
Response to Anonymous Referee #1 
 
We appreciate the constructive comments of both reviewers and have responded to each comment, 
copied verbatim, below. Our responses are italicized.  
 
Anonymous Referee #1 Comments 
 
This paper presents diagnostic and prognostic simulations of a small surging valley 
glacier in the Yukon Territory, using a flowband higher-order model. The novelty in this 
paper is the use of a complex friction law which is function of the basal water pressure. 
From diagnostic simulations, the distribution of the basal effective pressure is inferred 
by a trial and error method on the modeled and measured surface velocities. Then, 
prognostic simulations for various mass balance scenario are performed, and allow the 
authors to investigate the link between mass balance and the propensity of the glacier 
to surge. This paper is well written and contains sufficient material to be published. 
I have few main major comments that should be answer before publication and few 
minor comments (see below). 
 
Major Remarks: 
 
The definition of the effective pressure is not given (should be given page 1850, 
line 4). In the literature, the effective pressure is often defined using the isotropic 
ice pressure (noted Pi here), but using a higher-order it should be defined using 
the Cauchy stress normal to the bedrock surface (σnn = nσ · n). So, define how 
you evaluate the effective pressure and, if you are using the isotropic pressure 
instead of the normal stress, justify your choice. 
 
This comment brought to our attention an important detail regarding the definition of effective 
pressure in higher-order models. In our implementation, we followed the extensive literature that 
defines effective pressure as N = P_{i} - P_{w}, where typically within the literature P_{i} is 
considered hydrostatic; however, within the Blatter approximation used here, P_{i} = \sigma'_{xx} 
+ \sigma'_{yy} - rho g H and this is what we have used.  The reviewer raises the point that actually 
the more correct way to view effective pressure is as the normal stress to the bedrock surface minus 
the water pressure.  If we took this approach then within the Blatter approximation, normal stress at 
the bed is considered hydrostatic (this is an order epsilon^2 error, where epsilon is the aspect ratio). 
Therefore with hindsight, to remain entirely consistent with the Blatter model, we should have used 
N = rho g H - P_{w} as the definition of effective pressure rather than N = P_{i} – P_{w}. Whether 
our use of P_{i} as calculated within the Blatter model, as opposed to simply rho g H in the 
definition of effective stress, is sufficient grounds to warrant repeating the study is a question we 
leave to the editor. We certainly plan to revise the model so that N = rho g H – Pw for future work. 
One of our plans for future research is to apply a full Stokes model to our study glacier, in which 
case we will have an opportunity to evaluate the effects of the approximations made in a Blatter-
Pattyn-type model, including the representation of the effective pressure.   
 
For now we have we have added the following to the model description below Equation 15 (the 
friction law): “We define effective pressure in the conventional way as $N=P_{\rm i} - P_{\rm w}$, 



with water pressure $P_{\rm w}$. Taking $N=\rho g h – P_{\rm w}$ would be strictly consistent 
with the approximations made in this Blatter-Pattyn-type flowband model 
\citep{Schoof_Hindmarsh_2010}, but would not be appropriate for higher-order models in which 
the leading-order bed normal stress differs from cryostatic.” 
  
page 1863, paragraph 5.1.3: Why did you choose to use a new parameter μ 
to define how important is the water pressure relative to the ice normal stress? 
You should notice that N and μ are trivially linked as N/Pi = 1 − μ. Then, the 
analysis is conducted using this parameter μ which takes four different values 
along the flowline. I think the analysis should be more pertinent by adding a 
plot of the evolution of the basal normal stress along the flowline. Due to the 
bedrock topography, I expect that σnn will be larger just upstream the prominent 
bed ridge (located between zone 1 and zone 2, in x ≈ 1550 m), and will be smaller 
just downstream the ridge. The effect, is that for a uniform water pressure, the 
effective pressure N will decrease just downstream the ridge (or as you obtained, 
μ increases just after the prominent ridge). In other words, the variations in μ 
might be only the result of variations of the ice normal stress, and not the water 
pressure. This should be interesting to separate what is due to changes in ice  
normal stress (induced by topography changes) and what is due to changes in 
water pressure. From the plot of μ alone, one cannot deduce the variation of 
basal water pressure and all the discussion is done as if only the water pressure 
was evolving along the flowline. I would then suggest to plot in Figure 6 the ice 
normal stress (given by the model) and the range of water pressures consistent 
with the observations (instead of μ). 
 
Our use of the parameter μ made the presentation unintentionally confusing. Part of this confusion is 
due to μ having been defined improperly in the text as Pw/Pi, and to the inaccurate statement that 
we prescribed effective pressure. We did, in fact, prescribe basal water pressures directly, not values 
of Pw/Pi in the analysis. Our intention in using the parameter μ was simply to make the results more 
intuitive by expressing prescribed values of basal water pressure (Pw) as a coefficient multiplied by 
ρgh , i.e. μ = Pw/ρgh, where ρ is ice density and h is ice thickness. We refer to the coefficient μ as the 
“flotation fraction”. We chose to prescribe uniform flotation fractions (i.e. Pw = μρgh with constant 
μ), rather than uniform values of the dimensional water pressure Pw, as we deemed this more 
realistic for zones of variable ice thickness. The above means that Pi, and therefore N, were still 
solved for within the model. Thus, water pressure is variable along the flowline and does play a role 
in setting the modelled velocities. Our use of the phrase “prescribed effective pressure” actually 
would have been correct, had we formulated effective pressure consistently with the Blatter 
approximation as N = ρgh – Pw. In this case, prescribing Pw = μρgh essentially fixes N.  
 
5.2 prognostic simulations: I have to admit that I didn’t see clearly how the simulations 
that are performed in this section can be linked to the study of the glacier 
surge. The main point is that these prognostic simulations are performed assuming 
a basal water pressure set to zero and for very long duration (280 years) in 
comparison to the observed quiescent phase duration. Moreover, a large part 
of the modeled thickening upstream the bedrock bump certainly results from the 
flowline model assumption. Using a 3D model would certainly reduce this effect 



as the bedrock bump (as can be seen in Figure 2) is clearly a 3D feature, and 
is not elongated in the transverse direction (even if one can see the bump in the 
three different flow lines, which are very close to each other in this area).  
 
The simulations were not intended to represent the actual build-up to a surge or a surge itself, 
because, as the reviewer points out, they were conducted with water pressure set to zero and for a 
time sufficiently long so as to  cover several surge cycles. We reported the length of the simulations 
(280 and 400 years) merely to indicate the time required for the glacier to attain a new steady state 
in response to the prescribed mass balance. The prognostic simulations were intended to be related 
to surges in the following two ways. First, they demonstrated that the glacier is currently in a 
transient state, being both thinner in its reservoir area and longer than it should be, given its recent 
mass balance; this corroborates the suggestion that the glacier has been subject to its currently 
unsustainable flow rates for some time (what we’re calling the slow surge). The prognostic 
simulations also suggest that the bedrock ridge may facilitate the development of an ice reservoir, a 
pre-requisite to surging. This mechanism, as modelled here,  is entirely a function of the glacier 
geometry, and independent of contrasts in thermal and/or hydrological conditions along the flowline 
which were not modelled. We suggested that topography (in addition to thermal and hydrological 
conditions) may contribute to the propensity of a glacier to surge, something that has not been 
widely discussed before in the literature. We think the ridge (or more generally, the glacier/valley 
geometry) influences the surge-type character of this glacier not only because the model predicts ice 
thickening above the ridge, but because the ridge seems to be the upper limit of surging as judging 
from our own recent measurements and from air/ground photographs of previous (fast) surges. 
 
As for 2-D versus 3-D effects: we agree that the reservoir development is exaggerated in the 2-D 
case, however we do not believe that it is an artefact of the flowband model (and would thus be 
absent from a 3-D model) for the following reasons. First, although the “bump” is highest on one 
side of the glacier, it is part of a bedrock ridge that is continuous beneath the glacier from one side 
of the valley to the other; any longitudinal profile one would extract through this area would contain 
an overdeepening and a ridge. Second, the valley bends and narrows near the subglacial ridge, 
providing further resistance to flow through this cross-section. The combined basal drag (from the 
bedrock ridge that extends across the glacier) and lateral drag (from the narrow valley walls) would 
cause thickening of the ice in this region even in a 3-D model. The extent to which this thickening 
would persist under various mass balance conditions according to a 3-D model would have to be 
determined by further study. We have tried to address the points above by revising the abstract and 
the discussion (both sections 6.1: Model simplifications and limitations, and 6.2: Interpretation of 
model results).  
 
The various mass balance tested should be plotted in Figure 3. For example, how 
the zero net mass balance compares with the 2007 surface mass balance? In 
the model, the mass balance is assumed as a function of the distance along a 
flow line (what is obtained from the measurements) whereas the surface mass 
balance is function of the surface elevation, introducing feedback that are not 
accounted for here. This point should be discussed. 
 
The mass balance profile corresponding to zero net balance has now been included in Figure 3. The 
text explains that this curve is shifted up or down (as can now be seen by comparing the two 



polynomial profiles in Figure 3) to obtain other mass balance profiles. The reviewer is correct that 
we have omitted the mass-balance elevation feedback by choosing to express mass balance as a 
function of the position along the flowline, rather than as a function of elevation. 
 
For the simulations in Figure 8 (steady state profiles in response to prescribed negative balances), 
neglecting the mass-balance—elevation feedback results in a less pronounced response to the 
imposed balances. All of the simulations are initiated with the present glacier geometry, hence there 
would be little difference initially between a mass balance profile prescribed as a function of 
flowline position versus surface elevation. As the glacier evolves, the mass balance should be 
reduced in areas of ice thinning and increased in areas of ice thickening, were this feedback 
included. This means that the amount of thinning in the upper accumulation area and the terminus 
thinning and retreat would be exaggerated. The bulge above the bedrock ridge would become 
larger, were the feedback included, as it attains a higher elevation than the initial profile in most 
cases. Omitting the feedback in these cases makes our simulation results conservative in terms of the 
geometrical reconfiguration that would accompany a long-term change in mass balance. 
 
For the simulation with zero net balance (Figure 9), the consequences of including the mass-
balance—elevation feedback should again be more dramatic. Most of the glacier above the imposed 
ELA (~2500 m distance along the flowline) thickens without the feedback and would thicken even 
more with it. Below 2500m along the flowline, the initial phase of terminus retreat would be more 
pronounced, hence the surface slopes between accumulation and ablation areas would steepen. This 
would drive faster ice flow, partially offsetting the increased thickening upstream relative to the no-
feedback case. Given the extent to which the modelled profiles are higher than the initial profile 
even below the fixed ELA, it is possible that the mass-balance—elevation feedback would prevent a 
steady state from being achieved (the zero net balance relationship being defined by the balance-
elevation relationship applicable to the present-day glacier profile). We have inserted some 
discussion of the consequences of omitting the mass-balance—elevation feedback in both 
subsections of Section 5.2 (Prognostic simulations).  
 
Minor Remarks: 
 
page 1842, line 5: could you quantify the differences in term of surface velocity of a normal surge 
and the current surge? 
 
This comment referred to the description of the slow surge of Trapridge Glacier, rather than the 
glacier studied in this paper. However, flow speeds during the slow surges are similar on both 
glaciers.  Text added: “Flow speeds during a typical surge are expected to be 10--100 times those 
during quiescence \citep{Meier_Post_1969}, whereas the peak annual flow speeds measured during 
the slow surge of Trapridge Glacier only reached 42\,m\,a$^{-1}$ compared to speeds measured 
after the surge of less than 10\,m\,a$^{-1}$.” 
 
page 1848, line 7: Pi = σ’xx + σ’yy − ρg(zs − z) instead of Pi = σ’xx + σ’yy − ρg(zs) 
 
Thank you. This has been corrected. 
 
page 1849, line 3: In the reduction of the model to two dimensions, following Nye 



(1959), we have taken 
 
Change made. 
 
Equation (15): I think the equation is not correct. Gagliardini and others (2007) 
showed that, in the non-linear case, τb/(CN) is a function of ub/(C^n N^n) whereas 
the expression proposed by Schoof (2005) is a function of ub/Nn (it was extended 
heuristically from the linear case to the non-linear one). The adopted friction law 
should write: 
 
τb = C   (ub/(ub + C^n N^n Λ))^1/n 
 
Since Cn is a constant in this application, this will just change the numerical value 
inferred for Λ by a factor 1/(0.5 × 0.84)^3. In the case of a non-uniform bedrock 
roughness, this would have more effect. 
 
The reviewer is correct here. We should have written the friction law for the non-linear case 
according to Gagliardini and others (2007), rather than Schoof (2005). For now, we have not 
repeated all of the simulations with the additional factor of C^n in the denominator, because as the 
reviewer points out, the net effect is only to alter the value of Λ = A λ_max/m_max, where A, λ_max 
and m_max are prescribed values. We have revised the text so that the  friction law is written 
correctly for the non-linear case following Gagliardini et al (2007), and have recalculated the 
values of λ_max that correspond to our prescribed values of A and m_max for the simulations 
conducted. Our reference value of λ_max was formerly 1m and now is 13.5m. We have also revised 
Figure 5 (retaining only former  panels c and d), labelling the simulations according to the value of 
Λ (instead of λ_max and m_max individually) as per the correct formulation of the friction law. We 
removed the results in former panels a and b, as each simulation in these panels represented 
combined changed in the values of m_max and λ_max when the friction law is written correctly. We 
have revised the text in section 5.1.2 (Sensitivity to the Coulomb friction-law parameters) and the 
related section of the discussion in section 6.1 (Model simplifications and limitations) to reflect these 
changes for now. 
 
page 1850, line 5: It should be mentioned that the adopted relation C = 
0.84m_max has been obtained in the particular case of a sinusoidal bedrock. What 
is known for sure is that for a real bedrock C ≤ m_max. 
 
Text added: “For real bedrock geometries, $C \leq m_{\rm max}$; here we take $C = 0.84 \, 
m_{\rm max}$ as derived for a sinusoidal bedrock geometry \citep{Schoof05,Gagliardini07}.” 
 
page 1852, line 20: of the flow line can be seen as minimum estimates (?) 
 
Changed to “of the flowline can be interpreted as minimum estimates” 
 
page 1855, line 16: why this value of 280 years whereas line 2 of page 1856, it is 
said that the profile are steady state profiles? 
 



This is a misunderstanding stemming from some confusing text. The model was run for 280 years in 
order to allow steady states to be achieved. The text has been changed from “We simulate glacier 
evolution over 280 years in response to four prescribed values of the global net balance.” to “We 
simulate glacier evolution to a new steady state in response to four prescribed values of the global 
net balance”. 
 
Figure 1a and b should be larger. 
 
Figure 1 (a and b) has been enlarged to its maximum width for the TCD format (14.5 cm). It should 
be possible to enlarge it to 17.3 cm width in the TC format (two columns). We have also enlarged 
Figures 2 and 5 to their maximum widths. 
 
Figure 3: the zero-net mass balance profile should be plotted in this graph. 
 
Done. Legend added and caption adjusted accordingly. 
 
Figure 5: the curves for m_max = 0.5 and λ_max = 1 should be emphasized 
(continuous bold). 
 
Line attributes have been changed in Figure 5 so that bold continuous lines indicate the reference 
simulation as suggested.  


