
Response to Anonymous Referee #1 
 
We appreciate the constructive comments of both reviewers and have responded to each comment, 
copied verbatim, below. Our responses are italicized.  
 
Anonymous Referee #1 Comments 
 
This paper presents diagnostic and prognostic simulations of a small surging valley 
glacier in the Yukon Territory, using a flowband higher-order model. The novelty in this 
paper is the use of a complex friction law which is function of the basal water pressure. 
From diagnostic simulations, the distribution of the basal effective pressure is inferred 
by a trial and error method on the modeled and measured surface velocities. Then, 
prognostic simulations for various mass balance scenario are performed, and allow the 
authors to investigate the link between mass balance and the propensity of the glacier 
to surge. This paper is well written and contains sufficient material to be published. 
I have few main major comments that should be answer before publication and few 
minor comments (see below). 
 
Major Remarks: 
 
The definition of the effective pressure is not given (should be given page 1850, 
line 4). In the literature, the effective pressure is often defined using the isotropic 
ice pressure (noted Pi here), but using a higher-order it should be defined using 
the Cauchy stress normal to the bedrock surface (σnn = nσ · n). So, define how 
you evaluate the effective pressure and, if you are using the isotropic pressure 
instead of the normal stress, justify your choice. 
 
This comment brought to our attention an important detail regarding the definition of effective 
pressure in higher-order models. In our original implementation, we followed the extensive 
literature that defines effective pressure as N = Pi - Pw, where typically within the literature Pi  is 
considered hydrostatic; however, within the Blatter approximation used here, Pi = σ'xx + σ 'yy - ρ g H 
and this is what we used.  The reviewer raises the point that actually the more correct way to view 
effective pressure is as the normal stress to the bedrock surface minus the water pressure.  If one 
takes  this approach then within the Blatter approximation, normal stress at the bed is considered 
hydrostatic (this is an order ε2 error, where ε is the aspect ratio). In order to remain entirely 
consistent with the Blatter model, one ought to use N = ρ g H - Pw  as the definition of effective 
pressure, rather than N = Pi - Pw. We have now corrected this and rerun all of the simulations. The 
difference in simulated flow speeds between using N = Pi - Pw  and N = ρ g H - Pw  proved to be very 
small. One of our plans for future research is to apply a full Stokes model to our study glacier, in 
which case we will have an opportunity to evaluate the effects of the approximations made in a 
Blatter-Pattyn-type model, including the representation of the effective pressure.   
 
We have added the following to the model description below Equation 15 (the friction law): “We 
define effective pressure as the difference between the leading-order bed normal stress and the basal 
water pressure: N = ρ g h - Pw. This definition is consistent with the assumptions made in a Blatter-
Pattyn model such as ours (Schoof and Hindmarsh, 2010), but would not be correct for models such 



as a Stokes flow model in which the leading-order bed normal stress can differ from hydrostatic 
stress.” 
  
page 1863, paragraph 5.1.3: Why did you choose to use a new parameter μ 
to define how important is the water pressure relative to the ice normal stress? 
You should notice that N and μ are trivially linked as N/Pi = 1 − μ. Then, the 
analysis is conducted using this parameter μ which takes four different values 
along the flowline. I think the analysis should be more pertinent by adding a 
plot of the evolution of the basal normal stress along the flowline. Due to the 
bedrock topography, I expect that σnn will be larger just upstream the prominent 
bed ridge (located between zone 1 and zone 2, in x ≈ 1550 m), and will be smaller 
just downstream the ridge. The effect, is that for a uniform water pressure, the 
effective pressure N will decrease just downstream the ridge (or as you obtained, 
μ increases just after the prominent ridge). In other words, the variations in μ 
might be only the result of variations of the ice normal stress, and not the water 
pressure. This should be interesting to separate what is due to changes in ice  
normal stress (induced by topography changes) and what is due to changes in 
water pressure. From the plot of μ alone, one cannot deduce the variation of 
basal water pressure and all the discussion is done as if only the water pressure 
was evolving along the flowline. I would then suggest to plot in Figure 6 the ice 
normal stress (given by the model) and the range of water pressures consistent 
with the observations (instead of μ). 
 
Our use of the parameter μ made the presentation unintentionally confusing. Part of this confusion is 
due to μ having been defined improperly in the text as Pw/Pi, and to the inaccurate statement that 
we prescribed effective pressure. We did, in fact, prescribe basal water pressures directly, not values 
of Pw/Pi in the analysis. Our intention in using the parameter μ was simply to make the results more 
intuitive by expressing prescribed values of basal water pressure (Pw) as a coefficient multiplied by 
ρ g H , i.e. μ = Pw/(ρ g H), where ρ is ice density and H is ice thickness. We refer to the coefficient μ 
as the “flotation fraction”. We chose to prescribe uniform flotation fractions (i.e. Pw = μ ρ g H with 
constant μ), rather than uniform values of the dimensional water pressure Pw, as we deemed this 
more realistic for zones of variable ice thickness. The above meant that Pi, and therefore N, were 
solved in the original formulation of the model (where N was taken as Pi-Pw), and therefore that 
water pressure was variable along the flowline and played a role in setting the modelled velocities.  
 
With our revised definition of effective pressure (N = ρ g H - Pw  rather than N = Pi - Pw), 
prescribing the water pressure as a fraction of the ice overburden pressure amounts to prescribing 
the effective pressure: N = ρ g H - μ ρ g H = ρ g H (1- μ). The analysis suggested above by the 
reviewer would be interesting with a higher-order model where the bed normal stress differs from 
hydrostatic. For the time being, we have replaced Figure 6c with a panel showing the hydrostatic 
stress (leading order bed normal stress), and the ranges of  prescribed water pressure consistent 
with the velocity observations. In the text and figures “μ” has been changed to “k” in order to avoid 
confusion of “μ” with a true coefficient of friction.   
 
5.2 prognostic simulations: I have to admit that I didn’t see clearly how the simulations 
that are performed in this section can be linked to the study of the glacier 



surge. The main point is that these prognostic simulations are performed assuming 
a basal water pressure set to zero and for very long duration (280 years) in 
comparison to the observed quiescent phase duration. Moreover, a large part 
of the modeled thickening upstream the bedrock bump certainly results from the 
flowline model assumption. Using a 3D model would certainly reduce this effect 
as the bedrock bump (as can be seen in Figure 2) is clearly a 3D feature, and 
is not elongated in the transverse direction (even if one can see the bump in the 
three different flow lines, which are very close to each other in this area).  
 
The simulations were not intended to represent the actual build-up to a surge or a surge itself, 
because, as the reviewer points out, they were conducted with water pressure set to zero and for a 
time sufficiently long so as to  cover several surge cycles. We reported the length of the simulations 
(280 and 400 years) merely to indicate the time required for the glacier to attain a new steady state 
in response to the prescribed mass balance. The prognostic simulations were intended to be related 
to surges in the following two ways. First, they demonstrated that the glacier is currently in a 
transient state, being both thinner in its reservoir area and longer than it should be, given its recent 
mass balance; this corroborates the suggestion that the glacier has been subject to its currently 
unsustainable flow rates for some time (what we’re calling the slow surge). The prognostic 
simulations also suggest that the bedrock ridge may facilitate the development of an ice reservoir, a 
pre-requisite to surging. This mechanism, as modelled here,  is entirely a function of the glacier 
geometry, and independent of contrasts in thermal and/or hydrological conditions along the flowline 
which were not modelled. We suggested that topography (in addition to thermal and hydrological 
conditions) may contribute to the propensity of a glacier to surge, something that has not been 
widely discussed before in the literature. We think the ridge (or more generally, the glacier/valley 
geometry) influences the surge-type character of this glacier not only because the model predicts ice 
thickening above the ridge, but because the ridge seems to be the upper limit of surging as judging 
from our own recent measurements and from air/ground photographs of previous (fast) surges. 
 
As for 2-D versus 3-D effects: we agree that the reservoir development is exaggerated in the 2-D 
case, however we do not believe that it is an artefact of the flowband model (and would thus be 
absent from a 3-D model) for the following reasons. First, although the “bump” is highest on one 
side of the glacier, it is part of a bedrock ridge that is continuous beneath the glacier from one side 
of the valley to the other; any longitudinal profile one would extract through this area would contain 
an overdeepening and a ridge of some description (see plots in our response to Reviewer D. 
Egholm). Second, the valley bends and narrows near the subglacial ridge, providing further 
resistance to flow through this cross-section. The combined basal drag (from the bedrock ridge that 
extends across the glacier) and lateral drag (from the narrow valley walls) would cause thickening 
of the ice in this region even in a 3-D model. The extent to which this thickening would persist under 
various mass balance conditions according to a 3-D model would have to be determined by further 
study. We have tried to address the points above by revising the abstract and the discussion (both 
sections 6.1: Model simplifications and limitations, and 6.2: Interpretation of model results).  
 
The various mass balance tested should be plotted in Figure 3. For example, how 
the zero net mass balance compares with the 2007 surface mass balance? In 
the model, the mass balance is assumed as a function of the distance along a 
flow line (what is obtained from the measurements) whereas the surface mass 



balance is function of the surface elevation, introducing feedback that are not 
accounted for here. This point should be discussed. 
 
The mass balance profile corresponding to zero net balance has now been included in Figure 3. We 
experimented with plotting all of the curves used, but they are so tightly clustered together that the 
graph becomes very difficult to read. The text explains that this curve is shifted up or down (as can 
now be seen by comparing the two polynomial profiles in Figure 3) to obtain the other mass balance 
profiles. The reviewer is correct that we have omitted the mass-balance elevation feedback by 
choosing to express mass balance as a function of the position along the flowline, rather than as a 
function of elevation. We have now conducted simulations where the mass-balance—elevation 
feedback is included, by doing a polynomial regression of the net balance profile on elevation at the 
beginning of the simulation, and using this polynomial to compute a new balance profile for each 
glacier surface profile as the simulation progresses. The simulated steady-state surface profiles 
differ when the mass-balance—elevation feedback is included; we have reported steady-state ice 
volume differences in the text between simulations with and without the feedback for the same initial 
balance forcing. For an initial net balance of -0.47 m per year, including the feedback results in a 
steady-state ice volume that is 10% less than that modelled without the feedback. For an initial net 
balance of -0.78 m per year (the most negative of our simulations), ice volume was reduced by 44% 
relative to the original simulation. For the zero net-balance simulation, including the feedback had 
little net effect over the upper glacier but resulted in a more rapid glacier advance and more 
prominent thickening near the terminus. These results are now reported in Section 5.2 (Prognostic 
simulations).   
 
Minor Remarks: 
 
page 1842, line 5: could you quantify the differences in term of surface velocity of a normal surge 
and the current surge? 
 
This comment referred to the description of the slow surge of Trapridge Glacier, rather than the 
glacier studied in this paper. However, flow speeds during the slow surges are similar on both 
glaciers.  Text added: “Flow speeds during a typical surge are expected to be 10-100 times those 
during quiescence (Meier and Post, 1969), whereas the peak annual flow speeds measured during 
the slow surge of Trapridge Glacier only reached 42 m/a compared to speeds measured after the 
surge of less than 10 m/a.” 
 
page 1848, line 7: Pi = σ’xx + σ’yy − ρg(zs − z) instead of Pi = σ’xx + σ’yy − ρg(zs) 
 
Thank you. This has been corrected. 
 
page 1849, line 3: In the reduction of the model to two dimensions, following Nye 
(1959), we have taken 
 
Change made. 
 
Equation (15): I think the equation is not correct. Gagliardini and others (2007) 
showed that, in the non-linear case, τb/(CN) is a function of ub/(C^n N^n) whereas 



the expression proposed by Schoof (2005) is a function of ub/Nn (it was extended 
heuristically from the linear case to the non-linear one). The adopted friction law 
should write: 
 
τb = C   (ub/(ub + C^n N^n Λ))^1/n 
 
Since Cn is a constant in this application, this will just change the numerical value 
inferred for Λ by a factor 1/(0.5 × 0.84)^3. In the case of a non-uniform bedrock 
roughness, this would have more effect. 
 
The reviewer is correct here. We should have written the friction law for the non-linear case 
according to Gagliardini and others (2007), rather than Schoof (2005).  As the reviewer points out, 
the net effect is to alter the value of Λ = A λmax/mmax, where A, max and mmax are prescribed values. 
We have revised the text so that the  friction law is written correctly for the non-linear case 
following Gagliardini et al (2007), and have taken this opportunity to generate a new reference 
model (values of λmax and mmax). Our original reference value of λmax, when recalculated with the 
friction law written correctly, became ~13.5m for m=0.5. Our new reference model is λmax=6m and 
mmax=0.25. We have rerun the sensitivity tests for λmax and mmax and revised Figure 5 accordingly. 
This turned out to be a valuable exercise, as the prescribed water pressures required to match the 
velocity data were significantly lower with these parameters than with our previous reference model 
(and previous range of tests). We describe and discuss the differences in water pressures between 
these two parameter sets and have revised our conclusions somewhat in light of this. We have 
revised the text in section 5.1.2 (Sensitivity to the Coulomb friction-law parameters) and the related 
section of the discussion in section 6.1 (Model simplifications and limitations) to reflect these 
changes. We used the new parameters for all simulations presented in the paper except the final 
prognostic simulation (zero net balance), where we could not resolve some model instability. 
 
page 1850, line 5: It should be mentioned that the adopted relation C = 
0.84m_max has been obtained in the particular case of a sinusoidal bedrock. What 
is known for sure is that for a real bedrock C ≤ m_max. 
 
Text added: “For real bedrock geometries, C ≤ mmax; here we take C = 0.84  mmax as derived for a 
sinusoidal bedrock geometry (Schoof, 2005; Gagliardini et al, 2007).” 
 
page 1852, line 20: of the flow line can be seen as minimum estimates (?) 
 
Changed to “of the flowline can be interpreted as minimum estimates” 
 
page 1855, line 16: why this value of 280 years whereas line 2 of page 1856, it is 
said that the profile are steady state profiles? 
 
This is a misunderstanding stemming from some confusing text. The model was originally run for 
280 years in order to allow steady states to be achieved. The text has been changed from “We 
simulate glacier evolution over 280 years in response to four prescribed values of the global net 
balance.” to “We simulate glacier evolution to a new steady state in response to four prescribed 
values of the global net balance”. 



 
Figure 1a and b should be larger. 
 
Figure 1 (a and b) has been enlarged to its maximum width for the TCD format (14.5 cm). It should 
be possible to enlarge it to 17.3 cm width in the TC format (two columns). We have also enlarged 
Figures 2 and 5 to their maximum widths. 
 
Figure 3: the zero-net mass balance profile should be plotted in this graph. 
 
Done. Legend added and caption adjusted accordingly. 
 
Figure 5: the curves for m_max = 0.5 and λ_max = 1 should be emphasized 
(continuous bold). 
 
Line attributes have been changed in Figure 5 so that bold continuous lines indicate the reference 
simulation (now mmax =0.25 and λ max =6m) as suggested.  


