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Abstract

The response of a viscous-plastic dynamic-thermodynamic sea-ice model to a constant
wind forcing is tested in an idealised setting. Bjornsson et al. (2001) have shown that
the granular model of Tremblay and Mysak (1997) gives good results in such a set-up
compared to a polynya flux model. Here it is shown that these results can be duplicated
using the computationally more efficient elliptic yield curve approach by Hibler (1979)
and modified Coulombic yield curve by Hibler and Schulson (2000). Some care is,
however, required regarding the parametrisations of the ellipse. In addition it is shown
that the new ice thickness formulation of Mellor and Kantha (1989) does not allow for
proper polynya formation in the bay. In contrast the new ice thickness formulation of
Hibler (1979) is found to give good results. Finally we propose a parametrisation of the
ice demarcation thickness (h,) in Hibler's formulation, based on wind speed and ice
thickness.

1 Introduction

One of the most interesting features of sea-ice, in a climate context, is the fact that it
acts as an insulating layer between the atmosphere and ocean. As the ice grows, the
transfer of heat from ocean to atmosphere is greatly reduced. This slows down further
ice formation and allows the atmosphere to cool much more than it otherwise would.

This blanket of ice is of course subject to atmospheric and oceanic forcing, which can
create openings in the cover that again allow direct heat exchange between the ocean
and the atmosphere. Where this happens, the heat transfer may increase up to hun-
dredfold causing vigorous ice formation, brine release and heating of the atmosphere
near the opening. In the present context these openings are either small fractures or
leads, or larger openings referred to as polynyas.

Polynyas and leads are an important part of the climate system at high latitudes.
Maykut (1982), for instance, estimates that in winter about 50% of the total atmosphere-
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ocean heat exchange over the Arctic Ocean occurs through polynyas and leads. During
summer these openings admit shortwave radiation into the ocean, warming it up and
thus impacting the heat and mass balance of the ice and ocean (Maykut and Perovich,
1987; Maykut and McPhee, 1995). Arctic polynyas also play a large role in halocline
and deep water formation and Winsor and Bjork (2000) estimate a mean ice production
from all Arctic polynyas of 300+£30km?® yr'1. The resulting salt flux is about 30% of the
estimated flux needed to maintain the halocline.

Most of the ice formation and brine expulsion in polynyas occurs in wind driven
polynyas. Theoretical understanding of these polynyas is mainly based on so called
polynya flux models, first introduced by Pease (1987). In terms of general circulation
models polynyas must, however, be modelled using full scale dynamic-thermodynamic
sea-ice models, not polynya flux models.

Bjornsson et al. (2001) compared the granular model of Tremblay and Mysak (1997)
to the polynya flux model of Wilimott et al. (1997) in an idealised basin. They found that
the two models give very similar results. Here we expand on that work and compare
the granular model to the more common viscous-plastic model of Hibler (1979) and
the lesser known modified Coulombic yield curve by Hibler and Schulson (2000) in
a similar setting Bjornsson et al. (2001) used.

We also consider the effects of initial and open boundary conditions as well as con-
trasting formulations by Hibler (1979) and Mellor and Kantha (1989) for the thickness of
newly formed ice. Finally, we also examine the performance of the collection thickness
parametrisation of Winsor and Bjork (2000) to parametrise the new-ice thickness.

The layout of this paper is as follows: First the important points of the sea-ice model
are outlined. In Sect. 3 we discuss the difference between polynya flux models and
dynamic-thermodynamic models. The response of the granular model to the simple
wind forcing is then considered, underlining the important features of polynya formation
in the context of polynya flux models. Section 4 deals with the effects of initial and
boundary conditions. In Sect. 5 the response of the model using different yield curves
is discussed followed by a section discussing formulations for the thickness of newly
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2 The model

The ice model is a fairly standard two class (ice and open water) dynamic-
thermodynamic sea-ice model which was written to be coupled with the VOM ocean
model (Backhaus, 2008). In the present context the most important points to discuss
regarding the model are the facts that one can choose between three different viscous-
plastic rheologies and two different ways in representing the newly formed ice. In this
section we will briefly describe the model focusing on the rheology and new-ice thick-
ness formulations.

The ice is modelled as a continuum using an Eulerian perspective. It moves in
a horizontal plane, subject to both external and internal forces. Temporal evolution
of the sea ice cover is described using two continuity equations and the momentum
equation. The continuity equation for mass is simply

om

37 +V-(vm)=S,, (1)
where m is the total sea ice mass per cell, S,, is a thermodynamic source/sink term
and v is velocity. An equation for the evolution of the ice thickness distribution within
each cell is also needed. The model uses only two ice classes; i.e. ice and open water
and so this becomes an equation of conservation of sea ice concentration. That takes

the same basic form; i.e.

0A

= +V.(vA)=S,, (2)
with A denoting the fractional ice concentration per grid cell and S, being the thermo-
dynamic source/sink term. The average ice thickness over ice covered area, h can be
derived using m=Ahp; where p; is a constant ice density. The thermodynamic terms,
S,, and S, will be discussed in Sect. 2.1.

1026

TCD
3, 1023-1068, 2009

Polynyas in an ice
model

E. &. Olason and
|. Harms

40


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/3/1023/2009/tcd-3-1023-2009-print.pdf
http://www.the-cryosphere-discuss.net/3/1023/2009/tcd-3-1023-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

In addition the condition A<1 is imposed. This can be interpreted as a ridging con-
dition since m (and thus h) can increase even if A does not. Together these equations
describe the advection of the ice in a given velocity field.

The momentum equation used is (Coon et al., 1974)

D(mv)
Dt
Here k is a unit vector normal to the surface, 7, and 7,, are air and water stresses, f is
the Coriolis factor, g is the gravitational acceleration, H is the sea surface height and o
is the sea ice stress tensor. Of the forcing terms on the right hand side V-o describes
forces due to internal stress while the other terms are all external factors. The material
derivative on the left hand side is D/Dt=0/0t+v-V. The momentum equation is solved

by repeatedly applying an SOR-solver, updating v and ¢ after each SOR-solve.

Wind and water stress are modelled as quadratic drag (McPhee, 1975);

=Ta+Ty—Mfkxv-mgVH-V.o. (3)

Ta= pacdalvalva (4)
Ty = prdwlv - le(v - Vw)r (5)

where Cg,, and Cy, are drag coefficients, p,, and p, are air and water densities and
v,, and v, are the near surface water and wind velocities. We have assumed that the
wind velocity is much larger than the ice velocity, i.e. that |v —v ,|=|v ,|. The geostrophic
turning angles used in McPhee (1975) have been set to zero since the near surface
velocities are used, not geostrophic ones.

The representation of internal stresses in the model is done through the gradient of
the stress tensor o. Stress and strain rate (&) are related through the sea ice rheology
and the three available rheologies will be discussed in Sect. 2.2.

2.1 Thermodynamics

The sea-ice model uses the three layer heat conduction scheme described in Semt-
ner (1976), with the exception that surface fluxes are calculated using the relevant
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equations in Idso and Jackson (1969) and Liu et al. (1979) and assuming a constant
incoming short wave radiation flux. The ocean cooling is calculated using the thermo-
dynamics routines from VOM (which are the same as in Harms et al., 2003). Our main
interest here is, however, the formation of new ice over open water.

Ice formation in open water is modelled in a relatively simple fashion. When the
temperature of the ocean surface falls below freezing new ice is formed. The amount
of ice formed is calculated from the energy needed to bring the ocean surface from its
super-cooled state to freezing, i.e.

Oow = pwcwhw(Tf_Tw) (6)

where c,, is the ocean heat capacity, h,, the mixed layer depth, T, the ocean tempera-
ture and T; the freezing point of sea water. The amount of ice formed in the open water
is then

Qow
Moy = =T (7)
where L, and p; are the latent heat of fusion and density for sea ice, respectively.

This, along with the changes in thickness of the ice already present in the grid cell
now needs to be related to the continuity Eqs. (1) and (2) via the source/sink terms
S, and S,. Deriving an equation for S,, is not difficult since it is a mass conservation
formula. This term can be written out simply as

Sp=PIABH+(1=A)Ahy,, )

where Ah represents thickness changes in the ice already present in the grid cell.

It is, however, not possible to derive an equation for S, in such simple terms and
the equation for it must be empirical or heuristic. Two common methods for calculating
S, are due to Hibler (1979) and Mellor and Kantha (1989). Hibler devised his method
using fixed thermodynamic growth rates instead of calculating Ah and Ah,,,, but the
method is easily adopted to our approach, giving

S, =(1-A)max(Ah,,,0)/hy+Amin(S,,,0)/2m, 9)
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where h is a constant demarcation thickness separating thick and thin ice. Hibler
(1979) assumed a constant A, but in Sects. 6 and 7 we discuss ways to parametrise
it.

When freezing Ah,,>0 and S,,,>0 so Eq. (9) becomes simply
Spho=(1-A)Ah,. (10)

This means, in particular that the new ice covers an area S, so that its thickness is
greater than or equal to hj.

Another approach to calculating S, is due to Mellor and Kantha (1989). They formu-
late S, as

Qow
oiLih’
where @ is an empirically determined function. Mellor and Kantha (1989) differentiate
between melting and freezing by giving @ different constant values;

©= D=4 if Qow>0
®d,,=0.5 otherwise.

SA =CD(1 —A)

(11)

(12)

We can easily recover Eq. (10) from Eq. (11) by setting ®r=h/h,, which gives
ho=h/®¢. Equation (11) therefore states that during freezing the newly formed ice will
have a thickness equal to h/®¢. In particular, this means that when ice forms in a grid
cell that had no ice before this cell will become fully covered with thin ice.

2.2 Rheology

The viscous-plastic rheologies discussed here describe isotropic ice and thus have
a yield surface that is a curve in the stress invariant plane, i.e. F (0,0, scalars)=0. The
modelled stress states should lie close to the yield curve. For stresses inside or outside
the yield curve viscous deformation occurs, while for stresses on the yield curve plastic
deformation takes place.
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In a viscous-plastic model the plastic and viscous behaviour can be represented
using the stress invariants

(o] =§8.|—P/2

. 13
oy =ne&y. (13)

where ¢ and n are the non-linear bulk and shear viscosities and P is a pressure term.
The strain rate invariants £, and ¢, are given by

& =&11t+&x
& =1/ (841 — Exp)2 + 462
1l 11 22 12

where

. 1 aV,’ an

8”_2<6xj+0x,->' (15)
In a viscous-plastic model the viscosities, ¢ and n depend on & and some scalars
representing the ice state.

In Hibler’'s (1979) model the viscosities are functions of ¢ the ice pressure, P. They
are then formulated such that the resulting yield curve is an ellipse and that for typical
strain rates normal plastic flow applies. This yield curve reproduces basic sea ice char-
acteristics, i.e. the ice is weak in tension, strong in shear and strongest in compression.

It is at the same time mathematically very simple.
The viscosities are given by

¢(=P/2A and n=¢/e?, (16)

(14)

where P is the ice pressure,

A=\[e2+£2/e?, (17)

e is the ratio of the ellipse axes.
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It is clear that for small strain rates the viscosity tends to infinity so an upper bound
must be set for ¢ (and ). Hibler (1979) chose the limiting values to depend on the
pressure term as

Enax = (2.5x10%s)P,
Mmax = cmax/ez-

In addition minimum values on ¢ and n were imposed to improve numerical stability.
Hibler (1979) chose

(18)

Eon =4x10%kg/s

2
Mmin = gmin/e ,
arguing that this value is several orders of magnitude below typical strong ice interac-
tion values, effectively yielding free drift results.

Finally the pressure term itself depends on the ice thickness and concentration. The
form chosen by Hibler (1979) was

P = P*hexp(-C[1 - A]), (20)

(19)

where P~ the ice strength and C are constants, h is the ice thickness and A the con-
centration. The constants must be chosen empirically, but P*~30x10° N/m and C=20
are common choices (Hibler, 1979; Hibler and Walsh, 1982; Tremblay and Hakakian,
2006; Feltham, 2008). Hibler (1979) used e=2, which remains a popular choice. The
ellipse in Fig. 1 depicts the Hibler (1979) yield curve.

A somewhat different approach to the elliptic yield curve was suggested by Tremblay
and Mysak (1997), proposing a model based on a granular material rheology. For
deformation along a sliding line, the following failure criterion (based on Coulomb’s
friction law) must be met:

7, = —ogtang, (21)
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where @ is the macroscopic angle of friction and 74 and og are, respectively, the shear
and normal stress acting on the sliding plane. This is equivalent to dynamic friction be-
tween two dry surfaces where the frictional force is proportional to the normal force.
The constant of proportionality is the coefficient of friction tang. For stress ratios
-0,/Ts<tan@ the ice behaves like an elastic solid and for —og/7s=tang it flows like
a fluid. Equation (21) can also be written in terms of the two stress invariants, o, and
Oirs

G“ =U|Sin¢. (22)

The resulting constitutive law has the same form as the constitutive law in Eq. (13),
but with (=0 and -P§;;/2 replaced with —P§;;. The value of 1, which here should be
referred to as the coefficient of friction, is given by

n= Psian)' (23)

&

The ice pressure P=-¢; is then found by fulfilling the equation
é| =é||tan6, (24)

where 6 is the angle of dilatency. The pressure is therefore only related to ice thickness
and concentration through the upper limit set on it;

Prax = P*hexp(C[1-A]), (25)
analogously to Eq. (20). To facilitate comparison with the other two model formula-

tions P, is scaled with (1+\/1+1/e2)/(2[1+sin¢]) (Tremblay and Hakakian, 2006).
The pressure is calculated using an iterative solver which means that the numerical
performance of the granular model is considerably worse than that of Hibler's model.
Since ¢ =0 the granular material rheology has the form of an incompressible New-
tonian fluid with non-linear shear viscosity. Compressibility is, however, present in the
model since the pressure term has a maximum value of P,,,. For small strain rate
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values the coefficient of friction, 1, must also be set to a constant value 7, result-
ing in a viscous behaviour of the ice under those conditions. The resulting yield curve
is a triangle (see Fig. 1), which is realistic for small strain rates, but may not be very
realistic for large strain rates.

Finally we discuss a model formulation which can be thought of as a combination
of the other two. This formulation uses the so-called modified Coulomb yield curve,
first set forward by Hibler and Schulson (2000) when studying anisotropic approaches
to sea ice modelling, but later used in a large scale, isotropic model by Heil and Hi-
bler (2002). The curve gives friction-based failure up to a limiting compressive stress
while for higher stresses ridging occurs. This limit is set at pure shear deformation, in
accordance with the results of laboratory experiments. The yield curve also includes
a small amount of tensile stress. The resulting shape is similar to the ice cream cone
suggested by Coon et al. (1974) and should be fairly realistic for all strain rates (see
Fig. 1).

The modified Coulombic yield curve is probably best described by first considering
an elliptic yield curve as described earlier. Now demand that for low stress the yield
curve be Coulombic, not elliptic. Hibler and Schulson (2000) achieve this by setting

n=min(¢/6?,ny), (26)
where
Pla-2¢¢,
= 27
N4 Bé, (27)

with a=1.8 and $=1.4. In addition they use a smaller axes ratio of e=v1.91716. This
gives the desired Coulombic shape for low stress. Additionally, to ensure that there is
no stress at zero strain rates Hibler and Schulson (2000) set

P’ =2yA¢, (28)

with y=0.91 and replace P with P" in Eq. (13).
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There are no lower bounds for the values of ¢ and n, unlike in the elliptic for-
mulation, and the upper bound used is considerably lower, §maX=106 kg/s instead of

gmax=4><108 kg/s, used for the ellipse.

3 Basic model characteristics

The model used in this study is a dynamic-thermodynamic sea-ice model in a set-up
similar to what Bjornsson et al. (2001) used. In this section we will discuss wind-
driven polynyas and compare dynamic-thermodynamic models to polynya flux models
in order to better understand the limits of the former model type. We will then discuss
the important characteristics of our model set-up.

Wind-driven coastal polynyas are conceptually relatively simple. They form where
the ocean is initially covered by ice and a wind starts blowing off the coast. This then
causes the ice to move off-shore opening up a polynya at the coast (or fast ice edge).
Inside the polynya the ocean is at the freezing point and so frazil ice forms, which is
herded down stream by the wind and waves. This frazil ice then consolidates at the
edge of the initial ice. The polynya remains open as long as the off-shore component
of the wind remains strong enough to keep it open.

Polynya flux models are based on assumptions about the ice formation rate and the
velocity of the ice. The first polynya flux model was developed by Pease (1987), which
proposed a simple one-dimensional time-dependent model. Several improvements and
extensions have been made to this model, most notably those by Ou (1988); Willmott
et al. (1997) and Biggs et al. (2000).

In Pease’s model one assumes that the initial ice pack drifts away from the shore at
a constant speed. The frazil ice formed in the polynya is immediately transferred from
inside the polynya to the edge of the initial ice pack. There the frazil consolidates into
new ice of a given thickness, referred to as the collection depth (H). The polynya edge
is then at the edge of this consolidated ice and the edge position is balanced between
the ice formation rate and the drift speed of the consolidated ice (and the initial ice
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pack). As time passes the initial ice pack drifts away and is replaced by consolidated
ice (see upper panel of Fig. 2).

The Pease (1987) model therefore stipulates three distinct ice regimes in a polynya
simulation: The thick initial ice, the consolidate ice and the polynya itself. In the Pease
(1987) model no ice is found inside the polynya, but in general frazil ice or ice of other
ice types may be found inside the polynya, at a low concentration. The polynya edge
is the interface between the polynya and the consolidated ice. Polynya flux models
assume the polynya edge is both well defined and sharp.

Ou (1988) improved the model by Pease (1987) by assuming the frazil ice travels
at a finite speed from inside the polynya towards the polynya edge. Wilimott et al.
(1997) extended this model to two dimensions. The Ou (1988) model still assumes the
frazil ice drifts faster than the consolidated ice so the fast moving frazil crystals pile up
against the slower consolidated ice.

In reality the frazil drifts faster than the consolidated ice because frazil ice, near or at
the surface, experiences less water shear stress than the consolidated ice. The water
velocity inside the polynya is also different from that under the consolidated ice, but
this can be very difficult to account for in a simplified set-up. Finally the initial ice pack
may also not drift at the (local) free drift speed as the wind that creates the polynya is
non-uniform and may be weaker further off shore. Islands and other coast lines may
also slow down the drift of the initial ice pack.

An important point in improving the Pease (1987) model has been to replace
the constant collection depth with some parametrisation. Winsor and Bjork (2000)
parametrised the collection depth based on wind speed, but their parametrisation is
not necessarily compatible with the Ou (1988) model. Biggs et al. (2000) introduced
a different parametrisation for H for the Ou (1988) model, taking into account the differ-
ent velocities for frazil and consolidated ice. The parametrisation of Biggs et al. (2000)
has been improved upon since then, most recently by Walkington et al. (2007).

The main drawback of using polynya flux models is that they cannot easily be coupled
with general circulation ocean and atmosphere models. The dynamic-thermodynamic
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sea-ice models, such as the one used here, are on the other hand designed for such
a coupling and to model sea-ice in general, not only polynyas.

While quite sufficient for modelling pack ice, dynamic-thermodynamic sea-ice models
generally don’t include any frazil ice parametrisations. When ice forms over open water
a block of solid ice of a predetermined thickness, A, (see Sect. 2.1), is immediately
formed, akin to pancake ice. When ice is already present in the grid cell one could
argue that frazil ice is produced and then immediately “piles up” against the pancake
ice — similar to what happens in the Pease (1987) model.

In a polynya the pancakes drift towards the initial ice pack forming the consolidated
ice, which consequently has thickness h,. Figure 2 shows a diagram comparing ice
formation in polynya flux models and dynamic-thermodynamic models. As the fig-
ure shows, we expect the dynamic-thermodynamic model also to show the three ice
regimes the flux polynya models do. Additionally we expect a sharp polynya edge and
higher ice velocity inside the polynya than in the consolidated and thick ice. Based
on the results of Bjornsson et al. (2001) we can also expect the different rheological
formulations of the dynamic-thermodynamic model to give polynyas of similar size and
shape as the granular model.

A polynya modelled by a dynamic-thermodynamic model therefore contains no frazil
ice, only pancake ice, which is unrealistic. This may affect the modelled oceanic heat
loss since the pancake ice is a more effective insulator than the frazil ice. In order to
ensure reasonably large oceanic heat loss inside the polynya it is important that the ice
concentration there remains sufficiently low. To that end Bjornsson et al. (2001) chose
hy=30cm, even though pancake ice is usually somewhat thinner or around 10 cm thick.

Modelling the frazil ice as pancakes also has its drawbacks when considering the ice
dynamics. If the ice concentration is not too high (A < 0.8 for the model formulations
and parametrisations used here) both the pancake and consolidated ice are in free
drift. The problem is that the free drift speed of these two are the same. This means
that if the initial ice pack drifts away from the coast at free drift the polynya that opens up
fills with pancake ice drifting at the same speed. Instead of a sharp polynya edge this
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set-up will result in linearly increasing ice concentration inside the polynya. In reality
the frazil ice inside the polynya drifts faster than the consolidated ice causing a polynya
edge to form.

Bjornsson et al. (2001) noted this behaviour (see their Fig. 4). In their study a polynya
edge forms because the drift of the consolidated ice is slowed down by one of the side
walls of their ideal basin. This approach is also used here.

Our set-up consist of a bay, 135 by 75km, which is initially covered by thick ice.
A polynya is then created by having a 20 m/s wind blow uniformly at a 30° angle to the
direction along the bay, as shown in Fig. 3. This way the ice will drift out of the bay, but
will also pile up on the down-wind side of the bay, slowing down its drift. This creates
a difference between free drift velocity and the velocity of the consolidated ice which is
necessary for the formation of a polynya edge.

The atmospheric temperature is kept constant at 7,;,=—20°C and the oceanic tem-
perature is kept at the freezing point for a salinity of S=32. The water velocity is always
zero. Unless stated otherwise, the model is initialised with ice concentration A=0.9
and thickness h=1m. For the solid boundaries, a no-slip condition is used while for
the open boundary zero gradient von Neumann boundary conditions are applied to all
variables, except the ice pressure P which is set to zero in accordance with Bjornsson
et al. (2001) and Dukowicz (1997). A list of the relevant constants is included in Table 1.

The granular model is expected to give reasonably good results for the current set-
up, based on the study by Bjornsson et al. (2001). We will therefore use it to investigate
attributes of the polynya not related to the rheology itself.

To illustrate the temporal evolution of the polynya Fig. 4 shows a Hovmoller diagram
of the ice concentration field taken along a section at y=37.5km. The response to the
applied wind stress is immediate and a discernible polynya edge starts to form during
the first day of the model integration. After two days the polynya has a clear structure
and can be considered fully formed. A practically steady state has been reached after
eight days. After the polynya has fully formed there always exists a band of large
gradient in the concentration field representing the polynya edge. For further reference
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Fig. 5 shows the ice concentration in the basin after eight days of model integration. As
Figs. 4 and 5 show, the edge in this simulation is at a concentration of between A=0.7
and A=0.9.

Ice formation rates in the model are closely linked to the fractional ice concentration.
For open water the ice formation rate is F(A=0)~27 cm/day, while for A=1 and h=30cm
the ice formation rate is F(A=1)~6cm/day. The thickness of the pancake ice only
increases very slightly and so nearly all the ice growth contributes to increasing the ice
concentration. This means that the ice formation rate for A €]0,1[ can be approximated
by a weighted average of F(A=0) and F(A=1). Defining the polynya as all points for
which A<0.8, the mean ice formation rate in the polynya is F=14.1 cm/day after two
days and F=13.2cm/day after 8 days.

According to Ou (1988) ice velocity in the model should fall into two categories;
that of free drift in the polynya itself and that of the consolidated ice. In the dynamic-
thermodynamic model this velocity change gives the pancake ice drifting in the polynya
a barrier of slower consolidated ice to pile up against. Figure 6 shows the velocity
field and speed in the control experiment after eight days. The speed does indeed
fall into two categories with the free drift speed |v(|=32.6 cm/s and the speed of the
consolidated ice |v .| $30cm/s, depending on the distance away from the y=75km
boundary. In the polynya the pancake ice drifts with the wind but the consolidated ice
slides along the y=75 km boundary with a small cross channel velocity component due
to ridging at the boundary. Near the open boundary the ice velocity increases rapidly
because the ice pressure P is set to zero.

4 Initial and boundary conditions

When studying a system of differential equations the initial and boundary conditions are
usually worthy of some consideration. Given the simplistic set-up used here the initial
and boundary conditions are also as simple as possible. In this section we will, how-
ever, consider two cases which may not be immediately obvious; that of varying initial

1038

TCD
3, 1023-1068, 2009

Polynyas in an ice
model

E. &. Olason and
|. Harms

: “““ “““


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/3/1023/2009/tcd-3-1023-2009-print.pdf
http://www.the-cryosphere-discuss.net/3/1023/2009/tcd-3-1023-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

ice thickness and of different treatment of the ice pressure P on the open boundary.

The initial ice thickness dictates the ice strength as the polynya starts forming. Fig-
ure 7 shows the polynya edge after two days using initial ice thickness of 30 cm, 60 cm
and 2m. The thicker ice is naturally stronger, both in shear and compression. Differ-
ences in compressive strength are seen as a shift along the y-axis while differences in
shear strength show as a shift along the x-axis. The ice yields to compression through
ridging which only occurs at the y=75km boundary.

The polynya thus opens up faster when the ice is thinner, but the difference is largest
after about two days. As the initial ice flows out of the domain its influence decreases
and, in particular, the final steady state is independent of the initial thickness.

The open boundaries have limited effects on the polynya edge and formation. This
can be shown by running the model in a longer bay and noting that all main results
are unchanged. Another approach is to extend the zero gradient condition to the ice
pressure, P, as well. Using P=0 at the open boundary assumes the ice can flow
freely out of the domain, but assuming 0P/8x=0 assumes that the ice just outside the
boundary has the same strength as the ice just inside the boundary. This should, in
essence be equivalent to using an infinitely long homogeneous channel.

There are a few features associated with the open boundaries, but these effects are
only noticeable near the open boundary and don’t affect the interior of the domain. Ice
velocity is the most sensitive to the open boundary and Fig. 8 shows the speed and
velocity after eight days using the von Neumann condition. It should be compared to
Fig. 6 which shows speed and velocity using P=0 at the open boundary. Although
there are marked differences in the velocities between the two boundary conditions,
such large differences are not seen in the other results.

Using a channel twice as long as the one used in the control run gives results nearly
identical to those using the von Neumann condition, in the region common to both set-
ups. The von Neumann condition therefore simulates well the situation where there
is large amount of ice just outside the open boundary. Using P=0 on the other hand
assumes very little ice just outside the open boundary. We note also that the von
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Neumann condition fulfils the stability criterion set forward by Dukowicz (1997) and
works equally well using the other rheologies.

5 Different yield curves

An important part of the motivation for this study was to compare the results of Bjorns-
son et al. (2001), using the granular model, to a similar set-up using different rheolo-
gies. In this section we consider the response of the elliptic yield curve, proposed by
Hibler (1979) and that of the modified Coulombic yield curve from Hibler and Schulson
(2000). This focuses on the model response in the region of the initial ice pack and
that of the consolidated ice, since the rheology should not play a role inside the polynya
itself.

The viscous-plastic formulation with an elliptic yield curve proposed by Hibler (1979)
is by far the most popular rheology in use today in dynamic-thermodynamic sea-ice
models. Both it and the modified Coulombic yield curve are also numerically more
efficient than the granular model.

Using the Hibler (1979) formulation unmodified, however, does not meet our expec-
tations of the model performance, as stated in Sect. 3. The polynya structure is very
diffuse with no clear polynya edge, as Fig. 9 shows. Speed and velocity, in particular,
fail to meet the criteria for forming a polynya edge; i.e. there is no clear separation
between the velocity of pancake ice and consolidated ice. In addition, the consolidated
ice flows faster than the pancake ice, which is clearly unrealistic.

On closer inspection one can see that this result is due to the fact that the model
responds mostly in a linear viscous way. In his original formulation Hibler (1979) used
a minimum on ¢ as Cmin:4.0><108 kg/s “in order to insure against any non-linear insta-
bilities” noting that that value is “several orders of magnitude below typical strong ice
interaction values and effectively yields free drift results” (Hibler, 1979). Later papers
by Hibler usually don’t mention this cap (see for instance Lepparanta and Hibler, 1985)
and many ice modellers don’t use it. All in all, it has received little attention in the
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literature.

In the current set-up, the viscosity parameter ¢ is consistently kept at its minimum
value for A $0.9 throughout the simulation. This is because the viscosity is related to
the ice pressure via Eq. (16) and the pressure to ice concentration via Eq. (20). The
flow where A is sufficiently small is therefore linear viscous, but choosing as a minimum
g‘min=4.0x108 kg/s does not result in effectively free drift, at least not for such a high
resolution.

Running the model with ¢,;,=0kg/s alleviates all these problems and the results are
then practically identical to those obtained using the granular model. Using ¢,i,=0kga/s
we observerd no non-linear instabilities. Another approach would be to choose a low,
but non-zero value for {,,;,- The resolution of Hibler's model was 125km and since
viscosity scales with the distance squared a choice of §min=4><104 kg/s seems in or-
der. This yields nearly the same results as with {,;,=0kg/s; the largest difference in
concentration between the two model runs being AA=0.004.

Unfortunately perhaps the computing cost is also almost the same and since we ex-
perience no instabilities in our model nothing much appears to be gained from choosing
a small non-zero value for ¢, over choosing ¢,i,=0kg/s. When choosing even larger
values the effects of capping ¢ also start to show. For g‘min=4><105 kg/s the difference
between that run and the one with zero ¢, is AA=0.02 and for §min=4x106 kg/s the
difference is AA=0.2.

Using the modified Coulombic yield curve also gives results very similar to the gran-
ular model. This is to be expected, since the modified Coulombic yield curve is in a way
a combination of the other two yield curves. Figure 10 shows the polynya edge, defined
by A=0.8 using each of the three rheologies after eight model days. The difference be-
tween the three model formulations is only marginal, but the polynya is slightly larger
when using the granular model.
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6 New-ice thickness

As we’ve already seen the ice rheology affects the initial ice pack and the consolidated
ice. The inside of the polynya, on the other hand, is mostly affected by the new-ice
thickness parametrisation. This determines the thickness, and thus the concentration
of the ice formed inside the polynya.

The most popular method for parametrising the new-ice thickness is probably the
one suggested by Hibler (1979) (see Sect. 2.1). Put simply the new-ice thickness is
not allowed to drop below a certain minimum, h. If the total mass of newly formed ice
is not enough to cover the open water fraction of the grid cell at that thickness then the
concentration of newly formed ice is adjusted accordingly. If more ice is formed then
the new ice is simply thicker than hj.

The choice of A is not obvious and appears to range from 10 to 50 cm or even more
in some cases. Bjornsson et al. (2001) argued for using h,=30 cm and that is the value
used here so far. Their argument is based on the assumption that the ice that forms in
the polynya immediately forms pancake ice. However, 30 cm is quite thick for pancake
ice which is closer to being 10 cm thick, as they point out as well. It is therefore worth
considering a model run with 7;=10cm.

The main result of this run is that with a lower A, the polynya fills up much faster. The
newly formed ice is thinner, has therefore larger surface area, resulting in higher ice
concentration in the polynya itself and causes the polynya edge to form closer to the
bottom of the bay than before. This can be seen in Fig. 11 which shows the fractional
ice concentration using hy=10cm after eight days.

Higher ice concentration also leads to lower ice formation rates in the polynya;
the average ice formation rate in the polynya is F=11.3cm/day after two days and
F=11.0cm/day after 8 days. This is about 20% lower than in the control run. This is
due to the fact that majority of the ice formation occurs over open water. Finally the
consolidated ice is naturally thinner as well since its thickness equals Aj.

The other approach to determining the thickness of newly formed ice described in
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Sect. 2.1 is the one due to Mellor and Kantha (1989). There the thickness of newly
formed ice is based on the thickness of the ice already present in the grid cell. Mellor
and Kantha (1989) argued that the thickness of newly formed ice should be a quarter
of the old ice thickness. This means also that when there is no ice in the grid cell
when new ice forms the ice is uniformly spread over the entire cell, potentially very
thinly. A polynya in such a model may therefore be hard to recognise by the change
in concentration and researchers using this approach often consider ice below a cer-
tain cut-off thickness to represent the polynya. Smedsrud et al. (2006), for instance,
use 30cm for this cut-off thickness, which, in light of our previous discussion sounds
reasonable.

As expected, using this approach results in a “polynya” that is hardly recognisable
in the concentration field, as Fig. 12 shows. Even after eight days there is only a thin
sliver of an opening along the x=0km and y=0 km boundaries and the A=0.9 isoline is
at most only 10 km away from the shore. More seriously perhaps the velocity field, also
shown in Fig. 12, shows no signs of the discontinuity deemed necessary for proper
polynya formation. The ice where A<0.9 does indeed flow with the same free drift
speed as before, but when it reaches the “edge” it slows down very gradually, contrary
to our previous assumptions about how a polynya is formed.

The ice thickness near the coast is indeed lower than the initial ice thickness, but as
Fig. 13 shows there is no real polynya edge to be found in the ice thickness. As before
the thick initial ice drifts out of the basin, but in this case the ice that replaces it does not
have a uniform thickness. It is very thin at the coast with linearly increasing thickness
towards the thick initial ice.

We have already mentioned that considerable effort has been put into parametrising
the collection thickness in polynya flux models. Given the large variation between the
results already presented in this section we find it worth considering if the polynya flux
model parametrisations can be applied in the dynamic-thermodynamic model.

The parametrisation by Winsor and Bjork (2000) lends itself well to immediate inclu-
sion in the dynamic-thermodynamic model. It's based only on the wind speed and not
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the polynya width, frazil ice speed or other quantities not accessible to the dynamic-
thermodynamic model.

Using the Winsor and Bjork (2000) parametrisation the ice behaviour inside the
polynya is therefore still rather unrealistic, but the consolidated ice thickness and thus
the size of the polynya should be more realistic.

Winsor and Bjork (2000) assumed the collection depth changed as

p o 10Vl
15

where |v,| is the surface wind velocity. In particular, H~7 cm for |v,|=0 and H=30 cm for
|va|=35 m/s so this parametrisation is well within the range of plausible values for Ay.
Equation (29) is then used to calculate h in each grid point.

Using this parametrisation results in smaller polynyas at low wind speeds, compared
to hy=30cm or larger polynyas at high wind speeds, compared to Ay=10cm. Fig-
ure 14 shows that the difference can be quite considerable for the wind speed range of
[10,30] m/s. At lower winds the polynya edge starts to become diffuse, which is to be
expected.

Ice formation rate (F) using Eq. (29) also lies between the hy=10cm and hy=30cm
values (see Fig. 15). Still, we note that the ice formation rate using the parametrisation
is always fairly close to that when using hy=30cm and grows steadily with increasing
wind strength. Using this parametrisation therefore gives us the large ice-formation
rates Bjornsson et al. (2001) were aiming for by using a large hj.

(29)

7 Discussion

Bjornsson et al. (2001) have already shown that the granular model can be used
to model polynyas in an idealised setting with quite acceptable results compared to
a polynya flux model. We have shown that this is also the case when using the mod-
ified Coulombic yield curve of Hibler and Schulson (2000) and when using the elliptic
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yield curve of Hibler (1979) with ¢, sufficiently small. This is important since the nu-
merical performance of the granular model is considerably worse than that of the other
two models.

Using a large ¢in, in particular g‘min:4><108 kg/s which Hibler (1979) suggests does,
however, give very unrealistic results. Using this original formulation gives a polynya
which is smeared out with no proper edge and a velocity field which has little relation
to polynya formation. This happens because the capping of ¢ in the model turns the
viscous-plastic formulation into a linear viscous model for ice concentration A<0.9.
Using the elliptic yield curve with a capped ¢ is therefore not a good way to simulate
polynyas. Removing the cap is easy enough and this results in a model which is much
better capable to model polynyas in a high resolution.

Although not investigated here, these considerations should equally apply to models
of the marginal ice zone. There the concentration and thickness is often low so using
a capped ¢ may result in linear viscous behaviour as it does in the polynya simulation.
This would then cause the marginal ice zone to be too diffused with little structure to it
and should as well cause it to respond incorrectly to applied forcing.

With the exception of a capped ¢, all three yield curves give nearly identical results.
Looking at the stress states we see that using the granular model the o, values are
nearly all clustered around P, ,,. This means that at nearly all model points the ice
cover is yielding or very close to yielding under compression. Bjornsson et al. (2001),
on the other hand, have shown that the ice strength parameter P* has little influence
on the model results and so we can assume that while the ice cover does compress
somewhat then it is so slight as to be inconsequential. It then becomes clear that the
behaviour of the ice cover is largely controlled by Eq. (25), which is also one of the
main equations governing the behaviour of the other two yield curves. The difference
between the granular model and the other two, seen in Fig. 10 is then almost entirely
explained by the different formulation of shear strength between the model formula-
tions. As the figure shows the granular model gives slightly lower shear strength.

The stress states using the other two yield curves are much more evenly distributed
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along the o, axis. For the modified Coulombic yield curve the stress states that lie
on the Coulombic slope are all inside the polynya while the stress states in the con-
solidated ice are all on the elliptic part of the yield curve. This happens because in
the consolidated ice compressive strain is always positive so according to Eq. (13)
0,<—-P/2. Using the elliptic and modified Coulombic yield curves therefore yields simi-
lar results for the consolidated ice, where both yield curves have an elliptic shape. The
pancake ice is in free drift so the shape of the yield curve has no effect there.

A final point in the dynamic considerations here is the fact that the ice behaviour at
the open boundary can be described very well using von Neumann boundary condi-
tions on all variables, including P. Bjornsson et al. (2001) set P=0 at the open bound-
ary, which increases the ice velocity there in an unrealistic manner. This is a common
practice when dealing with open boundaries and is reasonable when one expects little
ice outside the domain. Using dP/dx=0 (or VP=0) at the open boundary is, how-
ever, feasible when one expects similar amounts of ice inside and outside the open
boundary.

In terms of thermodynamics we considered three ways in which to parametrise the
thickness of ice forming over open water. These are the methods suggested by Hi-
bler (1979), Mellor and Kantha (1989) and an adaptation of the collection thickness
parametrisation by Winsor and Bjork (2000). Hibler's method was used when investi-
gating the dynamic aspects (Sects. 2-5) with an ice demarcation thickness /;=30cm
after Bjornsson et al. (2001). That value may be somewhat high and so we also ran
the model using Ap=10cm.

This resulted in a smaller polynya with higher ice concentration and lower ice forma-
tion rates. In other respects the behaviour of the model remained the same; a sharp
polynya edge separated the consolidated ice and pancake ice and the velocity field
showed a nice discontinuity at the polynya edge. The width of the polynya did de-
crease, but that was to be expected and can also be understood in relation to the
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Lebedev-Pease width of a polynya (Pease, 1987)

_HU
==
where L is the polynya width and HU is the flux of consolidated ice. An in-depth
comparison with a polynya flux model was therefore not deemed necessary at this
point.

Results obtained using the formulation of Mellor and Kantha (1989) were, however,
vastly different from those obtained in the control run. Using Mellor and Kantha’s for-
mulation there are two ice regimes; thick ice and thin ice, which may be characterised
as nilas. This replaces the threefold separation of thick ice, consolidated ice (of uni-
form thickness) and frazil/pancake ice, seen in flux polynya models and the control
run. The polynya edge is considered to be what separates the consolidated ice and
frazil/pancake ice, but this distinction is lost when using the Mellor and Kantha (1989)
approach. The new-ice thickness formulation by Mellor and Kantha (1989) is therefore
not suitable for modelling polynyas.

One could argue that the sharp edge separating frazil and consolidated ice in polynya
flux models is not realistic (see for instance Smedsrud and Skogseth, 2006). This is
important to us here since the fact that Mellor and Kantha’s approach gives poor rep-
resentation of polynyas in part hinges upon this point. However, even though the edge
of a polynya may not be accurately defined on the scale of metres or even hundreds of
metres, the edge should all the same be fairly easy to define when the resolution is on
the order of kilometres. We therefore feel quite comfortable demanding that our model
give a sharp polynya edge, both in the concentration and velocity fields.

On the whole the approach in Hibler (1979) is also more reasonable. This is mainly
because wind and waves, which cannot be resolved by ocean or atmosphere models,
will transform the frazil ice in the polynya into pancake ice like that scheme assumes.
The thin ice formed using Mellor and Kantha’s approach is more akin to grease ice or
nilas which form in calmer conditions.

Wind speed is therefore an important factor in determining the new-ice thickness and
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it is consequently an important part of collection depth parametrisations for polynya
flux models. Winsor and Bjork (2000) parametrised the collection depth in the Pease
(1987) model based only on wind speed and we found that parametrisation well suited
for inclusion in the dynamic-thermodynamic model.

Using the Winsor and Bjork (2000) parametrisation gives results in the range be-
tween the results when using a constant h, between 10 and 30cm. We have already
expressed a preference for the Hibler (1979) parametrisation and using the Winsor and
Bjork (2000) parametrisation enables us to choose a sensible value for Aj.

On a more general note such a small value for hy may not be suitable for models
describing the central pack ice as well. In such a situation the approach of Mellor
and Kantha (1989) may give better results since the thick pack ice appears to require
a larger hy.

It is trivial to combine all three approaches to new-ice thickness parametrisation
discussed here into one:

h 1+0.1|v,]
® 15
with ®@=4. This approach modifies the previously constant h, of Hibler (1979) so that

for thick ice the approach of Mellor and Kantha (1989) is used and for thinner ice the
parametrisation of Winsor and Bjork (2000) is used.

ho = max( (31)

8 Conclusions

We have used an idealised set-up to test three different sea-ice rheologies and three
different formulations for the thickness of newly formed ice during polynya formation.
These tests were done using a dynamic-thermodynamic sea-ice model in an idealised
channel, similar to what Bjornsson et al. (2001) did.

We were able to reproduce the results of the granular model using both the modified
Coulombic yield curve of Hibler and Schulson (2000) and the elliptic yield curve of
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Hibler (1979). This is important since the numerical performance of the granular model
is substantially worse than that of the other two models.

We note, however, that using the elliptic yield curve gave unrealistic results when
using too high minimum bulk viscosity ¢i,- The elliptic yield curve can be and often is
used with ¢{,,=0, but the role of ¢, appears not to have received much discussion in
the literature. These results may also be relevant to other topics in sea-ice modelling,
most probably modelling of the marginal ice zone.

We also suggested using a von Neumann condition on the ice pressure at the open
boundary to better simulate the ice behaviour there. This proved to give nearly identical
results to using a longer channel. We conclude that using the von Neumann condition is
a viable option when one expects large amounts of ice joust outside the open boundary.
Using P=0 on the other hand assumes very little ice just outside the open boundary.

The formulation of new-ice thickness suggested by Hibler (1979) turned out to give
much better results than the one from Mellor and Kantha (1989). Using Mellor and
Kantha’s formulation failed to give a clear polynya edge, both in the concentration and
velocity field. We conclude therefore that this approach does not enable us to properly
model polynyas. Hibler’'s approach on the other hand gave a clear edge consistent with
our understanding of polynyas based on polynya flux models.

Hibler (1979) assumed a constant demarcation thickness (4,). We suggest, how-
ever, using the collection thickness parametrisation of Winsor and Bjork (2000) to
parametrise hy. This results in a value for hy which is dependent on wind strength
and in the range already deemed acceptable for h,. As an aside a combination of
this parametrisation with the approach of Mellor and Kantha (1989) is proposed. This
should give a parametrisation for A, applicable for both the marginal ice zone and the
central ice pack.
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Table 1. Main physical parameters and constants used in the simulation.

TCD
3, 10231068, 2009

Variable Symbol Value

ice density 0, 930 kg/m®

air drag coefficient Cua 1.2x107°
water drag coefficient Caw 55x107°

ice strength parameters C, P 30, 30kN/m
ellipse axis ratio e 2

min. viscosity (Hibler) CEoin 4x10%kg/s
max. viscosity (ellipse) Cnax (2.5x10% ms)/P
max. viscosity (mod. Coulomb) ¢« (106 ms)/P
max. viscosity (granular) Nmax 10" kg/s
internal angle of friction o) 30°

angle of dilatency 6 10°

air temperature Tair -20°C

cloud cover F. 80%

relative humidity Hg 80%

wind speed, angle v.,© 20mf/s, 30°
basin dimensions LW 135km, 75km
horizontal resolution Ax 2.5km
Coriolis factor f 1.33x107*s™"
ice demarcation thickness hy 30cm
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Fig. 1. The three yield curves discussed in the text; the elliptic, the modified Coulombic and
the granular model’s yield curves, depicted as solid, dashed and dotted lines, respectively. The
yield curves are scaled against P or £,,, as applicable.
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Fig. 2. Polynya formation in polynya flux models and a dynamic-thermodynamic sea-ice model.
(a) In the Pease (1987) model frazil ice that is formed inside the polynya is immediately trans-
ported towards the thick ice. There it forms consolidated ice of thickness H. In the Ou (1988)
model the frazil ice has finite drift speed inside the polynya and therefore also finite thickness
(dashed line). (b) In a dynamic-thermodynamic sea-ice model newly formed ice is immediately
transformed into pancake ice of thickness hy.
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Fig. 3. The size of the basin (in km) and wind direction during the polynya experiments. The
figure also shows the three ice regimes one expects; frazil/pancake ice, consolidated ice and

thick initial ice.
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Fig. 4. A Hovmoller diagram of the ice concentration field in the control experiment taken along
a section at y=37.5km. The vertical axis (x) is the along channel distance and the horizontal
axis (t) is the model time. The dash-dotted line shows the A=1m isoline separating the thick

initial ice and consolidated ice.
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Fig. 5. Sea-ice concentration in the control experiment after eight days of model integration.
The polynya edge is visible as a sharp increase in concentration.

1058

TCD
3, 10231068, 2009

Polynyas in an ice
model

E. &. Olason and
. Harms

40


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/3/1023/2009/tcd-3-1023-2009-print.pdf
http://www.the-cryosphere-discuss.net/3/1023/2009/tcd-3-1023-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/

TCD
3, 10231068, 2009

Polynyas in an ice

N ——— mode

60 / - e — E. O. Olason and
P G s I. Harms

i I v

€ 40 ////\\22,»// S
> a0 /////\v//»j -

//////\\<:»///

2 B P
Wy rrrrrr 7 r? A~
0 \
0 20 40 60 80 100 120
X [km]

Fig. 6. Ice velocity and speed in the control experiment after eight days of model integration.
The polynya edge is visible as a sharp decrease in the ice velocity.
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Fig. 7. The polynya edge (A=0.8) after two days of model integration starting from initial ice
thickness of 30 cm, 60 cm and 2 m. Thick ice is stronger, both in shear and compression result-
ing in a slightly larger polynya when the initial ice is thin.
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Fig. 8. Ice velocity and speed after eight days using 8P/8x=0 at the open boundary. There
is no sudden increase in velocity at the boundary as can be seen when using P=0 at the
boundary (see Fig. 6).
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Fig. 9. Sea-ice concentration (top) and speed and velocity (bottom) using Hibler’s original
formulation for the elliptic yield curve, after eight days of model integration. Neither figure
shows a discernible polynya edge. The dash-dotted line shows the isoline for A=0.8 from the

control run.
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Fig. 10. The polynya edge (A=0.8) using the elliptic and modified Coulombic yield curves and
the granular model after eight model days. The differences between different model formula-

tions are minor.
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Fig. 11. The fractional ice concentration using h,=10 cm after eight model days. The resulting
polynya is smaller and has a higher ice concentration than the control run. The dash-dotted

line shows the isoline for A=0.8 from the control run.
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Fig. 12. The fractional ice concentration (top) and speed and velocity (bottom) using the ap-
proach by Mellor and Kantha (1989) after eight model days. The resulting polynya is very small
with no discernible edge in the velocity field. The dash-dotted line shows the isoline for A=0.8

from the control run.
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Fig. 13. A Hovmoller diagram of the ice thickness field using the new-ice thickness formulation
by Mellor and Kantha (1989) taken along a section at y=37.5km. The vertical axis (x) is the
along channel distance and the horizontal axis (f) is the model time. The dash-dotted line
shows the isoline for A=0.8 from the control run.
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Fig. 14. The polynya edge after 8 days using a constant h, and parametrised h, according to
Eqg. (29). A=0.8 is used as a marker for the polynya edge and the edge is plotted for 10, 20
and 30 m/s wind speed.
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Fig. 15. Mean ice formation rate (F) in the polynya after 8 days as a function of wind speed.
The mean ice formation rate is found by averaging the ice formation rate over all points where

A<0.8.
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