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Abstract

Hybrid models, or depth-integrated flow models that include the effect of both longi-
tudinal stresses and vertical shearing, are becoming more prevalent in dynamical ice
modeling. Under a wide range of conditions they closely approximate the well-known
First Order stress balance, yet are of computationally lower dimension, and thus re-
quire less intensive resources. Concomitant with the development and use of these
models is the need to perform inversions of observed data. Here, an inverse con-
trol method is extended to use a hybrid flow model as a forward model. We derive
an adjoint of a hybrid model and use it for inversion of ice-stream basal traction from
observed surface velocities. A novel aspect of the adjoint derivation is a retention of
non-linearities in Glen’s flow law. Experiments show that including those nonlinearities
is advantageous in minimization of the cost function, yielding a more efficient inversion
procedure.
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Abstract

Hybrid models, or depth-integrated flow models that include the effect of both longi-
tudinal stresses and vertical shearing, are becoming more prevalent in dynamical ice
modeling. Under a wide range of conditions they closely approximate the well-known
First Order stress balance, yet are of computationally lower dimension, and thus re-
quire less intensive resources. Concomitant with the development and use of these
models is the need to perform inversions of observed data. Here, an inverse con-
trol method is extended to use a hybrid flow model as a forward model. We derive
an adjoint of a hybrid model and use it for inversion of ice-stream basal traction from
observed surface velocities. A novel aspect of the adjoint derivation is a retention of
non-linearities in Glen’s flow law. Experiments show that including those nonlinearities
is advantageous in minimization of the cost function, yielding a more efficient inversion
procedure.

1 Introduction

Direct observations of many parameters crucial to behavior of glaciers and ice sheets
are practically impossible (e.g. history of ice-sheet-wide surface temperature and pre-
cipitation, ice fabric) and those that are feasible are logistically challenging and usu-
ally confined to specific locations (e.g. basal sediments, subglacial water pressure).
Therefore, the application of inverse methods in glaciology continues to gain popular-
ity. Although inversion for history of the atmospheric temperature (MacAyeal et al.,
1991; Dahl-Jensen et al., 1998), precipitation (Waddington et al., 2007), and firn ther-
mal properties (Sergienko et al., 2008b) have been performed, inversions for the ice-
stiffness parameter of ice shelves and ice-stream basal parameters are most common
(e.g. MacAyeal, 1992; MacAyeal et al., 1995; Rommelaere, 1997; Vieli and Payne,
2003; Larour et al., 2005; Khazendar et al., 2007; Sergienko et al., 2008a; Joughin
et al., 2009). Traditionally, these inversions are done in the integral least-square sense,

2



i.e. a total misfit between observed and calculated quantities is minimized. This ap-
proach is known as an optimal control or control method (MacAyeal, 1992, 1993). Alter-
native methods include a probabilistic approach (Chandler et al., 2006; Gudmundsson
and Raymond, 2008; Raymond and Gudmundsson, 2009), and various iterative ap-
proaches to solving the inverse problem using higher-order forward models (Maxwell
et al., 2008; Arthern and Gudmundsson, 2010).

Any inverse method includes a forward model as a necessary component. In nu-
merous studies inverting either for rheological properties of ice shelves or basal con-
ditions under ice streams, the so-called Shallow Shelf Approximation (SSA) (Morland
and Shoemaker, 1982; Muszynski and Birchfield, 1987; MacAyeal, 1989) is used as
a forward model. However, a new trend of using higher-order or full stress-balance
models as forward models in inversions has started to emerge (Maxwell et al., 2008;
Morlighem et al., 2010). The SSA balance is of lower computational dimension than
the First Order or Full Stokes balances (Greve and Blatter, 2009), and therefore easier
to solve. It does not account, though, for the effect of vertical shear, which has an
effect on the nonlinear Glen’s Law viscosity (Glen, 1955) and the basal velocity used in
flow laws, and which can be nonnegligible where basal traction is high. This is true of
inland areas of the Antarctic Ice Sheet and majority of the Greenland Ice Sheet. Also,
in their study of Pine Island Glacier, Vieli and Payne (2003) speculate that ∼20% of the
observed velocity in the region of high driving stress just upstream of the grounding line
is due to vertical shear, and that this contributed to quantitative errors in their analysis
using the SSA balance.

A class of glaciological models involves a vertically-integrated stress balance that in-
cludes the effect of vertical shearing stresses, but also includes horizontal stress terms
(the terms present in the SSA). For the purpose of discussion these models are re-
ferred to here as “hybrid” models since they combine two low-order approximations:
the SSA and the Shallow Ice Approximation (SIA, Hutter (1983)). For example, Bueler
and Brown (2009) heuristically combine the results of an SSA solution with an SIA
solution, while Pollard and DeConto (2009), Schoof and Hindmarsh (2010), and Gold-
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berg (2010) use depth-integrated forms of the horizontal stress terms. While these
hybrid models account for all of the stress terms in the First Order balance, they have
a computational advantage in that the elliptic solve (the most expensive step) is not
resolved in the vertical. Note that, unlike the First Order balance, these models do not
allow depth variations of horizontal stresses. However, in the approximation to First
Order is shown to be quite good under a wide range of conditions (Pattyn et al., 2008;
Goldberg, 2010). Furthermore, two of these models (Bueler and Brown, 2009; Pollard
and DeConto, 2009) have been used in time-dependent whole-continent simulations
of Antarctica and Greenland. Clearly it is of value to be able to use the hybrid models
as forward models in inversion procedures in order to find an optimal set of unknown
parameters for these models. However, such an inversion has not yet been performed.
Additionally, as use of these models becomes more common it will be advantageous to
perform comprehensive and efficient analysis of the model sensitivities to a wide range
of input parameters.

The control method developed by MacAyeal (1992) involves a construction of a
model adjoint to the SSA equations in order to find the gradients of the performance
index (or cost function) with respect to inverted parameters (basal sliding parameters
in studies by e.g., MacAyeal (1992); Joughin et al. (2009), and the ice stiffness param-
eter in studies by e.g., MacAyeal et al. (1995); Larour et al. (2005)). The adjoint model
is a powerful tool that allows one, in a single step, to find derivatives with respect to
a large number of parameters at a point in solution space. However, in deriving this
adjoint model, nonlinearities, such as the dependence of the Glen’s Law viscosity on
strain rates, are ignored. It is not clear whether the inclusion of this dependence is
advantageous to the performance of the method, since without it the adjoint equation
is the same as the linear one solved iteratively in the forward model.

In this paper we invert surface velocities for basal traction fields using the hybrid
model from Goldberg (2010) as a forward model. Both synthetic and observed surface
velocities are used in the inversions. The paper is organized in the following manner:
In Section 2 the forward model is briefly introduced. The inversion scheme, which
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includes the adjoint model as a central part, is presented and discussed in Section 3,
with the derivation and some of the lengthier expressions relegated to the appendix.
Sections 4 and 5 present inversions of synthetic velocities, and results of an inversion
using satellite-inferred surface velocities on Pine Island Glacier are shown in Section 6.
Special attention is paid to the effects of including the nonlinearities mentioned above
in the adjoint model on the convergence of the inversion scheme.

2 Forward model

The forward model used in this study is the one described in Goldberg (2010). It can be
derived from a variational formulation, using a modified form of the energy functional
that leads to the First Order balance (Reist, 2005; Schoof, 2010). Using the First
Order model results of the ISMIP-HOM experiments as a benchmark (Ice Sheet Model
Intercomparison Project - Higher-Order Models, Pattyn et al. (2008)), good agreement
is shown for length scales larger than ∼20 km in basal topography and for all length
scales in basal traction. The equations are given here:

1
H
∂x(Hν(4ux+2vy))+

1
H
∂y(Hν(vx+uy))+∂z(νuz)= ρgsx, (1)

1
H
∂x(Hν(vx+uy))+

1
H
∂y(Hν(4vy+2ux))+∂z(νvz)= ρgsy, (2)

ν=
B

2

(

u2
x+v2

y+uxvy+
1

4
(uy+vx)

2 +
1

4
u2
z+

1

4
v2
z

)
1−n
2n

. (3)

Here u and v are x- and y-velocities, respectively, s is surface elevation, H is thick-
ness (s−b, where b(x,y) is basal elevation), and n represents the nonlinearity in Glen’s
Law and in this study is equal to 3. The overline operator indicates vertically averaging,
i.e. u= 1

H

∫ s

b
udz, and ux indicates the x-derivative of this quantity (and not the vertical
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average of ux). The surface is stress-free. When sliding is present, the sliding law is in
terms of the shear stress and velocity at the base. In this study, the sliding law is linear:

τ b=−β2
u (4)

at z= b.
Note that due to the inclusion of vertical shear, basal, surface, and depth-averaged

velocity can all differ, in contrast to the SSA. This does not prevent a significant problem
in terms of solving (1-4), however. An iterative scheme can be developed by depth-
integration of (1) and (2), and writing uz and u(z = b) in terms of the current iterates
of depth-averaged velocity, basal stress and viscosity. (The surface velocity, while
not needed in the iterative scheme, can be similarly diagnosed.) This yields a set of
equations to be solved for the next iterate of depth-averaged velocity. The equations
have the same structure as those solved in an iterative solution of the SSA balance, so
an SSA code can be easily modified. For details, please see Goldberg (2010).

3 Adjoint model

Synthetic and observed surface velocities were used to invert for basal traction parame-
ters, in both flowline and plan view settings. The approach is essentially the same as in
MacAyeal (1992), and similar to that of Arthern and Gudmundsson (2010) - a steepest-
descent method. The differences are (a) the forward model and (b) the fact that non-
linearities are accounted for in constructing an adjoint model. But the same paradigm
of finding the search direction as a functional derivative that is then discretized (rather
than by differentiating the discretized forward equations) is still adhered to. The effect
of accounting for nonlinearities is explored in the subsequent sections.

The cost function

J =

∫

Ω

1

2
|u∗

s−us|
2dA, (5)
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where us is horizontal velocity at the surface, the asterisk superscript denotes observed
quantities, and Ω is the model domain, is minimized over all choices of β. The set of
possible β depends on the choice of basis for β: for example, in MacAyeal (1993) it is
Fourier modes and in MacAyeal et al. (1995) it is the finite element basis for velocity.
Beginning with an initial guess for β, the control method finds the gradient of J with
respect to the degrees of freedom of β (subject to the constraint that (1-4) are satisfied).
A line search minimization then gives a new guess for β. A Fletcher-Reeves conjugate
search algorithm is used (Press et al., 1992).

Typically when this control method is applied to glaciological models, an adjoint
model is solved, and the result is used to find the gradient of J with respect to basal
traction parameters (or other field that is being inverted for). The advantage of using
an adjoint model is that the derivative of a given observable value can be found with
respect to a large array of input parameters for the computational cost of a single for-
ward solve. This is in contrast to finding derivatives by direct finite differencing, which
requires a separate forward solve for each input parameter. In this study the adjoint of
the model described in the previous section is constructed directly from the differential
equations, rather than discretizing and taking the adjoint of the discretized model. The
result is a set of linear partial differential equations that are then solved in order to find
the gradient of J . Note that this procedure does not assume any discretization details,
and the discretization of the adjoint can be independent from that of the forward model.

We now present the adjoint model. Its derivation is lengthy and not entirely straight-
forward, and so it is left to the appendix. Furthermore, the expressions involved in the
adjoint itself are lengthy, so details are only given for the adjoint of the flowline version
of the model (i.e., flow in the x−z plane). The adjoint of the three-dimensional model,
and its derivation, are very similar.

The flowline version of (1-3) is

∂x(4νHux)−τ−ρgHsx = 0, (6)

τ =mβ2ub, m=
√

1+b2x, (7)
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ν=
B

2
(u2
x+

1

4
u2
z)

1−n
2n . (8)

Here ub =u(z= b). In our flowline inversions, periodic boundary conditions are consid-
ered.

As in MacAyeal (1993), the cost function J is modified: the flowline model appears
as a constraint, with lagrange multiplier λ:

J ′ =

∫ L

0

1

2
(u∗s−us)

2dx+

∫ L

0
λ[∂x(4νHux)−τ−ρgHsx]dx, (9)

where [0,L] is the domain. An adjoint model is then derived that must be solved for λ:

∂x(4νHλx)−
mβ2

1+ mβ2γ
Hτ

λ+F{λ;u,β,x}= (u∗s−us)

(

1+
mβ2γs

Hτ+mβ2γ

)

+G{u∗s−us;u,β}(10)

where F andG are linear operators on their first arguments (λ and u∗s−us, respectively)
that also depend on u and β. γ and γs are functions that depend on the gradients of u:

γ=

∫ s

b

∫ z

b

u2
x+ 1

4u
2
z

u2
x+ 1

4nu
2
z

uzdz
′dz, γs =

∫ s

b

∫ s

z

u2
x+ 1

4u
2
z

u2
x+ 1

4nu
2
z

uzdz
′dz, (11)

and F and G are given in the appendix. (Note that if n= 1, then γ and γs are equal to
H(u−ub) and H(us−u), respectively.) (10) is solved for λ with appropriate boundary
conditions: if the boundary conditions on (6) are Dirichlet, then (10) has homogeneous
Dirichlet boundaries. If (6) has periodic boundary conditions, then (10) does as well.
Note that the form of the adjoint model (10) is dependent on the forward model and the
form of the cost function J , but would be the same no matter which input parameter
is being investigated. However, in this study the goal is to find the gradient of J ′ with
respect to β, which is done using the following:

δJ ′ =

∫ L

0
−δβ





(u∗s−us)2
γs

H
+2τλ+K{λ;u,β}

β
(

1+ mβ2γ
Hτ

)



, (12)
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which gives the response of J ′ to a perturbation in β. Again, K is a linear operator
on λ, the specific form of which is given in the appendix. With a finite-dimensional
representation of β, (12) can then be discretized to find ∂J ′

∂βi
, where βi are the degrees

of freedom in such a representation, i.e.

β=
∑

i

βiφi, (13)

where φi form the basis of the space of possible β. (Thus δβ would be written as
∑

i

φiδβi.)

(10) is written in such a way (i) because the expressions for F , G, and K are
lengthy, and (ii) in order to emphasize the effect of ignoring the dependence of viscos-
ity on strain rates, something quite often done in glaciological inversions using adjoints
(MacAyeal, 1993; Vieli and Payne, 2003; Larour et al., 2005; Joughin et al., 2009). Do-
ing so here is equivalent to neglecting F , G, and K, and additionally letting n= 1 in
(11). The adjoint model with F and G left in and n 6= 1 will subsequently be referred to
as the complete adjoint and, with F and G ignored and n= 1 as the incomplete adjoint.

It is interesting to note that in doing this, the operator given by the left hand side of
(10) is the same as the forward model when the viscosity is “frozen”, as in a Picard-
iterative solution (MacAyeal and Thomas, 1986). This is not a coincidence; when the
strain-rate dependence of viscosity is ignored, the equation system in Goldberg (2010)
is linear and self-adjoint under the L2 inner product. (This is also true of the three-
dimensional model.) Thus using the incomplete adjoint saves on development time and
also ensures that the adjoint model has the same desirable properties as the forward
model (i.e., that the matrix that is solved is symmetric and positive definite). If the
matrix is solved in parallel, the domain decomposition and parallel memory allocation
need not change. As discussed in Goldberg (2010), the computationally expensive
component of the hybrid model is the solution of a system of elliptic PDEs with the
same structure as those solved for the SSA balance.

However, the adjoint model is only solved once per iteration of the inverse model,
9



so it is possible that relaxing the property of self-adjointness will not carry too large a
penalty. In the following sections, flowline and 2D (plan view) inversions are carried
out, and the effects of including such nonlinearities in the adjoint model are examined.
An important point to remember is that, with the same forward model and cost function,
the only way in which these effects can manifest is in the rate of convergence of the
inversion. Whether nonlinearities are included or not, the solution (or set of solutions)
of an inversion is the same.

In this study, the forward and adjoint models are solved using one-dimensional or
bilinear finite elements as in Goldberg (2010) and Goldberg et al. (2009), and φi is
equal to 1 on grid cell i and zero elsewhere. Still, the discussion above does not
depend on specific details of the discretization.

4 Flowline Inversion

A flowline version of the hybrid model was used to invert synthetic surface velocities
for basal traction, assuming a linear sliding law. The experiments are based on the
flowline experiments with sliding from the ISMIP-HOM intercomparison. The domain is
periodic, and ice thickness has a constant value of 1000 m and a surface at an angle of
0.1◦ with the horizontal, and the Glen’s Law constant is uniformly equal to 2.1544×105

Pa (m/a)−
1
3 . The velocities inverted for β are the surface velocities from a First Order

flowline solver (that used in Goldberg (2010)) with the same thickness, surface slope,
and Glen’s Law constant, and a β-profile given by

β=

√

1000+1000 sin(
2πx

Lx
) Pa

1
2 (m/a)−

1
2 (14)

where basal stress is given by

τb=β2u|z=b, (15)

and Lx is the length of the domain. As shown in Goldberg (2010), the hybrid model
surface velocities agree well with First Order surface velocities in this setting. And so
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while these inversions are known to be ill-posed, and thus many different β-profiles
could produce surface velocity profiles close to the “target” one, we still know that (14)
is a valid solution to the inverse problem, or at least leads to an cost function value as
small as any achieved in this study (Goldberg, 2010). Maxwell et al. (2008) state that
their method finds the solution to the inverse problem for which noisy oscillations are
minimized. And so we can judge our inversion results not only by the agreement of
calculated and prescribed surface velocities, but also by the agreement of the inverted
β with (14).

For an inversion scheme, both the incomplete adjoint mentioned in the previous sec-
tion and the complete adjoint were used. In all inversions, the initial guess for β was
set to a uniform value. 300 iterations of the inverse model were done, regardless of the
final value of J .

Fig. 1 shows the results of such an inversion with a domain length of 40 km. Inver-
sions using both incomplete (dashed line) and complete (solid line) adjoints are shown.
Values of J versus iteration count are shown, as well as the final inverted β2 (which is
compared with β2 given by (14)). Comparison is made using β2 rather than β since it
is β2 that appears in 15. In the left column, the initial guess for β is 20 Pa

1
2 (m/a)−

1
2

(uniformly), and in the right the initial guess is 40 Pa
1
2 (m/a)−

1
2 . With either initial guess,

the complete adjoint reaches a much smaller value of J than the incomplete adjoint (by
several orders of magnitude) and finds a solution very close to (14), while the incom-
plete adjoint finds a highly oscillatory solution. Using the complete adjoint, J decreases
steadily, while with the incomplete adjoint most of the reduction of J is in the first few
oscillations. In fact, with the initial guess of 20 Pa

1
2 (m/a)−

1
2 for β the incomplete adjoint

initially reaches a smaller value of J than the complete adjoint, but this is only transient.
Comparison between the different initial guesses shows that the solution found by the
complete adjoint scheme is relatively insensitive to the initial guess for β.

Fig. 2 shows the results for a domain length of 20 km, with an initial guess for β of
20 Pa

1
2 (m/a)−

1
2 . Here the contrast between the complete and incomplete adjoints are

even more apparent. The complete adjoint steadily reduces J and finds a solution that
11



is reasonably close to (14), while the incomplete adjoint barely adjusts β from its initial
guess and does not reduce J after the very first iteration. No other initial guess was
examined for this domain length.

The ability of the adjoint models to represent derivatives, particularly derivatives of
surface velocities, can be examined. The calculation of such derivatives can be cast in
terms of the adjoint method: using the fact that

Ji≡us(xi)=

∫ L

0
usδxi

(x)dx, (16)

where δxi
(x) is the Dirac delta function shifted by xi, the same approach as described

above is applied to

J ′

i =

∫ L

0
usδxi

(x)dx+

∫ L

0
λ[∂x(4νHux)−τ−ρgHsx]dx, (17)

and the adjoint model is again derived, but with a different right hand side than (10).
The expressions are not given here, but again it is simple to separate out the terms
corresponding to the strain-rate dependence of viscosity.

Fig. 3(a) shows the Jacobian of surface velocities with respect to basal traction
values, calculated directly by finite differencing. (With no analytic expression for the
Jacobian, this is taken as the ”true” value.) Basal traction is given by (14) and there is
no topography. The figure can be seen as a contour plot of ∂u(xi)

∂β(xj)
, where xi is along

the horizontal axis and xj the vertical. Fig. 3(b) shows this Jacobian as calculated
using the complete adjoint model, similarly to the way the gradient of J with respect to
β is found. Fig. 3(c) is the equivalent calculation using the incomplete adjoint model.
Quite a difference between the two can be seen, especially for the derivatives of the
velocities in the ”slippery” region with respect to the traction values in the ”sticky spot”. It
seems that using the incomplete adjoint model underestimates these sensitivities, and
therefore overshoots in its guess for these traction values, leading to the oscillations
seen in Figs. 1(c) and 2(b).
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It was noted in Goldberg (2010) that in the ISMIP-HOM tests of nonsliding flow over
wavy topography, agreement of the hybrid model with First Order surface velocities
was not as good as in the tests of sliding flow over periodic traction. Inversion for basal
topography was not done in this study; however, it is fair to ask whether the presence
of basal topography would affect the results presented in this section. A series of tests
was done where there is still sliding at the base, but the basal elevation varies from
the mean slope sinusoidally with the same wavelength as the basal traction and an
amplitude of 100 m (compare with 500 m in the ISMIP-HOM experiments). The results
were very similar to those in Fig. 1, and not shown.

5 Plan view inversion - synthetic data

The ISMIP-HOM intercomparison also includes a set of three dimensional experiments,
one of which involves sliding over varying basal traction in a doubly periodic domain.
Surface velocities from this experiment were inverted for basal traction, and the results
are shown here. Both the complete and incomplete adjoints were used. The forms
and derivations of these models are very lengthy and not shown, but they are simple
extensions of the flowline adjoint models discussed in the appendix. Since a three-
dimensional First Order solver was not used in this study, a mean was taken over the
publicly available results from the intercomparison that solved the First Order balance
(http://homepages.ulb.ac.be/∼fpattyn/ismip/tc-2-95-2008-supplement.zip).

In this experiment the Glen’s Law constant and the (uniform) thickness H had the
same values as in the flowline experiments. While not directly used, the basal traction
specified for the ISMIP-HOM experiment is

βih =

√

1000+1000sin(
2πx

Lx
)sin(

2πy

Ly
) Pa

1
2 (m/a)−

1
2 , (18)

where Lx and Ly are the x- and y-dimensions of the domain. As discussed before, this
may not necessarily be the only possible solution of the inversion, but it is useful for
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comparison.
In the plan view inversions, it was found that when the initial guess for β was constant,

the residual J did not decrease by much even after a large number of iterations, using
either the complete or incomplete adjoint models (see Discussion and conclusions).
Instead, two different spatially-varying initial guesses for β were considered:

β1 = 10+20e

„

−(x−Lx)2−(y−Ly)2

( 1
6 Lx)2

«

Pa
1
2 (m/a)−

1
2 , (19)

β2 =

√

sin(
3πx

Lx
) Pa

1
2 (m/a)−

1
2 . (20)

Note that β1 is a Gaussian “bump” in the middle of the domain, while β2 is sinusoidal in
x (but not in y), but its peaks and troughs do not correspond to those of (18).

The results of the inversion are shown in Fig. 4, for Lx and Ly equal to 40 km. The
left column corresponds to using β1 as an initial guess, and the right to β2. The top
row shows residual (J) as a function of iteration count. In the case of β1, the inversion
scheme reaches the same value of J after 100 iterations with either the complete or
incomplete adjoint. However, J converges more quickly using the complete adjoint.
With β2 as an initial guess, there is almost no decrease in J using the incomplete
adjoint, while using the complete adjoint achieves a decrease in J comparable with the
β1 case.

The bottom row of Fig. 4 shows β2−β2
ih, where β here is found using the complete

adjoint. In the case where β1 is the initial guess, the final inverted β using the complete
and incomplete adjoints are very similar, though this is not true for the β2 case. In
the β1 case, traction in the “slippery regions” (the top left and bottom right) is slightly
overestimated and is slightly underestimated at the centers of the “sticky spots” (bottom
left and top right), but overall the agreement is good. There is no remnant of the initial
guess seen in the misfit. On the other hand, in the β2 case the misfit is overwhelmed
by a transverse strip at x= Lx

2 , where β2 should be equal to ∼ 1000 Pa (m/a)−1 but
is instead close to zero. This is indeed a remnant of the initial guess, since β2 is
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zero along this line. Since horizontal stresses tend to damp out small scales in basal
traction this does not have a large effect on the cost function J , but it demonstrates
some dependence on initial guess.

6 Plan view inversion - real data

In addition to synthetic surface velocities, inversions were done using InSAR- and
speckle tracking derived surface velocities (Joughin, 2002) and 5 km gridded ice thick-
ness and bed elevation data from the Airborne Geophysical Survey of the Amund-
sen Sea Embayment, Antarctica (AGASEA) conducted during the 2004-2005 austral
summer (Vaughan et al., 2006) (these data are available from http://nsidc.org/data/
nsidc-0292.html). An 80×80 km region containing the grounded portion of Pine Is-
land Glacier (PIG) was selected. (This region contains the areas referred to as the
“ice plain”, the “steepening”, and the “trunk” by Payne et al. (2004).) The object of
this exercise was not to ask specific glaciological questions; many studies have used
established inversion methods to investigate basal properties of PIG (e.g. Payne et al.,
2004; Joughin et al., 2009; Morlighem et al., 2010). Rather, the purpose is to assess
the convergence properties of the hybrid model inversion scheme with “real” data.

The boundary conditions of this inversion differ from the previous plan view inver-
sions in that they are not periodic. The depth-averaged velocities at the boundary of
the domain are constrained to be the interpolated InSAR surface velocities. (As dis-
cussed in Goldberg (2010), lateral boundary conditions can only influence the solution
through their depth average.)

Fig. 5(c) shows the convergence behavior of the incomplete and complete adjoints,
with an initial, uniform guess for β of 10 Pa

1
2 (m/a)−

1
2 . The cost function J is not low-

ered by as many orders of magnitude as in the synthetic inversions. This is expected,
though, since the synthetic surface velocities were generated using a flow model to
which the forward model is a very close approximant. Basal stress |τ | correspond-
ing to the complete adjoint is shown in Fig. 5(d). (We show basal stress rather than
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β2, since in this experiment velocities are not derived synthetically using an analytical
expression for β.) Additionally, the relative importance of vertical shear in the corre-
sponding forward model solution is shown by Fig. 5(e), in which

|us−ub|

|us|
(21)

is plotted. For much of the region speed due to vertical shear is less than 20% of the
the surface speed, but there are areas (ones that coincide with high basal traction)
where vertical shear accounts for up to 80% of the surface speed. Such areas could
not be resolved with the SSA model as the forward model, due to its assumption of no
vertical shear. The corresponding fields from the inversion with the incomplete adjoint
are very similar both in magnitude and spatial pattern, and are not shown.

The difference in convergence rate between the complete and incomplete adjoint is
not as dramatic as was seen in the flowline or the synthetic plan view experiments.
Inversion with both choices finds similar solutions, and at comparable iteration counts,
the cost function in the incomplete adjoint inversion is at most twice that of the complete
adjoint inversion. Still, the fact that this is achieved early in the inversion (between 10
and 20 iterations) shows that the complete adjoint could still have some utility.

Sensitivity to the initial guess of β was also observed, for both the complete and
incomplete adjoints. Results are not shown, but if the initial guess for β was raised
significantly (values 30 and 40 Pa

1
2 (m/a)−

1
2 were examined), convergence was not

seen. The results are not shown, but convergence behavior (for both complete and
incomplete adjoints) was similar to that seen for the incomplete adjoint in the synthetic
data experiments: almost no decrease in J was observed and the result was decidedly
nonphysical.

An important consideration is whether the result of such an inversion is appropriate
for the forward model. In Goldberg (2010) solutions of the hybrid model were compared
with First Order solutions. It was found that the models were in good agreement when
the basal slope was smaller than ∼ 0.07 for flow over a frozen bed, which is close to
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the maximum basal slope in the region of PIG considered. It was also observed that
agreement was very good down to very small length scales in basal traction. And so
the basal traction and slope shown in Figs. 5(b) and 5(d) do not preclude the forward
model solution being a good approximation of a First Order solution. Joughin et al.
(2009), who performed inversions of surface velocities of Pine Island and Thwaites
Glaciers using an SSA forward model, note that the forward model balance is not strictly
applicable in strong-bedded regions. It is possible that inversions with a hybrid model
can give more complete results without using a three-dimensional forward model.

However, it should be noted that the above statements may not apply for regions
where First Order approximations are violated (i.e. near the grounding line). Morlighem
et al. (2010) compared inversions of PIG and its catchment and tributary region using
SSA, First Order, and Full Stokes forward models. Their results showed that nonhy-
drostatic effects were of leading-order importance in the grounding zone (part of which
protrudes into the bottom of our domain, between ∼ 40 and 60 km in the x-direction),
where the sharply rising bed exerts a backpressure on the flow.

7 Discussion and conclusions

Including the nonlinear terms in (10) and (12) (i.e., using the complete adjoint instead of
the incomplete adjoint) does not change the solution of the inversion; it can only affect
whether the inversion scheme finds a minimum of (5) and the speed of convergence.
In this sense the flowline inversions demonstrated a clear advantage in including these
terms. Use of the complete adjoint resulted in fast convergence toward a minimum with
relative independence on initial guess, which was not the case for inversions using the
incomplete adjoint.

In the plan view inversions of synthetic data, the rate of convergence improved with
the inclusion of nonlinear terms. However, there was no convergence when the initial
guess for β was spatially uniform, whether nonlinear terms were included or not. This
is due to specifics of the model set up, namely the periodic boundary conditions. With
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such conditions and a uniform β, the forward model solution is a velocity field that does
not vary in x or y, and so has a small effective strain rate (entirely due to vertical shear)
and a high Glen’s Law viscosity. The result is that the search direction found by the
adjoint model is nearly uniform, even though the misfit (u∗s−us) has relatively large
variation. This effect was verified by decreasing the Glen’s Law coefficient B for the
first few iterations (not shown).

In the plan view versions of observational data, the improvement of convergence rate
was not as dramatic as for of synthetic data, and also the relative insensitivity of the
complete adjoint inversion to initial guess seemed to disappear. We point out that this
inversion is more “difficult” than the inversions using synthetic data; in addition to the
small scales in surface velocity and the bed heterogeneity, the velocity measurements
come from different years than those of the thickness and bed, and thus may be in-
compatible depending on the amount of adjustment during the time gap. Thus it may
be that the advantage of complete over incomplete adjoint depends on the degree to
which the surface velocities can be closely approximated by the hybrid model. This is
a subject of ongoing investigation.

Still, the PIG inversion shows a small but noticeable difference was seen after a
relatively small number of iterations. Since inversions might involve a cutoff after a
target residual has been reached rather than a fixed number of iterations, this shows
that the complete adjoint may still have some utility in such inversions, provided it is not
too expensive to calculate relative to the incomplete adjoint.

Using a hybrid model that accounts for vertical shear within the ice as a forward
model has several advantages. Among them are possibilities to invert (or optimize)
for parameters over regions that cannot be described by a single zero-order approx-
imation (SIA or SSA) but do not require treatments of Full Stokes models. Bost fast,
streaming and slow, vertical shear-driven flow regimes can be considered in the same
domain. The hybrid model is computationally more efficient than First Order models,
and produces solutions of the same order of accuracy in a wide range of conditions
appropriate to ice modeling. The derived adjoint model could be used for numerous
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applications: from inversion for other model parameters to model sensitivity studies.
The adjoint is derived directly from the forward model equations rather than from their
discretized equivalents, so the discretization of the adjont does not depend on that
of the forward model. The use of a glacial flow model and its adjoint to invert for
unknown flow parameters is not new; however, such approaches typically ignore the
dependence on strain rates of the nonlinear viscosity. In this study it is seen that, for
this particular forward model, including this dependence can have a measured effect
on the convergence of the inversion scheme. The model from Goldberg (2010) was
the only one considered; however, similar flow models are being developed or are al-
ready being used in large-scale ice models (e.g., Pollard and DeConto, 2009; Schoof
and Hindmarsh, 2010), and the results of this study may indicate that inclusion of this
dependence may be necessary for data assimilation using such models.

While flow in slow-moving regions can be represented more accurately with a hybrid
model than an SSA model, Morlighem et al. (2010) point out that the cost function (5)
works better in fast-moving regions. Thus minimizing such a cost function may favor
such areas at the cost of a relatively large misfit in slow-moving areas. They suggest
using a different expression which measures the logarithm of the misfit (their Equation
12). Additionally, they add a regularization term to their equivalent of (9) that penalizes
oscillations in their inverted basal traction field. No such regularization was done in
this study. It was seen in some of the results (e.g., Fig. 4(d)) that very high gradients
in β can occur, depending on the initial guess. It is worth investigating whether the
modified cost function or regularization term of Morlighem et al. (2010) changes any of
the results of our study.

Inversion of surface velocities for basal traction numbers was the only application of
an adjoint model considered in this study, but there are others. Heimbach and Bugnion
(2009) examined the sensitivity of the evolution of the Greenland Ice Sheet to initial
conditions by deriving an adjoint model for the ice sheet model SICOPOLIS (Greve,
1997) using automatic differentiation tools. While that version of SICOPOLIS made use
of the SIA balance to calculate velocities, the need for a similar study involving a model
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that uses a higher-order stress balance was underlined in their paper. The availability
of continental-scale ice sheet models that do so, such as PISM (Bueler and Brown,
2009) or that of Pollard and DeConto (2009) present the possibility for such a study. In
these models, the solution of the stress balance for velocities is but a single component
of a timestep (the others being evolution of thickness, temperature, and in some cases
basal water and isostasy); however, it is the only component that requires the iterative
solution of a nonlinear elliptic equation. Solvers of such equations involve indirect
matrix solvers, preconditioners, stopping conditions and indeterminate iteration counts.
Applying automatic differentiation techniques to these solvers could result in lengthy
computation in the derivation of an adjoint. Instead, it may be possible to analytically
derive an adjoint for the elliptic solver and integrate it with the techniques used by
Heimbach and Bugnion. With such a strategy it is worth considering both complete and
incomplete adjoints. The structure of the incomplete adjoint would make it somewhat
easier to develop a solver. On the other hand, it was shown in the flowline experiments
that the complete adjoint can, in some cases, give a more faithful representation of
derivatives. With a time-dependent model, there is potential for accumulation of errors
over multiple timesteps, and using a better representation of model derivatives would
help to control these errors.

Appendix A

Appendix A

Deriving the adjoint model is basically the same as is done in MacAyeal (1993), but
due to the complexity added by the inclusion of vertical shear and depth integration,
the steps are shown and the form is given explicitly. Only the adjoint of the flowline
version of the model is shown here; the form of the three-dimensional (plan view)
adjoint is derived similarly but is more lengthy.
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The flowline version of the hybrid model is stated again here:

∂x(4νHux)−τ−ρgHsx = 0, (A1)

τ =mβ2ub, m=
√

1+b2x, (A2)

ν=
B

2
(u2
x+

1

4
u2
z)

1−n
2n . (A3)

Additionally,

νuz =
τ(s−z)

H
. (A4)

Boundary conditions on u are periodic.
As in (MacAyeal, 1993), the adjoint model is derived by taking a first-order differen-

tial of J ′ from (9). While taking the first variation does not involve any mathematical
complexity, the fact that the viscosity is depth-integrated in (A1) and uz and τ seem to
depend on each other in a circular fashion makes things a bit more difficult. For that
reason, it is shown here how perturbations in J ′ are related to perturbations in u and
β.

Under a perturbation in u, there is a corresponding perturbation in ν, derived from
(A3):

δν =

(

1−n

2n

)

ν(2uxδux+ 1
2uzδuz)

u2
x+ 1

4u
2
z

. (A5)

Here δuz is the vertical derivative of δu, or equivalently the perturbation in uz, and
similarly for δux. Through (A4), the perturbation of uz can be related to δτ and δu:

δuz = δτ
νH

(s−z)− τ
ν2H

δν(s−z) (A6)

= uz

τ
δτ −

(

1−n
2n

)

uz
2uxδux+ 1

2
uzδuz

u2
x+ 1

4
u2

z

(A7)

= uz

τ
δτ −

(

1−n
2n

)

uz
2uxδux

u2
x+ 1

4
u2

z

−
(

1−n
2n

)

uz
1
2
uzδuz

u2
x+ 1

4
u2

z

, (A8)
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which is rearranged to give

δuz

[

1+

(

1−n
4n

)

u2
z

u2
x+ 1

4u
2
z

]

=

(

δτ

τ
−

2
(

1−n
2n

)

uxδux

u2
x+ 1

4u
2
z

)

uz, (A9)

or

δuz =
uz
τ

(

u2
x+ 1

4u
2
z

u2
x+ 1

4nu
2
z

)

δτ −
2
(

1−n
2n

)

uxuz

u2
x+ 1

4nu
2
z

δux. (A10)

Since

ub =u−
1

H

∫ s

b

∫ z

b

uz dz
′dz, (A11)

and since the perturbation and integration operators commute, the perturbation of ub
is

δub = δu− δτ
Hτ

∫ s

b

∫ z

b

u2
x+ 1

4
u2

z

u2
x+ 1

4n
u2

z

uzdz
′dz+2

(

1−n
2n

)

uxδux

H

∫ s

b

∫ z

b
uz

u2
x+ 1

4n
u2

z

dz′dz. (A12)

From the sliding law (A2), the perturbation in τ is

δτ = 2mβubδβ+mβ2δub, (A13)

which leads to

δτ =
m3β2

1+ m3β2γ
Hτ

δu+
2τ

β(1+ m3β2γ
Hτ

)
δβ+

4
(

1−n
2n

)

m3β2ux

H+ m3β2γ
τ

δux

∫ s

b

∫ z

b

1
2uz

u2
x+ 1

4nu
2
z

dz′dz. (A14)

The perturbation of the surface velocity can also be stated in terms of depth-averaged
perturbations. This is done using

us =u+
1

H

∫ s

b

∫ s

z

uz dz
′dz, (A15)

along with the expressions for δuz and δτ , resulting in an expression similar to (A12).
22



The pieces are now all in place. It remains to proceed as in MacAyeal (1993): finding
the the first variation of J ′ with respect to a perturbation δu and setting it to zero gives
(10). Then setting δu= 0 and considering a perturbation δβ leads to (12). The terms in
(10) and (12) that apply only to the complete adjoint are given here:

F{λ;u,β}= ∂x

[(

4
(

1−n
n

)

u2
xα1 +

2( 1−n
n )

2
α2mβ

2uxψ

Hτ+mβ2γ

)

λx

]

(A16)

−

[

( 1−n
n )uxα2mβ

2

τ+ mβ2γ
H

]

λx−

[

mβ2

1+ mβ2γ
Hτ

]

λ+∂x

[

2( 1−n
n )mβ2uxψ

H+ mβ2γ
τ

λ

]

, (A17)

K{λ;u,β}= 2
(

1−n
n

)

α2uxλx, (A18)

G{u∗s−us;u,β}= −∂x

[

(u∗s−us)
(

1−n
2n

) 4mγsβ
2uxψ

H(Hτ+mβ2γ)

]

, (A19)

where

α1 =

∫ s

b

ν

u2
x+ 1

4nu
2
z

dz, α2 =

∫ s

b

νu2
z

u2
x+ 1

4nu
2
z

dz, (A20)

ψ=

∫ s

b

∫ z

b

1
2uz

u2
x+ 1

4nu
2
z

dz′dz, ψs =

∫ s

b

∫ s

z

1
2uz

u2
x+ 1

4nu
2
z

dz′dz. (A21)
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Fig. 1. Results of inversion for β2, using the flowline model with periodic boundary conditions
and uniform thickness and basal slope. Domain length is 40 km. “Observed” surface velocities
are the results of a First Order flowline model calculated using “true” β from (c) and (d). Initial
guess for β is set uniformly to 20 (Pa a/m)
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is plotted,
where xi is along the horizontal axis and xj the vertical.
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Fig. 4. Results of inversion in doubly-periodic domain, Lx = 40 km. “Observed” surface veloci-
ties are from results of ISMIP-HOM 3D experiments. In the left column, the initial guess for β is
a Gaussian hill in the middle of the domain (Equation 19). In the right column, the initial guess
is a wavenumber 3 variation in the along-flow direction (Equation 20).
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(a) Elevation map of area of inver-
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(b) Ice speed and bed elevation
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Fig. 5. Region in which InSAR-derived velocities were inverted for basal traction. (a) Region
in which InSAR-derived velocities were inverted for basal traction. (b) Convergence of inverse
model. Both complete and incomplete adjoints converge, but inclusion of nonlinear terms gives
marginal improvement. (c) InSAR-derived speed (filled contours) and AGASEA bed elevation
(labeled contours). (d) Inversion results for the complete and incomplete adjoints, with an initial
guess for β of 10 Pa

1

2 (m/a)−
1

2 . (e) The relative importance of vertical shear, i.e. the speed due
to vertical shear divided by the surface speed for the inverted solution.
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