Interactive comment on "Application of ground penetrating radar (GPR) in Alpine ice caves" by H. Hausmann and M. Behm

O. Eisen (Referee)

olaf.eisen@awi.de
Received and published: 14 October 2010

General comments

In this study the authors present terrific geophysical data sets, which could help to elucidate the formation and evolution of ice bodies formed in caves. Observable intraice stratigraphy has the potential to assist interpretation of ice-core properties in terms of climate change as recorded in the cave, as has been the case for glaciers. The presentation of ground-penetrating radar data acquired in four different caves indicates differences in the internal structure as well as at the boundary characteristics between ice and the underlying bed. As ice bodies in caves often have accessible sides of considerable length (as demonstrated here) they moreover provide a terrific opportunity

study with its suit of different reflection characteristics is also of interest to a wider readership dealing with other ice bodies, as it could serve as reference for interpreting interfacial characteristics within or underneath glaciers, where otherwise only smalldiameter ice cores (if at all) are available. Especially as the ice bodies in caves basically do not show any dynamic behaviour the interpretation can thus be simplified.

Although the data itself is worthwhile presenting, the study has the potential to provide further interpretations and move from a basically descriptive account on what was observed to quantitative interpretations of wider interest. Unfortunately, in its current form it falls somewhat short of providing sufficient evidence and discussion.

Given TCD's evaluation criteria, I think the MS has the potential for excellent scientific significance, with the potential to improve both scientific and presentation quality easily further, with encouragement of the authors to do so.

The authors focus on describing the observed stratigraphy and only marginally refer to other studies which provide more detailed insights into the physical properties of the ice as e.g. available from two ice cores. With the data available from GPR and ice-core measurements it is easily possible to perform more quantitative analyses. More quantitative information should be provided on the background conductivity and maximum peak heights as well as density from ice cores.
In the abstract it is speculated that the observed layers are isochrones. The only other mentioning of isochrones is in the conclusions, where it is stated that "Accumulated

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper the picture in Figure 2 g and the radargram in Fig. 3d is mentioned in the text, it is not

provided. On possibility would be to overlay the radargram on a scaled version of the picture (i.e. provide approximate metric scale on right) or present them face to face. An error analysis is missing concerning the accuracy of the conversion to depth, which is important when it comes to comparison and identification of the reflection mechanisms.
In this context the provided structure of the paper is somewhat misleading. Section 4 presents "Measurements and data processing" followed by the section 5 "Results". However, a number of results are already presented in section 4. An actual discussion of the interpretation of GPR data, which leads to the final interpretation results seems to be missing.

The authors mention that calcite minerals could be the cause for the observed internal structure. However, a thorough discussion is missing and more quantitative results results could be provided, e.g. the potential change in dielectric permittivity based on dielectric mixing formulae (e.g. Looyenga) by adding some calcite or other impurities and comparing those to the reflectivity of layers with different air-bubble or liquid water content.

Specific comments

The paragraph presenting the data processing is too sparse but easy to fix. Detailed questions follow below.

The authors use terms like sub-surface parallel, bed-parallel and alike several times in the text and in Table 1. The readers, especially those not dealing with radar or

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper sediments or solid bedrock. This should be fixed at numerous instances in the MS.

The authors write Eisriesenwelt-Cave and alike, sometimes Dachstein-Mammuthöhle. First, this should be consistent throughout the MS. Second, I consider Eisriesenwelthöhle the actual name, so "Höhle" should not be translated into English. As a prominent example, everybody talks about "Eyjafjallajökull", but nobody translated it into "Eyja-Mountain-Glacier" or even "Island-Mountain-Glacier".

The authors use the term multitude and multiples interchangeably (e.g. p1373). Whereas multitude is ok, the term multiple has a fixed meaning in geophysics: not the one used here. Multiple is used to define multiple reflections, e.g. a wave being reflected at an interface, travelling to the surface, being reflected there once more, moving down and up again. This is definitely not the meaning here and causes irritation, as true multiples could definitely be possible with shallow ice as presented in this study. The authors should take care to get their terminology unambiguously right.
ground penetrating radar -> ground-penetrating radar (all instances)

p1366

Delete "(GPR)" in the title
I12 "can result": very unspecific and hypothetical. Could be rewritten more specifically in a revised version of the manuscript, given that discussion of evidence is extended.

124 "ice caves potential" -> "ice caves' potential"

Interactive

Comment

I24 "light cave air" -> "cave air of lower density"

I24 "into cave" -> "into the cave"

p1368

12 delete "out"
14 rocks -> rock
17 MAAT not defined.
I16/17 Rewrite to "We only deal with the latter permafrost feature ..."
114 delete "out"
I25 "in the actual study" Do you mean this study? Clarify.

p1369

I2 "is a geophysical"
13 impulse -> pulse
15 A discontinuity is not required, a gradient is enough! Gradients appear as discontinuities when sampled at discrete intervals. Rewrite.
17 It should be mentioned that a radargram is made up of several traces.
17 radar velocity -> electromagnetic wave speed. Non-geophysicists could mistake radar velocity as the speed at which the radar device is pulled along the surface. Although at other instances.

I23 "The radar velocity is mainly controlled": For electromagnetic wave in a low-loss medium, as is the case here, only density and liquid water content can be considered as main factors. All other properties (conductivity, dust, ...) are negligible in comparison to these two factors.

125 ... $0.167 \mathrm{~m} / \mathrm{ns}$ for ice" -> "... around $0.167 \mathrm{~m} / \mathrm{ns}$ for pure ice"

I1 ice thickness measurements -> ice-thickness measurements
17 "from a shielded antenna with a center" -> "with shielded antennae at a center"
I11 Unclear whether 64 scans per second were vertically stacked or if you obtain 64 independent traces over the area you move within 1 s . What does continuous record mode mean? Continuous or quasi-continuous? Please provide information on how you determined the trace interval and its accuracy (obviously, GPS is not available). This is a crucial part of the migration to get velocities right.
I11/12 Does this mean you used different record length for different surveys? Or do you mean the range of data you're interested in? In the first case the sample interval likely changed, please provide numbers.

I14 It is actually not the wavelength but the bandwidth which limits the resolution for GPR (i.e. the actual length of the source wavelet). Usually the bandwidth is approximately the nominal frequency. Whether this is the case for the utilized GSSI I do not know but can easily be checked by looking at the direct waves. I would expect one seldomly obtains a resolution of less than half the wavelength.
I15 Provide numbers on how large the first Fresnel zone is at typical ice thicknesses obtained in this study.
I16 What is trace mixing exactly? Stacking? Weighted averaging?
I17 Bandpass filter: do the numbers indicate a linear ramp on either side of the actual

118 How has surface elevation for static correction be obtained?
115-20 Did you perform any stacking (see above) e.g. during acquisition or during post-

121 What is the actual uncertainty in the velocity from this analysis and how does this translate into depth uncertainty? This information is especially important for the reader in regard of the comparison of certain visible features with the internal GPR layering as indicated in Fig 2g and 3d.

122 differences
I26 "We show" -> "In the following we ..."

p1371

17 " 25 âŮŁ 10 m wide": Either one writes " $25 \mathrm{~m} \times 10 \mathrm{~m}$ wide" or " $25 \times 10 \mathrm{~m}^{2}$ wide" or " 25 m by 10 m wide" etc. The authors mix "x" and "by" in the manuscript. Please be consistent at this and all other occurrences in the MS.

19 How has the variable content of bubbles and the embedded particles been determined? Simply by eye in the exposed ice?

I15 transitions -> transition. I would consider this only as a single transition surface in space.
121 Delete "this issue".
122 Do you mean saturated with carbonate?
I23 "transits" -> "transforms"
125 How has the depth been matched, i.e. how has the depth of the visible stratigraphy been determined? What is the error of this comparison on either side, visible stratigraphy and GPR layer depth?

I25-7 Unclear, rewrite. How would calcite minerals change the electric properties of the ice-with-impurities mixture?
p1372
I8 "left part of the ice cliff": Left and right only make sense if a specific picture is referred

to next to this specification. Where ever possible it would be better to exactly define the horizontal position in terms of profile distance. Also at other locations of the MS.

p1373

I3 ice part -> ice-covered part
I6 lie -> range
16 sharply: I would not consider this sharply, rather suddenly or steeply.
16/7 "southern" does not make sense as no indication of north-south-east-west is provided in the figures. Please add geographical directions, usage of which could also replace the usage of "left" and "right" as mentioned above.
17 "reflecting horizon": Do the authors mean the reflection from the ice-bed interface? Specify.
115 NCA is used only once, so I think that abbreviation is not needed.
I16 "Opposed" -> "In contrast"
117 heavy -> dense
121 right part: see comment above, use profile distance instead.
I22 Please specify "it is known from surface observation": In this study or do you refer to another one?

15 "... several meters in diameter)."
19/10 Can you quantify how much larger permittivity? Provide reference. Are the ice bodies frozen to the bed or is the bed at the pressure melting point and some melting occurs? In that case the reflectivity increases also because of liquid water. Add
some statement on the temperature of the ice (i.e. all temperate or some polytherm (unlikely)).

I26f "Voids": If one can observe them it should also be possible to determine their filling.

4, C921-C930, 2010

Interactive

Comment

Full Screen / Esc

Eisriesenwelt and Beilstein: "end of the profile: either provide geographic direction or profile distance (see comment above).

p1382

I3 "of a fine-grained" -> "of fine-grained"

p1384

"in inside" -> "inside"
"shallow sediment layer": although marked at the top it would be good to add the specific depth range. How do you explain that it does not continue beyond profile distance 7 m suddenly?
p1385
Fig 5b: Several events seem to be overmigrated (=smilies). Could the authors comment on this, please?
p1388
exhibit -> exhibits
(c) "The chaotic" -> "The incoherent"
last line: identified -> visible.
Interactive comment on The Cryosphere Discuss., 4, 1365, 2010.

