to occur when transverse crevasses (formed in response to extensional
flow) penetrate some critical thickness though the ice. Crevasse depth is scaled to ex-
tensional strain rate (the along-flow velocity gradient), thus linking calving processes to20

glacier dynamics. Simulations using the crevasse-depth calving criterion exhibit a wide
range of dynamic behaviour, including seasonal velocity and calving cycles (Nick et al.,
2010). Despite these encouraging results, however, there remains a need for data to
test whether the model provides a reasonable representation of calving processes in
different situations.25

Changes in water supply may also affect the future flow of the glacier, while calving
is expected to increase and thus accentuating the contribution resulting from higher
surface melt (Zwally et al., 2002). Variations in water supply as a result of changes
in seasonal input are found to influence alpine glaciers (Iken and Bindscadler, 1986)
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but also in Arctic tidewater glaciers (Vieli et al., 2004; Andersen et al., 2010). Also
short-term velocity changes at the glacier terminus can impact a more long-term dy-
namic situation (Howat et al., 2010 and references therein) therefore knowledge of both
velocity variations and structure could improve future prediction of calving responses.
Kronebreen is one of the continuously fastest flowing tidewater glaciers in Svalbard5

and is both a tidewater and surge-type glacier with a historic record of front positions.
In this paper we (1) test whether the current behaviour of Kronebreen can be ad-

equately explained using the assumptions of the crevasse-depth calving model of
Benn et al. (2007a, b). (2) Day-to-day velocity fluctuations near the calving front are
compared with meteorological parameters (air temperature, precipitation and river dis-10

charge) to asses the connection/influence of water input/meltwater on glacier velocity
variations of this glacier and their (possible) role in the short term calving pattern. (3)
Short-term and longer term (multi annual to decadal) controls of the front positions and
calving of Kronebreen is investigated.

2 Study area15

Kronebreen (Fig. 1) is a grounded tidewater glacier calving into Kongsfjorden in North-
West Svalbard. Based on contour lines and velocity pattern (Liestøl, 1988; N. J.
Schneevoigt, 2009, personal communication) it has an area of ∼530 km2, draining the
icefields Dovrebreen, Holtedahlfonna and parts of Isachsenfonna. Kronebreen has
a ∼175 year history of documented front positions and surged around 1869. It also20

has one of the continuously highest velocities measured in Svalbard (Liestøl, 1988),
caused by a large accumulation area drained through a narrow channel. Velocities in
the lower part have been studied for several decades, using different methods at vari-
ous time-scales. The most accurate results are from short period averages (multi day)
through a whole year achieved by photogrammetry on medium format images (e.g.,25

Pillewizer, 1939; Voigt, 1967; Pillewizer and Voigt, 1968; Lefauconnier, 1987; Melvold,
1992; Rolstad, 1995; Kääb et al., 2005). Few measurements, however, have been
made of short-term velocity variations near the calving ice-cliff.
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Approximately 5 km from its terminus, Kronebreen is confluent with Kongsvegen,
and the boundary between the two glaciers is marked by a prominent medial moraine
(Fig. 1). Kongsvegen surged and advanced 1.5 to 2 km around 1948 (Liestøl, 1988).
Sea ice usually forms each winter in inner Kongsfjorden in front of Kronebreen and
breaks up during summer. Throughout the period covered by the time-lapse images5

used in this study it was absent.

3 Methods

3.1 Ice velocity measurements

To measure surface displacements in the terminal zone of the glacier, we used a pair
of Single Lens Reflex (SLR) 10 Mpixel digital cameras (c=28 mm) programmed to ac-10

quire synchronous images at 6 h intervals. The cameras were installed ∼0.3 km apart
at elevations of 375 m on the southern side of the mountain Colletthøgda (Fig. 1). The
distance across glacier from the cameras was ca. 3 km. Image pairs were used to
generate stereo models, oriented using mountain tops and points at sea level. Fea-
tures on the glacier surface were measured for extraction of velocities. Displacements15

were computed using both stereo solutions for two epochs, and daily displacements
based on consecutive single image coordinates, from left and right camera, combined
with distances to targets derived from the stereo results, following the method of Eiken
and Sund (2011). Velocities were calculated for nine targets along a longitudinal tran-
sect (Fig. 1), for 3 June to 3 August 2008, with some data gaps when visibility was20

poor. Velocity measurements from stereo images rely on the identification of targets
on two image pairs, separated by some time interval. While large-scale features such
as crevasse-bounded blocks can be readily identified, several factors limited the pre-
cision with which small-scale targets such as sediment bands and pinnacles could be
located. When the glacier front was snow-covered (June), precise target identification25

was particularly difficult. In addition; snow and ice melt introduced temporal variability
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in glacier surface elevation and structure. The accuracy of the stereo solution in dis-
tance from camera, enforced by the short camera base and long distance, limits the
usability of the results on a daily basis. The day-to-day measurements in each image
were instead scaled with the distances found from the stereo solutions to form daily
displacements. Error estimates from corresponding left and right image results had5

average standard deviation of 0.35 m based on all measurements. Daily average stan-
dard deviation was <0.5 m in 41 of the 49 observation sets. The glacier front positions
were compiled from stereo models at start middle and end of season. The error in-
creases with distance (from cameras) and the maximum error is estimated to >10 m at
3 km distance for the front position.10

Even though Kronebreen is one of the fastest glaciers in Svalbard, ice surface dis-
placements over a 24 h period are small (∼1.5–4.0 m) relative to potential errors in
target definition. Two approaches were made to overcome this problem. First, veloc-
ity measurements were made from image pairs from a single camera, combined with
distance-to-target determined from stereo imagery. This reduced the uncertainty as-15

sociated with precise identification of target points viewed from two locations. Second,
uncertainties were reduced by averaging data temporally. That is, the spatial velocity
structure of the glacier terminus was determined by calculating velocities for multi-day
periods. The methods used are thoroughly described by Eiken and Sund (2011).

Longer term average velocities were also determined using relative Global Naviga-20

tion Satellite Systems (GNSS) survey of a stake emplaced on the glacier surface 2 km
from the ice front on 30 May 2008 (Fig. 1). The stake was measured four time using
Leica 1200 series receivers, relative to a base station at the nearby mountain Collet-
thøgda or the International GNSS Service (IGS) reference station at Ny-Ålesund.

3.2 Calving magnitude and frequency25

Glacier front positions were determined from the stereo images, and daily assessments
of calving magnitude were made using the subjective evaluation method of O’Neel
et al. (2001). The terminus was divided into 4 sections and calving losses in each
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section were rated from 1 to 5 (small to large). A calving score was calculated for
each time interval by summing the values for each sector, producing a 20-point scale.
Caution is required when interpreting the results, because calving losses are more
easily determined for the sectors closest to the cameras. However, they do represent
calving activity on an approximate ordinal scale, which can then be correlated with5

glacier velocity fluctuations and other possible controls.

3.3 Meteorological and water discharge data

To investigate possible controls on velocity and calving variations, air temperature, pre-
cipitation and river discharge data were used as proxies for water input to the glacier.
Daily average air temperature and precipitation data are available for Ny-Ålesund,10

14 km west of the Kronebreen front collected by the Norwegian Meteorological Insti-
tute (met.no), and water discharge data from Bayelva, 2 km west of Ny-Ålesund, were
provided by the Norwegian Water Resources and Energy Directorate (NVE). The wa-
ter discharge data are for a catchment with 55% glacier cover (Pettersson, 1994). Al-
though they do not directly represent the discharge of Kronebreen, the temperature15

and precipitation data give an indication of probable variations in surface water pro-
duction and subglacial discharge. The data were quality controlled by the respective
institutions. The height of the stake established on Kronebreen in early June 2008 was
also measured in order to estimate the melt during summer.

3.4 Digital elevation models20

Digital Terrain Models (DTM) from 1964 and 2007 were used to evaluate long-term
changes in the surface topography of the glacier. The contourlines of the map Indre
Kongsfjorden 1:25 000, Pillewizer and Voigt (1968), compiled from 1964 photographs,
were digitized and gridded to a DTM with 40 m cellsize, and a 2007 DTM from Sys-
tème Probatoire pour l’Observation de la Terre (SPOT) SPOT-5 HRS, 40 m grid size25

(Korona et al., 2009), with 10 m estimated accuracy (Bouillon et al., 2006) were used
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to evaluate changes and similarities in the surface topography. The SPOT-5 geocor-
rected image has also been used as background for other measured front positions in
addition to comparisons with front positions on A7 Kongsfjorden maps from Norwegian
Polar Institute (NPI).

3.5 Fjord bathymetry and glacier bed topography5

Bathymetric data from two sources were used in this study. First, water depths in
the fjord west of Kronebreen were measured using a Garmin 520s echo sounder –
in 200 kHz narrow beam mode mounted on a small craft. Depths were measured
every second and cruising speed was maximum 10 km/h−1. The echo sounder was
not calibrated, but soundings in areas covered by the Norwegian Mapping Authority,10

Norwegian Hydrographic Service were carried out as a comparison and corresponded
well. The absolute errors in the data are thus unknown but the relative errors in the
data are minimal. Norwegian Mapping Authority, Norwegian Hydrographic Service also
acquired data in 2010 from a vessel using a multi beam echo sounder EM3002 with
depth range to 150 m.15

4 Results

4.1 Surface topography and elevation changes

The two DTMs divided by ∼40 years were compared with respect to surface topography
structure and changes. Both reflect the post-surge adjustment of Kongsvegen and
Kronebreen, which may also influence the surface crevassing structure. In the 196420

DTM (Fig. 2a), the line of contact between Kronebreen and Kongsvegen lies further
north than at present, a legacy of the ∼1948 surge of the latter glacier. In the 2007
DTM (Fig. 2b), the line of contact has adjusted towards the south, and lies close to
the pre-surge advance position of 1936 (Fig. 5a). In 1936 the width of Infantfonna
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and Kongsvegen was almost equal and together constituted ∼25% of the total width
of the ice cliff dominated by Kronebreen (A7 Kongsfjorden, 1990 ed. NPI). By 1964
Kongvegen was being pushed towards south, the Infantfonna stream was no longer
extending all the way to the sea and Kronebreen covered 65% of the width (Voigt,
1967). By 2007 the partition between the three streams was almost back to the 19365

situation as Kronebreen occupied ∼70% of the width.
On both the 1964 and 2007 DTMs, prominent longitudinal ridges are present on the

glacier surface, along the northern margin and the centre line of Kronebreen. The
ridges are separated by a slight surface depression. These stable surface features
closely correspond to high and low points on the glacier bed. The centreline surface10

ridge lies above a prominent longitudinal ridge near the centre of the trough, whereas
the northern ridge lies above a subglacial bench. The intervening surface hollow over-
lies an overdeepening on the bed, which has a maximum depth of ca. 80 m. In addition,
the 2007 DTM exhibits a surface depression close to the confluence with Kongsvegen,
which also corresponds to a depression on the glacier bed. The up-glacier end of the15

velocity transect (Fig. 1) overlies an overdeepening in the bed (∼80 m below sea-level),
whereas the downglacier end overlies part of a major transverse ridge. The calving
front is grounded in ∼60 m of water (J. Kohler, 2010, personal communication). The
ridge transversal ridge is reflected in the surface topography through several decades
(Fig. 2a, b). The calving front of Kongsvegen is now very restricted in extent, and most20

of this glacier terminates on-land.
Long-term patterns of elevation change on the lower tongue of Kronebreen were

determined by comparing DTMs for 1964 and 2007 (Fig. 2c). All parts of the lower
tongue of the glacier have lowered between 1964 and 2007, with the greatest amount
of lowering occurring in the south, in the area formerly occupied by Kongsvegen. The25

surface melt at the stake (∼110 m a.s.l.) showed melt of ∼3 m water equivalent (w eq.)
during the summer 2008 season (30 May–28 September), of which 15% melted in
September.

49

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/5/41/2011/tcd-5-41-2011-print.pdf
http://www.the-cryosphere-discuss.net/5/41/2011/tcd-5-41-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
5, 41–73, 2011

Velocities and
calving Kronebreen

M. Sund et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.2 Crevasse patterns and velocity structure

In 1936 the glacier front was ∼4 km northwest of the current position (Fig. 5a). The
crevasse pattern on 1936 aerial photos (NPI) shows decrease of crevasse width where
the ice flows past Colletthøgda and into the area of the current terminus, indicating
an area with compressive flow at that time. The pattern of decreased crevasse width5

follows the transversal ridge (Sect. 4.1) an easterly inclined line from the west end of
Colletthøgda towards the south side of Kongsvegen. This coincides with the surface
contour line pattern (Fig. 2a, b, blue oval).

The current crevasse field near the terminus of Kronebreen reflects a combination
of local and upglacier flow conditions. The crevasse field originates in an icefall about10

12 km from the terminus, at an elevation of ∼500 m a.s.l., where it consists mainly of
transverse crevasses (Fig. 1). This simple crevasse pattern is overprinted by a more
complex one between 9 and 6 km from the front. Around 6 km from the front, addi-
tional transverse crevasses are formed, which are then rotated by shearing, particularly
close to the northern margin, In the lowermost 5 km of the glacier, crevasses advected15

from upglacier are locally overprinted by chevron and longitudinal crevasses, creating
a complex reticulate maze of fractures, ice blocks and seracs. In the lowermost 2 km
of the glacier, a zone of longitudinal crevasses occurs close to the centreline. This
zone coincides with a major longitudinal ridge at the glacier bed (Sect. 4.1), and likely
reflects locally compressive flow. Transverse crevasses associated with extending flow20

are widespread to the north and south of the glacier centreline, and are associated with
overdeepenings on the bed.

Photogrammetry was used to determine surface velocities along a longitudinal tran-
sect located to the north of the glacier centreline. A 60 day period with 50 near daily
measurements is selected for this study, averaging left and right camera results for daily25

displacement. Standard deviation of the daily average of each target is estimated from
the two observations. Large variations between days and targets are found, with aver-
age standard deviation of 0.35 m and daily displacements of 1.4–3.8 m. To reduce the
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effects of random errors the results are cumulative over several days (Fig. 3a). A trend
of slight velocity increase towards the terminus appears. The most pronounced gra-
dient occurs between target 4 and 6, where the cumulative displacement rises from
ca. 138 to 154 m over the two month period, which amounts to ∼10% increase along
a distance of ∼200 m.5

The displacements along the transect were also averaged over two periods (Fig. 3b)
of multiple weeks. An increase in velocity appears between 300 and 500 m from the
front (as defined by 3 August). The increase in velocities is slightly higher early during
period 1 when velocities are lower (14%) than later in period 2, when the average
velocity is higher (11%). This could be related to the spring speed-up and snow melt10

influenced the lowermost parts before affecting higher areas.
For both periods, there is a zone of extending flow upglacier ∼300 m from the termi-

nus, and a zone of generally constant velocities or slightly compressive flow nearer the
terminus. Following Hook (2005) method strain rates were calculated and extensional
strain rate is greatest between targets 5 and 6 in the first period, and between targets15

4 and 5 in the second period, with strain rates of 0.70 and 0.68 a−1, respectively.
Evidence for extending flow above the overdeepening suggests that transverse

crevasses may be reactivated and deepened in this region. An estimate of crevasse
depth can be obtained using the formula derived by Nye (1957):

d =
2

ρig

(
ε̇xy

A

)1/n

(1)20

where d is crevasse depth, ρi is ice density, g is gravitational acceleration, ε̇xy is
longitudinal strain rate, and A and n are the parameters in Glen’s Flow Law. This
formula is based on the assumption that crevasses will extend to the depth where
tensile stress exactly equals overburden pressure, and ignores the effects of stress
concentrations or standing water in the crevasses. In studies conducted by Mottram25

and Benn (2009), crevasse depths predicted by this formula were found to compare
well with observations. For the strain rates calculated for the two periods, Eq. (1) yields
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crevasse depths of ∼28 m. These values fall within the range of measured ice cliff
heights at the calving front of Kronebreen (10–60 m). The ice cliff height is ∼43 m at
target 9.

4.3 Velocity fluctuations and calving

Day-to-day velocities were calculated from photogrammetric measurements. During5

snowmelt (June) large changes occurs in surface structure on the lower glacier and in-
troduces error in the measurements, which is especially visible when comparing results
from the left and right camera. The errors and implications are discussed further by
Eiken and Sund (2011). Later in summer (July) such errors are reduced as melting of
ice causes less visual changes than snow. The time series of velocities is derived from10

the individual image measurements combined with stereo solution distances (Fig. 4).
The estimated standard deviation is on average 15% of the daily displacements.

From the beginning of the record on 3 June there is a general increase in velocity to
a peak of ∼2.5 m d−1 on 15 June. Following a period of lower velocities, there is a major
speed-up on 26–27 June, with peak velocities of ∼3.5 m d−1. Note, however that these15

two days velocities are based on 36 h average which could give slightly higher velocities
than the 24 h mean. The record is intermittent for the following weeks, but velocities
are typically around 2.5 m d−1 until they rise to a second peak on 25–26 July. The two
major speed-ups both coincide with periods of high temperatures and discharge from
Bayelva.20

GNSS measurements of the stake later in the season show that there was in increase
in average velocity during the month of September (2.1 m a−1), relative to June–August
(1.8 m a−1). Anomalously high precipitation and temperatures occurred in mid Septem-
ber (Fig. 4) and the weather conditions resulted in 15% of the result of the seasonal
surface melt (Sect. 4.1). A time-lapse camera monitoring Comfortlessbreen, 15 km25

south of Kronebreen, showed that the glacier was covered by snow down to sea level
at the beginning of September before the rain event. The snowline had risen to ap-
proximately 500 m a.s.l. by 20 September, indicating large water production by melting
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as well as direct inputs from rain. Similar conditions were present at Kronebreen ac-
cording to the additional 15% surface melt measured at the stake during this period
(Sect. 4.1). The velocity of the stake (Table 1) are referring to a position >1 km up-
glacier of the uppermost target for photogrammetry measurement, and might have an
average velocity lower than in the area of the photogrammetric targets.5

Calving activity shows no clear relationship with either the velocity record or meteoro-
logical variables. The increase in calving activity in early June may mark the transition
from the low calving activity typical of the winter months to generally higher activity in
the summer, but thereafter major calving events appear to occur more or less randomly.
During the summer of 2008, the general pattern was that the ice front retreated during10

a calving event (or series of events) and then advanced towards more or less the same
position before the cycle began afresh. Overall, the data suggest a largely stochastic
calving process causing the glacier front to fluctuate around a quasi-stable position.
The time-lapse photos show that calving events typically occur by the collapse of ice
pinnacles. Some of the larger calved blocks were bounded by crevasses advected from15

upglacer, but small- to medium-scale calving events commonly involved the release of
smaller fragments along new fractures. Some undercutting of the front could be seen
from sea, indicating that this process also may contribute to the smaller events.

4.4 Long-term front position changes

Front positions from various years before and after the Kongsvegen surge (Liestøl,20

1988) are compared with the bathymetry in the area (Fig. 5). A large retreat of up to
1.4 km occurs between 1923 and 1924 and corresponds with a deeper area. After the
Kongsvegen surge of ∼1948, the Kronebreen-Kongsvegen glacier system has under-
gone progressive thinning (Sect. 4.1) and ice-front retreat. During 22 years after the
surge the retreat rate is 45–112 m a−1, as the glacier retreats into gradually deeper25

water. The most rapid phase of retreat occurred between 1970 and 1976, when the
southern part of the ice cliff retreated by ∼2 km (333 m a−1). This coincides with a de-
pression in the sea floor in this area. The retreat rate was much lower in the north,
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where the glacier margin remained close to the promontory to the west of Colletthøgda.
The following 11 years to 1987, the retreat rate is maximum 120 m a−1. Glacier front
positions for selected years between 1987 and 2008 are shown in Fig. 6. Most parts
of the glacier front experienced net retreat over this period. The greatest amount of
net retreat occurred on the northern side of Kronebreen, which retreated up to 330 m5

(∼20 m a−1) between 1990 and 2007. Further south towards Kongsvegen, a net retreat
of ca. 200 m is observed in the same period. Near the centre of the glacier, where
there is currently a slight headland in the calving front, there was a deep embayment
in the 1990s, so little net change has occurred in the calving front position in this area.
This location coincides with a major longitudinal ridge on the glacier bed (Sect. 4.1).10

The 1998 ice-front position lies up to 200 m west of the 1990 position, suggesting a re-
advance of the glacier during the 1990s. It should be noted that the positions for 1987,
1990 and 1998 are single-day “snapshots”, yet all are acquired in summer. Still major
calving events might have occurred shortly before or after images were acquired.

Front positions during the summers of 2007 and 2008 (Fig. 6) derived from stereo15

measurements indicate an area where the variations are very small. This area coin-
cides with the junction between a major transverse ridge and a major longitudinal ridge
on the glacier bed, where water depths are relatively low.

5 Discussion

5.1 Velocity structure and crevassing20

On Kronebreen, the spatial pattern of summer velocities determined by photogram-
metry displays a consistent pattern, with a zone of flow acceleration between 270
and 540 m from the terminus, and a region of constant or slightly decelerating flow
nearer the calving front. This kind of pattern has been observed on several other
glaciers, where it has been attributed to decoupling at the glacier bed associated with25

a transition from grounded to buoyant or near-buoyant conditions (O’Neel et al., 2001;
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Krimmel, 2001; Björnsson et al., 2001). At Kronebreen, however, the zone of zero
or compressive strain coincides with a major transverse ridge on the glacier bed, and
associated down-glacier shallowing of the fjord. The velocity structure of that part of
the glacier, therefore, most likely reflects relatively high basal drag at this subglacial
pinning point, rather than ungrounding.5

Many tidewater glaciers exhibit increased transverse crevassing towards the termi-
nus, due to extending flow rates (e.g., Vieli et al., 2000; O’Neel et al., 2001; Benn et al.,
2007a). On Kronebreen, the pattern of crevasses in the terminal zone is complex, re-
flecting varying flow conditions in the lowermost 12 km of the glacier. Evidence from
photogrammetric measurements for extending flow within a few hundreds of metres of10

the calving front suggests that transverse crevasses may be reactivated in this area,
with depths of ca. 28 m indicated by the Nye model. Crevasses are advected from the
zone of extending flow to the terminus, and are thus important for the calving process,
as they provide lines of weakness along the terminus where the glacier will break when
subjected to additional forces (Dowdeswell, 1989; Warren et al., 1995b; O’Neel et al.,15

2007).
The relationship between velocity structure, crevasse formation, and calving events

at Kronebreen is therefore more complex than that envisaged in the crevasse-depth
calving model of Benn (2007a, b). In the model, crevasse depth is calculated from the
local, instantaneous strain rate, and no account is taken of antecedent conditions. In20

reality, however, crevasses will take a finite length of time to close when transported
beyond an area of extending flow, providing inherited lines of weakness in areas of
neutral or compressive strain. This emphasizes the fact that the model can only pro-
vide a first-order approximation of the calving front position, based on an idealized
representation of the calving process (Benn et al., 2007a).25

5.2 Seasonal variations in velocity and calving

In 2008, the terminal part of Kronebreen experienced two major speed-ups with veloc-
ities more than twice the annual average. The first occurred at the end of June and
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the second in late July, both at times of high air temperatures and high discharge in
Bayelva (Fig. 4, Table 1). The high correlation between air temperature and Bayelva
discharge indicates that they are good proxies for supraglacial melt rates, which corre-
sponds to results from Ohmura (2001). The ∼3 m w eq. melt on the heavily crevassed
Kronebreen during summer 2008 amounts to approximately 1 m w eq. more than what5

was measured on Kongsvegen (J. Kohler, 2008, personal communication), which cur-
rently has a even surface. Similar differences were found by Pfeffer and Bretherton
(1987). This indicated that heavily crevassed glaciers may also have a larger melt-
water input than glaciers with an even surface. The heavily crevassed lower part of
Kronebreen lacks an integrated supraglacial drainage system, and it is reasonable to10

assume that at least part of the surface meltwater is rapidly routed to the glacier bed.
When influxes of surface-derived meltwater exceed the capacity of subglacial drainage
systems, increased water storage at the bed causes decoupling and reduced frictional
resistance (cf., Müller and Iken, 1973; Kamb et al., 1994; Vieli et al., 2004; Howat et al.,
2010). It is notable in this respect that both velocity peaks are very short-lived, suggest-15

ing rapid reorganization of the subglacial drainage system to accommodate increased
discharge.

The 2008 spring speed-up timing and seasonal velocity pattern is similar to those
previously measured on Kronebreen (Voigt, 1967, 1979; Pillewiser and Voigt, 1968).
As a comparison the measurements of Pillewizer and Voigt (1968) pointed to a veloc-20

ity decrease towards the annual average after the last velocity peak. Subtracting our
mean photogrammetrical 3 June–3 August velocity of 2.41 m d−1 from mean GNSS ve-
locities 30 May–29 August (Table 1) indicates mean velocities for August of ∼1 m d−1

when taking into consideration reduced velocity field between targets and stake posi-
tion Kääb (2005). No special circumstances in weather occurred in August and thus25

the velocities correspond well with the meteorological parameters during this period.
Pillewizer and Voigt (1968) found a rather constant velocity for the period October to
mid June. Thus the pattern resembles the seasonal pattern found in many glaciers
around the world and are interpreted as results of water input to the subglacial system
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(e.g., Iken, 1978; Naruse et al., 1992; Mair et al., 2002, 2003; Howat, et al., 2010).
The rain event in September had a notable impact on the measured stake velocity.

The mean GNSS velocity for September exceeds the mean of May–August velocity
(Table 1). In contrast, in 1964 the velocities decreased to about half the annual value
during the first half of September (Voigt, 1979). Both Voigt (1967) and Melvold (1992)5

measured the lowest velocities in September. Assuming mean August velocities for
days with little or no rain in September, the resulting velocities for the 12 days of rain
is 3.7 m d−1 and is thus comparable to maximum velocities measured during summer.
The 2008–2009 winter velocity of 1.48 m d−1 influenced by the September event was
still close to previous measurements.10

Throughout the summer of 2008, the calving front oscillated around a similar position
near the crest of the shallow, transverse ridge on the fjord floor. Because the ice front
underwent little net change during this time interval, average ice velocities and calving
rates will have been approximately equal. In the shorter term, however, there is little or
no correlation between calving losses and ice velocity, at least within this dataset. The15

parallel fluctuations in ice velocity calving losses during June 2008 may reflect coupled
responses to an increased availability of meltwater, following the transition from winter
to summer conditions. However, throughout most of the record, fluctuations in velocity
and calving show no consistent relationship. Yet, the advance of the front during winter
indicates less calving during periods with lower velocities. Individual calving events ap-20

pear to reflect a complex web of controls, including both contemporary and antecedent
glaciological and meteorological conditions. This complexity may mean that, at an
event level, calving is an essentially unpredictable, stochastic process.

5.3 Long-term ice front position variations

Retreat rates of tidewater glaciers are typically one order of magnitude or more higher25

than the rate of advance with the exceptions of surges, and the calving rate more than
climate controls the position of the glacier’s front (Molnia, 2007). Both before and after
the ∼1948 surge the front positions aggregated in the area between the 1924 and
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1970 positions (Liestøl, 1988). Inter annual variation were small and coincides with
a shallower area (Fig. 5a) while the large retreat between 1923 and 1924 occurred
outside this location in a deeper area.

The current width of Kronebreen could be compared with the situation during
Pillewizer’s (1938) measurements in 1936 (Sect. 3.5), when a velocity of 3.9 m d−1 was5

measured around the centreline. While the somewhat lower velocities in the middle
of the 1960’s (Voigt, 1969) could stem from damming from Kongsvegen surge, which
would affect the lower part more than the upglacier region. Kääb et al. (2005) found that
the flow mode of the glacier up from the confluence with Kongsvegen has not changed
significantly since the 1960s. The highest velocities at the front averaged over a year10

were 2–2.15 m in 1986 (Lefauconnier, 1992) while they were 2 m d−1 in 1964 (Pillewizer
and Voigt, 1968), which indicates rather stable situation. Our somewhat lower annual
velocities (Table 1) are probably resulting from measurement both north of the maxi-
mum velocities (Voigt, 1967; Kääb et al., 2005) and location ∼1 km further upglacier.
Thus the variations in retreat rates since the Kongsvegen surge (Sect. 3.5) cannot be15

attributed to a change in velocities.
During the surge Kongvegen contributed to increased ice thicknesses in the terminal

part of Kronebreen as Kongsvegen occupied about half of the ice cliff width (Voigt,
1966). Eventually Kongsvegen was progressively pushed aside by Kronebreen (Voigt,
1966; Kääb et al, 2005). By 1964, Kongsvegen was in quiescent flow mode and had20

considerably lower velocities than Kronebreen (Voigt, 1969). Therefore, part of the
retreat may also have been encouraged by low ice flux “recharging” the southern part
of the joint terminus area. As the Kronebreen front widened, an increasing proportion
of the ice front consisted fast-flowing ice, increasing the ice flux to the calving front.
Variations in the ice flux from Infantfonna (Liestøl, 1988) likely connected to surges will25

also have a slight impact on the calving rate as the basin constitute >10% of the total
area draining Kronebreen.

There is little difference (0–400 m retreat) in front positions between 1964 and 1970
(Liestøl, 1988). The period of most rapid retreat, up to 10 times that of the previous
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six years, is between 1970 and 1976, and was not marked by any significant air tem-
perature or precipitation anomalies (met.no). Thus thinning does not appear as the
main factor behind this retreat, which is rather attributed to bed topographic changes
appearing at the location of front positions (Fig. 5). The highest retreat rate was in the
southern part of the joint Kronebreen-Kongsvegen terminus, an area of deep water,5

whereas retreat was slower adjacent to the promontory west of Colletthøgda (Fig. 5),
this pattern is opposite to the previous six years where the retreat was largest in the
north. Deep water at glacier termini encourages fast flow and increased longitudinal
strain in the ice-cliff region, thus also encouraging crevasse propagation and calving
losses (Benn et al., 2007a). Also between 1983 and 1986 a rather strong retreat oc-10

curred (Lefauconnier et al., 1994) and could be linked to an overdeepening. A strong
correlation between calving rates and water depth was shown for several other tide-
water glaciers (Brown et al., 1982; Warren et al., 1995a) and Meier and Post (1987)
showed that the calving rate is proportional to the water depth at the terminus. Ham-
bergbreen experienced post surge retreat rates comparable to Kronebreen (Lefaucon-15

nier and Hagen, 1991) and the effect of post surge retreat due to calving into deep
water is also emphasized by Pälli et al. (2003).

Since 1987, the calving front of Kronebreen has undergone relatively minor fluctua-
tions, and has remained grounded on or close to a major transverse ridge extending
southward across the fjord from the promontory west of Colletthøgda. During this20

period, the widening of the Kronebreen front towards Kongsvegen has been minimal
(Kääb et al., 2005). This stabilization of the front thus appears to reflect mainly topo-
graphic factors. Indeed, the current front position of Kronebreen is a classic “pinning
point”, where shallow water and a fjord narrowing encourage relatively high resistance
to flow (cf. Warren, 1992; Benn, 2007a). In the last few years (2007–2010), there25

has been some retreat in southern part of the front, while the other areas have minor
changes. If this continues, and the glacier front pulls back from the transverse ridge,
a period of more rapid retreat may be initiated as the glacier retreats through overdeep-
enings, provided no surges occurs. To some extent, this retreat may be mitigated by
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the longitudinal ridge on the bed, which may provide some degree of support for the
ice.

The stable long-term pattern of ridges and depressions in the 1964 and 2007 DTMs
(Sect. 4.1), a period when the glaciers were readjusting after the surge, indicates that
the surface topography reflects the bed topography. The elevation changes found be-5

tween 1964 and 2007 may be a result of several processes. The ice flux was reduced
as Kongsvegen went into quiescent phase dynamics, and a larger part of the ice front
width was occupied by Kronebreen. The latter may also, being a surge-type glacier,
be subject to reduced ice flux even if the fast-flowing mode to a larger degree than on
other Svalbard glaciers compensates the ice loss and melt.10

6 Conclusions

Glacier calving and retreat account for a large part of the ablation of tidewater glaciers,
still the dynamics of calving is poorly known. We have investigated small and larger
scale controls on calving of Kronebreen and tested the crevasse-depth calving model
of Benn et al. (2007a, b). The interaction between crevasse formation, current ve-15

locity structure and calving events at Kronebreen is found to be more complex than
introduced in the crevasse-depth calving model.

Our study provides the to date most detailed data of Kronebreen for the period from
spring speed-up to past summer maximum velocities. This enables a comparison be-
tween velocities and meteorological parameters showing that an increase in tempera-20

ture and precipitation closely influences the front velocities of Kronebreen. However,
no correspondence between velocity variation and calving could be extracted along
the investigated transect. Heavy rain events in September, normally a period with very
low velocities at this glacier, caused a higher average velocity during this month, that
average for the three summer months autumn. The current velocities are rather sim-25

ilar to those measured during the last decades; however possible future increase in
meltwater production could have an impact on the glacier velocities.
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The Kronebreen ice cliff is partly shared with two other glaciers; Infantfonna and
Kongvegen. Interactions due to surge-type dynamics and especially quiescent phase
affect the ice flux to the terminus and thus the calving rate. Yet, the factor found to have
largest impact on the specific retreat, is the water depth. Rapid inter- and multi annual
retreat of the glacier front corresponds with increased water depths in the terminus5

area. Thus the bed topography is found to be an important control on the retreat, not
unlike several other tidewater glaciers.
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Table 1. Average Global Navigation Satellite Systems (GNSS) velocities for different periods.

Period Velocity Standard deviation Method

30 May–29 August 2008 1.82 <1 cm d−1 (accuracy<1%) GNSS
29 August–28 September 2008 1.82 <1 cm d−1 (accuracy<1%) GNSS
30 May 2008–17 May 2009 1.82 <1 cm d−1 (accuracy<1%) GNSS
28 September 2008–17 May 2009 1.82 <1 cm d−1 (accuracy<1%) GNSS

67

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/5/41/2011/tcd-5-41-2011-print.pdf
http://www.the-cryosphere-discuss.net/5/41/2011/tcd-5-41-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
5, 41–73, 2011

Velocities and
calving Kronebreen

M. Sund et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 1. Front of Kronebreen, Infantfonna and Kongsvegen. Locations of cameras (R-right, L-
left), stake and the longitudinal transect of the nine target points measured (1–9). Background
image SPOT 5: Système Probatoire pour l’Observation de la Terre (SPOT) Spirit Program©
Centre National d’Etudes, France (CNES) 2007 (2007) and SPOT Image 2007 all rights re-
served. Inset: location of Kronebreen in Svalbard.
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(a) (b) (c)

Fig. 2. (a) 1964 (Voigt, 1966) and (b) 2007 (SPOT 5) surface topography of Kronebreen. Red
oval shows longitudinal surface ridges, while blue ovals shows a transversal surface ridge. For
(a) and (b) elevation contour line start at 0 m a.s.l. and are displayed every 20 m. (c) Eleva-
tion changes on Kronebreen between 1964 and 2007. Background image SPOT 5. Système
Probatoire pour l’Observation de la Terre (SPOT) Spirit Program© Centre National d’Etudes,
France (CNES) 2007 (2007) and SPOT Image 2007 all rights reserved.
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Fig. 3. (a) Multiday cumulative velocities for the different targets in Fig. 1 (1 uppermost, 9
closest to front). The highest velocity gradient occur between points 5 and 6, where cumulative
velocities rises from 146.5 to 153.7 m d−1, which also exposes the highest velocity. (b) Period
averages in velocities for the longitudinal transect (targets 1–9) from stereo results. Target
locations showed according to target 9 reaching terminus at end of period 2. The velocity
decreases and increases occur in the same area during both periods.
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Fig. 4. 24 h velocities (except from 25–26 June which is 36 h) from photogrammetry plotted to-
gether with temperature, precipitation, Ny-Ålesund (met.no), river discharge at Bayelva (NVE),
calving activity and mean velocity from GNSS in the periods May–August and September.
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Fig. 5. (a) Shaded bathymetry relief (Norwegian Mapping Authority, Norwegian Hydrographic
Service) and profile tracks (A–D), with front positions adapted from Liestøl (1988). Background
image: SPOT 5. (b) Transversal profile (A–A′) positions of profiles B and D indicated. Along
flow profiles are shown from southeast towards northwest (B–D). Profile C is from 200 kHz echo
sounding, the others are derived by Norwegian Mapping Authority, Norwegian Hydrographic
Service. Distances are measured from purple line along front in (a). Vertical lines indicate front
positions in years corresponding to line legend in (a).
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Fig. 6. Glacier front fluctuations between 1987 and 2008. Background image: SPOT 5. Max-
imum retreat during this period is ∼700 m and minimum is ∼50 m. The 1987, 1990 and 1998
positions are drawn from NPI maps Kongsfjorden (1990 and 2000 editions). 2007 and 2008
lines are from stereo photogrammetry.
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