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Abstract

We compare coincident data from the European Space Agency’s Airborne
SAR/Interferometric Radar Altimeter System (ASIRAS) with ground-based Very High
Bandwidth (VHB) stepped-frequency radar measurements in the Ku-band. The
ASIRAS instrument obtained data from ∼700 m above the surface, using a 13.5 GHz5

center frequency and a 1 GHz bandwidth. The ground-based VHB radar measure-
ments were acquired using the same center frequency, but with a variable bandwidth
of either 1 or 8 GHz. Four sites were visited with the VHB radar; two sites within the
transition region from superimposed ice to firn, and two sites in the long-term firn area
(wet-snow zone). The greater bandwidth VHB measurements show that the first peak10

in the airborne data is a composite of the return from the surface (i.e. air-snow interface)
and returns of similar or stronger amplitude from reflectors in the upper ∼30 cm of the
subsurface. The peak position in the airborne data is thus not necessarily a good proxy
for the surface since the maximum and width of the first return depend on the degree of
interference between surface and subsurface reflectors. The major response from the15

winter snowpack was found to be caused by units of thin crust/ice layers (0.5–2 mm)
surrounded by large crystals (>3 mm). In the airborne data, it is possible to track such
layers for tens of kilometers. The winter snowpack lacked thicker ice layers. The last
year’s summer surface, characterized by a low density large crystal layer overlaying a
harder denser layer, gives a strong radar response, frequently the strongest. The clear20

relationship observed between the VHB and ASIRAS waveforms, justifies the use of
ground-based radar measurements in the validation of air- or spaceborne radars.

1 Introduction

Changes in mass and volume of glaciers and ice sheets are important contributors
to rising global sea level (IPCC, 2007). Volume changes over Antarctica and Green-25

land are today routinely assessed by measuring surface elevation changes through
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time, using either radar or laser from air- or spaceborne platforms (Zwally et al., 2005;
Thomas et al., 2006). Radar and laser both have advantages and disadvantages (Alley
et al., 2007). A potential disadvantage of using radar is that the transmitted waves can
penetrate several meters into snow, firn and ice before being reflected (Arthern et al.,
2001; Lacroix et al., 2007). If the material properties change, over seasonal or longer5

time-scales, the degree of penetration can potentially vary as well (Scott et al., 2006a).
Since radar altimeters have relatively large footprints, subsurface returns are merged
with the return from surrounding surface topography. It can therefore be a challenge to
actually pinpoint the surface elevation within the received waveforms (a process known
as retracking), and measurements can be biased if not treated carefully. The accuracy10

of radar altimeters thus relies critically on characterization of subsurface returns and
their temporal changes.

The topography in the interior of Greenland and Antarctica is relatively flat compared
to the satellite radar footprint, so altimetric measurements from these areas are eas-
ier to interpret (Alley et al., 2007; Brenner et al., 2007). For ice sheet margins, outlet15

glaciers and ice caps, the topography is rougher and more seasonal and inter-annual
changes are likely to occur. Near-surface changes include: formation of ice layers,
lenses and glands as well as changes in free liquid water content and grain metamor-
phoses altering size and shape of crystals; all of which potentially alter the radar re-
sponse. At Ku-band frequencies, typically used by altimeters, previous ground-based20

radar measurements have revealed large spatial and temporal variability in penetra-
tion and subsurface return (Jezek and Gogineni, 1992; Jezek et al., 1994; Scott et
al., 2006a, b), with total backscatter composed of significant surface and subsurface
(volume) backscatter components.

Ground-based radar measurements and in situ data are critical for validating air-25

(Kanagaratnam et al., 2007) and spaceborne radar instruments (Scott et al., 2006a, b;
Langley et al., 2007) and have been used to relate airborne altimeter waveforms to sub-
surface properties. For example, Hawley et al. (2006) used the same airborne altimeter
system discussed here to show that subsurface returns (down to ∼10 m) from the dry
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snow zone in Greenland correlate with firn density fluctuations. In a similar manner,
Helm et al. (2007) showed that the Last Summer Surface (LSS) could be tracked within
a profile recovered from the percolation zone to yield winter snow accumulation.

Here we compare coincident airborne altimeter waveforms with ground-based radar
measurements and physical ground-truth. The data were retrieved in April–May 20075

from the superimposed ice (SI) and wet snow zone of the ice cap Austfonna, Svalbard,
in an experiment designed to test and validate the European Space Agency’s (ESA)
planned space-borne CryoSat II radar altimeter. We apply the methods and ideas
developed by Scott et al. (2006b), but expand on their work by presenting ground-
based measurements alongside the airborne altimeter data. This enables us to directly10

confirm the frequently used assumption that ground-based radar measurements are a
valuable tool for direct validation of the received waveforms from air- or spaceborne
radars.

2 Test site

The Austfonna ice cap (79.7◦ N, 24.0◦ E) is one of the largest in the European Arctic,15

located on the island Nordaustlandet in the NE corner of the Svalbard archipelago. The
ice cap is dome shaped and reaches to ∼800 m a.s.l. Fig. 1, (Taurisano et al., 2007).

Air temperatures on Austfonna in summer typically remain above or around freezing
(unpublished measurements from Etonbreen, Austfonna), which, combined with solar
radiation causes melting, percolation and refreezing. In addition, melt and rain events20

can occur year round. The accumulation zone of Austfonna is therefore considered to
be within the wet-snow zone as defined by Paterson (1994), and the firn is character-
ized by glands, lenses and ice layers, the latter ranging in thicknesses from millimeters
to more than 0.5 m.

Repeated airborne laser altimetry measurements on Austfonna in 1996 and 200225

indicated a simultaneous elevation increase in the interior and a decrease at the mar-
gins (Bamber et al., 2004). Whether the elevation changes are driven by dynamic or
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mass balance changes is still debated, and there is considerable uncertainty as to the
current mass balance state of the ice cap (Pinglot et al., 2001; Taurisano et al., 2007;
Schuler et al., 2007; Bevan et al., 2007; Dunse et al., 2008).

3 Data

3.1 Ground-based VHB radar5

The ground-based radar is a stepped-frequency Very High Bandwidth (VHB) radar
based on an Agilent network analyzer. Two wideband (2–18 GHz) horn antennas were
mounted in HH mode pointing vertically downwards from an arm projecting 1.1 m from
the side of a scooter sledge at a height of 1.15 m (bottom of antenna to snow surface).
The radar was powered using a 3 kW Honda generator which was operated either10

on the snow surface or on an extra sled to avoid antenna movements due to engine
vibrations. The system is described in detail by Scott et al. (2006b).

Field measurements were made from 2 to 18 GHz in 17 601 frequency steps with a
step size of 909 kHz. The antenna radiation pattern and gain change to some extent
over the frequency range. Therefore, following Scott et al. (2006b), during processing15

we limit the frequency range to have a bandwidth of 8 GHz with a center frequency of
13.5 GHz. For direct comparison with the airborne system, we also present data with
the same center frequency but with a bandwidth of 1 GHz.

The range resolution ∆R depends on bandwidth and wave velocity vε in the medium
according to Hamran et al. (1995):20

∆R =
vε

2 ×∆F
. (1)

Thus, for our 1 and 8 GHz bandwidths, the resolution in air is ∆R=0.15 and 0.019 m
respectively. Nevertheless, if the area illuminated by a fine range resolution nadir look-
ing radar is large, off-nadir returns may mask reflections from deeper layers and cause
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clutter. This is schematically illustrated in Fig. 2. For a sufficiently coarse range res-
olution, off-nadir returns will arrive in the same range bin and clutter will not degrade
later received range bins. Using the manufacturer’s specified half-power beamwidth for
the frequency range used, the illuminated area caused by the beamwidth is large com-
pared to the range resolution ∆R for the 8 GHz bandwidth, resembling Fig. 2b. With5

the 1 GHz bandwidth, the range resolution is coarse enough that returns from off-nadir
reflectors will not be as likely to cause clutter in later incoming range bins (Fig. 2a).
Thus, in all of our measurements, clutter may limit the effective range resolution using
the 8 GHz bandwidth. The degree to which the resolution is degraded due to clutter
depends on several factors, including ray-bending in the subsurface, layer roughness10

and the type of scattering that dominates. An exact resolution, at which clutter will not
significantly degrade the resolution, can therefore not be given quantitatively here, but
the effect does not appear to significantly influence our results.

System background signals, caused by antenna feedbacks, cabling, or electronics,
were evaluated by recovering traces with the antenna pointing upwards, and have sub-15

sequently been removed.
Following Langley et al. (2007), the received power PR is converted to a weighted

scattering cross section σw by correcting for the spherical spreading of the wave with
distance R by:

σw =
PRR

4

CVS
, (2)20

where VS is the volume sensed by each range bin, approximated as the illuminated area
covered by the antenna beamwidth multiplied by the corresponding range resolution
∆R; fixed system factors such as antenna gain terms, wavelength and transmitted
power are embedded in the constant C. The beamwidth as well as antenna gain varies
with frequency, but the effect is small over the frequency range used and is therefore25

neglected (see Scott et al. (2006b) for thorough discussion).
Reflections in the radar data were correlated to stratigraphic units found in snow pits
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by inserting an aluminium metal plate (0.3×0.3×0.003 m) into the pit walls wherever
specific stratigraphic layers were observed. By comparing the signals received with
and without the metal plate, the different major reflection sources could be determined.
To reduce the influence of the snow-pit walls, antennas were offset typically 0.6 m from
the edge of the pit.5

3.2 ASIRAS

ESA’s prototype Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) was
designed to reflect as closely as possible the characteristics of the SAR/Interferometric
Radar Altimeter (SIRAL), which is the planned payload of CryoSat-II.

The ASIRAS instrument is a linear frequency-modulated synthetic aperture radar10

with a 13.5 GHz center frequency and 1 GHz bandwidth (Lentz et al., 2002; Hawley
et al., 2006). For this field campaign, the ASIRAS was operated in low-altitude-mode
at typical elevations of ∼700 m above the surface. The positioning of the profiles was
done by Differential Global Positioning System (DGPS) and an Inertial Navigation Sys-
tem (INS). The elevation is relative to the geodetic ellipsoid, WGS84. Profile cross-over15

points were used to verify data replicability. Some of the profiles were found to have a
low waveform correlation, presumably due to rapid and high amplitude aircraft move-
ments (Helm et al., 2007), and have been discarded. The ground spacing between
each trace recorded by ASIRAS depends on aircraft speed relative the ground, but is
typically 8–10 m after post-processing.20

Raw data were post-processed using the ESAs’ ASIRAS L1b processor. The pro-
cessor uses delay-doppler to focus the beam in the along-track direction, giving it an
effective footprint of ∼5×50 m (along- versus across-track). Speckle and thermal noise
is further reduced by multi-looking (Wingham et al., 2004), and finally, the echo wave-
forms are geo-located using the DGPS and INS. After processing the raw data, each25

trace is built up of 4048 samples, in which each range bin equals 0.1097 m in air. In
the profiles presented here, this range bin distance has been corrected to compensate
for the lower wave velocity in the snow, to give a correct depth scale at least down to
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the LSS.
The surface has been tracked using a simple but robust threshold re-tracker. The

threshold re-tracking point was set to 20% of the average maximum peak amplitude
in the profile. Traces with a significantly lower peak maximum power compared to the
rest of the profile (<2 × threshold) have been discarded. In a few traces the 20% re-5

tracking point has changed unrealistically in position, i.e. giving unrealistic changes in
surface elevation or air craft height in between traces. In these situations, 10% local
threshold was used instead. If unrealistic position changes remained, the trace has
been discarded. After surface re-tracking, the data has been corrected for elevation
and aircraft height variations to give a depth scale starting at zero at the re-tracked10

surface position bin.

3.3 Snow pits

Snow pits were excavated down to the LSS, or occasionally ∼0.5 m deeper. The pits
were logged for density (by measuring the weight of bulk samples), temperature, visual
snow stratigraphy and mean snow crystal size. To compare the wave velocity deter-15

mined using the VHB radar (see below), the density ρ (kg m−3) has been converted to
relative permittivity following Kovacs et al. (1995):

εr =
(

1 + 8.45 × 10−4ρ
)2

. (3)

The relative permittivity εr is then converted to wave velocity using:

vε = c/
√
εr , (4)20

where c is the speed of light (∼3×108 m s−1).

3.4 Neutron probe

Access holes for the neutron probe were drilled using a Kovacs auger with a diameter of
∼5 cm. During drilling, the auger was guided by a 1-m long aluminium tube inserted into
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the snow, ensuring that the holes were vertical and minimizing variations in diameter
in the softer upper snow layers.

The neutron probe contains a radioactive source that emits fast neutrons. These
lose energy by scattering in the snow (mainly from hydrogen nuclei) and the number
of slow neutrons arriving back to a boron trifluoride detector in the probe are counted.5

The number of returning slow neutrons is related to density, hole diameter and the
position of the probe relative to the wall (Hawley and Morris, 2006; Morris, 2008).

The probe was lowered to the bottom of the access hole and then raised to the sur-
face while logging, at a speed of ∼3 m hr−1. The relatively low speed allows sufficient
time at each depth to average out random fluctuation in the count rate caused by ran-10

dom variations in the number of neutrons emitted over time by the radioactive material.
The number of slow neutrons is counted over a time period of 100 ms and is averaged
out over the time it takes for the probe to move 1 cm (∼12 s), such that the record has a
nominal resolution of ∼1 cm. However, thin ice layers and abrupt density changes are
not fully resolved. They appear smoothed over slightly greater length scales (Hawley15

et al., 2008), in part because neutrons are scattered over a finite volume of snow, and
more importantly because the detector used has an active length of 13.5 cm. The den-
sity is then calculated from the neutron record using the calibration method outlined by
Morris (2008).

4 Electromagnetic velocity estimates20

In the winter snow, the wave velocity was estimated directly by positioning the VHB
radar (8 GHz bandwidth) close to the edge of the pit and inserting the metal plate in
the wall, starting from the bottom and finishing up at the surface. The velocity is then
obtained from time differences between the reflections from the surface and the metal
plate, and the measured depth of the plate (Fig. 3). Error bars are calculated based on25

a ±0.025 m depth uncertainty in the placement of the metal plate.
There is a good agreement between VHB-estimated wave velocities and those
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calculated from bulk density measurements in the snow pit (Eqs. 3 and 4). The
radar-measured velocities obtained below 1 m are ∼2.28×108±0.08×108 m s−1, while
typical pit bulk densities were 400±25 kg m−3, equivalent to a wave velocity of
2.24×108±0.04×108 m s−1. In the following calculations we have therefore used a
speed of 2.28×108 m s−1 for all conversions between depth and radar travel time.5

The empirical relation (Eq. 3) is valid for dry snow and firn. This condition was cer-
tainly fulfilled during the measurement period, with temperatures in the snow ranging
from −23◦C at the surface to −8◦C close to the LSS.

5 ASIRAS and VHB radar comparison

5.1 Site “cry1”10

The site is located (Fig. 1) at the border between the long-term firn and SI zone, in an
area in which the firn line has migrated back and forth over the last years (Dunse et
al., 2008). The site has a thin ∼1 m firn layer superimposed on older accumulated SI
(Fig. 4a).

The ground-based VHB radar data are shown together with the snow pit and neutron15

probe data in Fig. 4. The 8 GHz bandwidth data show that the near surface reflections
(Fig. 4, labeled “(2)”) correspond in depth with units of large crystals and thin crust/ice
layers at depths of ∼8, 27 and 29 cm and are of equal strength to the air-snow surface
reflection marked (1) in Fig. 4. Units of low density comprising large crystals (not
resolved in the bulk density profile (Fig. 4a)) were observed without crust or ice layers20

at ∼75 cm depth and give rise to detectable reflections (Fig. 4, “(3)”). At ∼1 m depth a
1 mm crust/ice layer overlaying a thin large crystal layer was observed in the pit. This
layer varied significantly in depth along the pit walls and is detected only sporadically
by the VHB radar. The weak radar response could be due to the depth variability of the
layer, or alternately, the size of the layer might not be spatially homogeneous. The LSS25

at this site is a unit of large crystals on an ice layer situated atop firn. In the radar data
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the LSS is represented by a sharp increase in backscatter (Fig. 4, “(4)”). Below the LSS
the radar backscatter is typically −22 to −18 dB over a 5 ns band, and originates from
the firn (Fig. 4, “(5)”). Within this band more spatially continuous reflection horizons
are occasionally observed, which we attribute to thin (3–10 mm) ice layers. These
reflections often reach up to −10 dB and are thus ∼10 dB stronger relative to the high5

backscatter band.
At this site the VHB data coincides well with two airborne ASIRAS profiles (Fig. 5).

The profiles comprise three major reflecting horizons, with the lower having the highest
amplitude. The first horizon has a peak amplitude of ∼75% compared to the lowermost,
while the middle horizon has about ∼25%.10

The ASIRAS and VHB radar responses compare well despite different profile lengths
(Fig. 6); as with the VHB, the strongest response in the ASIRAS data is from the LSS.
The surface and near surface returns (0–30 cm), which are apparent in the 8 GHz band-
width VHB radar data, merge into a single reflection when the bandwidth is reduced to
1 GHz (Fig. 6b). Thus, in the ASIRAS data, the first returned peak is a convolution of15

the air-snow interface and the often stronger reflections from the upper ∼30 cm. The in-
ternal reflection from the winter snowpack comes from the same depth range (∼75 cm)
as a sequence of layers built up of large crystals (>3 mm in diameter).

5.2 Site “cry2”

This site is within the long-term firn area (Fig. 1). At a depth of ∼5 m and below, the20

firn is characterized by 10–50 cm thick ice layers. The layers continue to a depth of at
least 8 m, the deepest neutron record at this site.

The VHB data is characterized by a strong surface return (Fig. 7b, labeled “(1)”). This
reflected energy comes from the air-snow interface and a sharp increase in density be-
low a 0–2 cm low-density surface powder snow. At ∼2.2 ns a reflection was observed25

(Fig. 7b, “(2)”), coinciding with the depths of two thin ice crust layers at 25 and 27 cm.
Typically these reflections have the same or stronger amplitude than the air-snow sur-
face return. Two other significant reflection horizons are seen at ∼5 and 8 ns (Fig. 7b,
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“(3)”), corresponding in depth with a sequence of thin ice layers/crusts, both underlain
by large crystals (3–4 mm diameter).

The LSS, here characterized by a low density large crystal layer (∼5 cm thick) on
top of a weak densification, is detected in the VHB data as an abrupt increase in
backscatter (Fig. 7b, “(4)”). Below the LSS, the firn matrix, made-up of large crystals5

and comprising a significant number of melt features such as ice pipes and lenses, is
responsible for the high backscatter (typically −25 dB) (Fig. 7b, “(5)”). At a depth of
2.25 m, multiple thin ice layers (spatially continuous in the pit as opposed to the lenses)
interrupt the firn (and the backscatter rich band). These layers correspond well to the
vaguely visible but more spatially continuous reflection horizon (−20 to −15 dB) at a10

20 ns depth in the radar data.
The airborne profile 1 coincides well with the ground-based profile and the corner

reflector is detected (Fig. 8). Like the VHB data, the ASIRAS waveform is characterized
by a strong surface or near surface return. This return is followed by two returns with
typically 50–60% lower amplitude.15

The ASIRAS data and the VHB radar data are shown together in Fig. 9. Similarly to
“cry1”, we find that the two surface returns, at ∼0 and ∼2 ns respectively in the 8 GHz
bandwidth data, merge to one horizon when imaged with the 1 GHz bandwidth data.
The same happens for the two reflections from the interior of the winter snow-pack (at
∼5 and ∼8 ns). Despite differences in amplitude of the two lower reflections, likely a20

result of the short VHB profile length (15 m) giving a poor spatial representation, the air
and ground-based waveforms compare well.

5.3 Site “camp07”

The “camp07” site is also within the long-term firn area, but differs from “cry2” at depths
below 3.5 m. The firn is characterized here by ice layers (10—40 cm thick). Ice with no25

or very little firn starts at a depth of ∼6 m and continues down to at least 14 m, where
the deepest neutron probe record ends.

At this site two 100 m VHB radar profiles were retrieved. In Fig. 10, one of the profiles
788
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is shown together with ground truth data. Typically, the strongest return stems from the
air-snow interface (Fig. 10b, labeled “(1)”) and a thin crust layer accompanied by a
sharp increase in snow hardness and density (the density contrast is not resolved in
Fig. 10a due to the coarse bulk sample size). A thin crust layer at 38 cm depth in the
snow pit, but varying in depth along the profile, was also found to give a significant near5

surface waveform contribution (Fig. 10b, “(2)”), despite it being spatially discontinuous
along the profile. For example, in the middle of the profile, at a distance of ∼50 m,
this layer nearly reaches the surface. Below this layer several units of crust/ice layers
imbedded in large crystals give rise to several individual reflecting horizons.

The VHB return from the LSS is characterized at “camp07” by a gradual increase10

in backscatter with depth (Fig. 10b, “(3)”), unlike the other sites where a more abrupt
increase in backscatter was found. We note that at this site a thicker (relative to the
other sites) low density layer of large crystals on top of the LSS hard/dense layer were
observed. The snow pit was not extended below the LSS and we therefore do not have
information regarding the firn makeup.15

“Camp07” was the site where most VHB data was obtained; unfortunately, the
ASIRAS data is sparse at this site due to many discarded traces, furthermore, there is
a significant spatial offset between the ground and airborne measurements here, both
of which prohibit a reasonable comparison between the data sets.

5.4 Site “coreF”20

This site, like “cry1”, lies at the border between the long-term firn area and the SI area
(Fig. 1), and similarly to “cry1”, the SI at this site was overlaid by a <1 m thick firn layer.

The surface VHB radar return comes from the same depth range as the relatively
hard air-snow interface (Fig. 11b, labeled “(1)”) and a sequence of two thin crust/ice
layers at ∼24 and 34 cm depth (Fig. 11b, “(2)”). At a depth of ∼62 and 64 cm, two25

closely spaced crust/ice layers surrounded by low density large crystals correspond
well with a reflection at ∼6 ns (Fig. 11b, “(3)”). A low density layer at 89–97 cm depth,
comprising crystals with a typical diameter of 3 mm, corresponds to a reflection at ∼8
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ns but appears from the radar profile to have a relatively limited spatial extent (Fig. 11b,
“(4)”).

The LSS at this site is seen as a clear and abrupt reflection horizon (Fig. 11b, “(5)”)
followed by a backscatter rich band (Fig. 11b, “(6)”), the latter caused by the firn ma-
trix; here characterized by large crystals and refrozen melt features such as ice lenses,5

layers and pipes. Within this band, more spatially well-defined reflection horizons are
seen, which we attribute to thin ice layers imbedded in the firn. These reflections reach
up to −10 dB, while the backscatter band typically reaches between −25 to −20 dB.
These observations correspond well with those at “cry1”, which has much the same
glaciological setting. Below the backscatter rich band, at ∼24 ns (Fig. 11b, “(7)”) an-10

other band of higher backscatter is detected. This band is connected to the transition
from the firn to SI, but we do not have any information about fine scale layering or
typical crystal sizes at this depth.

As at the “camp07” site, large portions of the ASIRAS data were discarded and were
spatially offset from the ground measurements, prohibiting a side-by-side comparison.15

Nevertheless, the nearest ASIRAS data (∼800 m away) show that the strongest re-
turns are connected to the surface and LSS, with the latter of more consistent strength
compared to returns from the surface and winter snowpack (Fig. 12). This resembles
closely the same characteristics of the VHB data but due to the spatial offset limited
conclusions can be drawn.20

6 Results from ASIRAS and VHB radar comparison

At the two sites where the VHB and ASIRAS data coincide spatially, a good comparison
is found between the ground and airborne data, implying that ground-based measure-
ments are a valuable tool for direct validation and improved information extraction from
air- or spaceborne measurements.25

The VHB radar data shows that the major response from the winter snow pack at
Ku-band frequencies are connected to:
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1. Units of thin crust or ice layers (0.5–2 mm thick) surrounded by low density layers
builtup of large crystals, typical diameter >3 mm. The snow pack lacked thicker
ice layers and therefore we cannot deduce the radar response of such layers.

2. Medium to weak reflections may be caused by a low density layer built up of large
crystals or a crust layer alone, but the two combined seems to give the strongest5

response observed.

3. These backscatter sources (1 and 2) give rise to reflections from within the winter
snowpack that are trackable for several tens of kilometers in the airborne data.

4. The radar response from the air-snow interface is typically of a similar amplitude
to thin subsurface layers which can be found frequently in the top 30 cm of the10

winter snow pack. At narrower bandwidths (e.g. 1 GHz) these reflections merge,
and thus the maximum peak position is not a good surface proxy. The offset from
the true surface depends on the degree of interference between the air-snow
interface and the backscatter from the near surface layers.

The LSS was characterized at all sites by a low density large crystal layer overlaying a15

harder, denser layer of variable thickness, which in turn was situated over firn. This se-
quence gives a strong response at all sites, strongest in the SI-firn transition zone and
weaker in the long-term firn area. It has not been possible to quantify the importance
(in reflection power) of the low density large crystal layer relative to the dense layer due
to the small depth separation and the few sites visited.20

Below the LSS, the firn is typically characterized by large crystals (>3 mm) and re-
frozen melt intrusions such as ice layers, lenses and glands. This is seen in the VHB
data as a ∼5 ns backscatter rich band, typically reaching a signal strength of −25 to
−20 dB. Within this band, fairly well defined reflection horizons (often up to −10 dB) are
found associated with thin ice layers with thicknesses larger than ∼2–3 mm. This is25

particularly evident at the “coreF” site.
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The deepest observed coherent reflections, stronger than the surrounding clutter,
were found within the SI-firn boundary zone at a depth of roughly 4 m. In the long-
term firn area the deepest observed reflections are at ∼3 m depth. In the ASIRAS
data the depth penetration is limited to just below the reflection connected to the LSS.
Occasionally deeper reflectors (both within the SI and firn area) are seen, but we lack5

ground-truth and cannot pinpoint the source in those places.

7 Discussion

7.1 Clutter and reflection sources

Off-nadir reflections causing clutter may degrade the range resolution of the VHB radar,
especially using the 8 GHz bandwidth. Despite the fine range resolution we can there-10

fore not exactly determine the individual contribution of closely spaced stratigraphic
units, such as layers of low bulk density built up of large crystals relative to high den-
sity stratigraphic layers such as crusts or ice layers. This is likely better determined
using numerical modeling or controlled laboratory experiments. It is nevertheless clear
from both the ground and airborne data, that the strongest reflections in the winter15

snow pack originate from thin dense layers surrounded by large crystals. The influ-
ence of the large crystal layers on the response is likely that they form a less dense
layer compared to the surrounding snow, creating an increased permittivity contrast.
Unfortunately, due to the large bulk sizes used to measure the density and the smear-
ing occurring in the neutron probe data, accurate measurements of the large crystal20

layers density (alone) is not available. There may be some minor scattering for 3 mm
crystals, but with a wavelength close to 20 mm in the winter snowpack, this will not be
significant.
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7.2 LSS response

In the long-term firn area, the LSS response appears weaker compared to sites within
the SI-firn transition zone. The difference in LSS power and waveform shape could
potentially be used to delineate different glacier zones or facies from each other. This
remains to be demonstrated though, since the difference is not only caused by the less5

developed LSS densification but is also related to varying attenuation due to changes
in winter snow pack thickness, as well as to the degree a low density large crystal layer
increases the permittivity contrast or causes constructive or destructive interference
with the dense layer response.

7.3 Re-tracker and elevation correction10

Using the VHB radar the air-snow interface return is easily identified by laying a metal
plate on the surface. Reducing the bandwidth to 1 GHz during post-processing yields a
“surface” waveform which is a convolution of the air-snow interface reflection and reflec-
tions from within the upper ∼30 cm of the winter snowpack. From the high bandwidth
data, we see that the latter are typically of the same magnitude or stronger. Because15

the return maximum power and shape is merely a function of interference between
the closely spaced reflectors (layers within the snow pack and the air-snow boundary),
we believe that most information about the air-snow interface is found in the leading
edge of the response, and to a lesser extent related to the peak power or width of the
“surface return”. This might not necessarily be true over areas where the surface is20

rougher, but is found to be the case at our field sites where the surface had a typical
small scale roughness, subjectively determined along the ground profiles to be less
than 0.25 m.

We found that tracking the leading edge of the first peak using a 20% threshold
relative the typical maximum power in the ASIRAS data gives a reasonable proxy for25

the air-snow interface when compared to the VHB data. This may not always be the
best method, but it is likely to be a good choice at many sites due to the frequently
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strong near-surface reflections which interfere with the air-snow interface response.

8 Conclusions

We have compared ground- (VHB) and airborne (ASIRAS) radar altimeter data over
the Austfonna ice cap, Svalbard. Snow pits and neutron probe density profiles have
been used to ground-truth the data. Two sites were situated in the long-term wet-snow5

zone firn area and two in the SI-firn transition zone.
We find that the ASIRAS waveforms compare well with the ground-based VHB radar

measurements, implying that ground-based radar measurements are a valuable tool
for direct validation and improving information extraction from air- or spaceborne mea-
surements.10

Over the accumulation area of the ice cap three reflecting horizons are typically found
in the airborne data. From VHB measurements the reflections are attributed as follows:

1. The first return in the airborne data is a composite of the surface return (i.e. air-
snow interface) and reflections from the upper ∼30 cm of the subsurface. The
8 GHz bandwidth data show that reflections from just below the air-snow interface15

were as strong, or stronger, than the surface reflection. In the airborne data the
maximum amplitude and width of the return is therefore dependent on the degree
of interference of the air-snow interface and near surface returns. Hence, we
believe most of the air-snow interface information is, at low slope and roughness
sites, stored in the leading edge of the returned waveform. We have therefore20

chosen to use a robust and simple 20% threshold re-tracker, to obtain a good
correspondence with the ground-based radar measurements.

2. We found that within the winter snowpack, units of low density layers built up of
crystals larger than ∼3 mm surrounding thin crusts or ice layers less than ∼2 mm
thick give rise to the strongest backscatter. Such layers are clearly seen in the25
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airborne data and give rise to reflections trackable for several tens of kilome-
ters. Layers of low density large crystals or crust and ice layers alone, do give
a detectable backscatter contribution, but the amplitude of the radar response is
weaker. Nevertheless, such layers can still be tracked in the airborne data for
considerable distances. The large crystals alone may cause minor scattering, but5

it is likely that the major response is caused by the layer being of lower density
compared to the surrounding snow. The snow pack lacked thicker ice layers and
therefore we cannot judge the response to such layers.

3. LSS gave in all cases a strong response, frequently the strongest – but appears
to be weaker at the long-term firn area sites. The difference in power and shape10

of the LSS reflection could therefore potentially be used to delineate glacier facies
using altimeter waveforms.

Below the LSS, the VHB radar data is characterized by a band of higher backscatter.
The band is typically about 5 ns deep before it drops off to the noise threshold. This
higher backscatter originates from the firn which is characterized by large crystals (typi-15

cal diameter >3–4 mm) and refrozen melt intrusions in the form of ice lenses and layers
as well as glands. The response to the thicker ice layers are revealed as more well-
defined reflecting horizons, which can be readily tracked horizontally as single discrete
layers within the clutter-rich band.

Our findings using the VHB radar on Austfonna confirm the results from previous20

ground-based Ku-band radar measurements (Scott et al., 2006b, a), as well as the
interpretations made by Helm et al. (2007) using the ASIRAS altimeter in the Greenland
percolation zone. Furthermore, here we validate the frequently used assumption that
ground-based radar measurements can be directly related to waveforms retrieved by
airborne radars, justifying their use as a means of calibration for future missions such25

as ESA’s CryoSat II radar altimeter.
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signal from Envisat on the Amery ice-shelf, Remote Sens. Environ., 109, 3, 285–294, 2007.

Langley, K., Hamran, S.-E., Høgda, K.-A., Storvold, R., Brandt, O., Hagen, J.-O., and Kohler,
J.: Use of C-Band Ground Penetrating Radar to Determine Backscatter Sources Within
Glaciers, IEEE Trans. Geosci. Remote Sens., 45, 5, 1236–1246, 2007.25

Lentz, H., Braun, H.-M., Younis, M., Fletcher, C., Wiesbeck, W., and Mavrocordatos, C.: Con-
cept and realization of an airborne SAR/ Interferometric Radar Altimeter System (ASIRAS),
IGARSS ’02, Inst. Electr. Electr. Eng., New York., 6, 3099–3101, 2002.

Morris, E. M.: A theoretical analysis of the neutron scattering method of measuring snow and
ice density, J. Geophys. Res., 113, F03019, doi:10.1029/2007JF000962, 2008.30

Paterson, W. S. B.: The physics of glaciers. Third Edition. Pergamon, Elsevier Science, Oxford,
UK, ISBN 0-08-037944-3, 1994.

Pinglot, J. F., Hagen, J. O., Melvold, K., Eiken, T., and Vincent, C.: A mean net accumulation

797

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/777/2008/tcd-2-777-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/777/2008/tcd-2-777-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
2, 777–810, 2008

Comparison of
airborne and

ground-based radar
measurements

O. Brandt et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

pattern derived from radioactive layers and radar soundings on Austfonna, Nordaustlandet,
Svalbard, J. Glaciol., 47, 159, 555–566, 2001.

Schuler, T. V., Loe, E., Taurisano, A., Eiken, T., Hagen, J.-O., and Kohler, J.: Calibrating a
surface mass-balance model for Austfonna ice cap, Svalbard, Ann. Glaciol., 46, 241–248,
2007.5

Scott, J. B. T., Nienow, P., Mair, D., Parry, V., Morris, E., and Wingham, D. J.: Importance of
seasonal and annual layers in controlling backscatter to radar altimeters across the perco-
lation zone of an ice sheet, Geophys. Res. Lett., 33, L24502, doi:10.1029/2006GL027974,
2006a.

Scott, J. B. T., Mair, D., Nienow, P., Parry, V., and Morris, E.: A ground-based radar backscatter10

investigation in the percolation zone of the Greenland ice sheet, Remote Sens. Environ.,
104, 361–373, 2006b.

Taurisano, A., Schuler, T. V., Hagen, J.-O., Eiken, T., Loe, E., Melvold, K. and Kohler, J.: The
distribution of snow accumulation across Austfonna ice cap Svalbard: direct measurements
and modeling, Polar Res., 26, 1, 7–13, 2007.15

Thomas, R., Frederick, E., Krabill, W., Manizade, S., and Martin, C.: Progressive increase in ice
loss from Greenland, Geophys. Res. Lett., 33, L10503, doi:10.1029/2006GL026075, 2006.

Wingham, D. J., Phalippou, L., Mavrocordatos, C., and Wallis, D.: The mean echo and echo
cross product from a beamforming interferometric altimeter and their application to elevation
measurement, IEEE Trans. Geosci. Remote Sens., 42, 2305–2323, 2004.20

Zwally, H. J., Giovinetto, M. B., Li, J., Cornejo, H. G., Beckley, M. A., Brenner, A. C., Saba, J.
L., and Yi, D.: Mass changes of the Greenland and Antarctic ice sheets and shelves and
contributions to sea-level rise: 1992–2002, J. Glaciol., 51, 175, 509–527, 2005.

798

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/777/2008/tcd-2-777-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/777/2008/tcd-2-777-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
2, 777–810, 2008

Comparison of
airborne and

ground-based radar
measurements

O. Brandt et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 1. Map of the Austfonna ice cap (bold contours show 250 m elevation intervals). ASIRAS
ground tracks are shown together with the position of the four sites where ground-based VHB
radar and snow and firn stratigraphy measurements were performed.
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Fig. 2. Sketch showing how clutter from off-nadir reflectors can degrade a fine range resolution
for nadir looking radars. In the case of a coarse range resolution (a), the off-nadir reflections
(3) will merge with the lower reflector (1) in the same range bin. For a finer range resolution
(b), despite the range bin appearing to stem from only the subsurface when viewed in nadir,
off-nadir returns (2) will still merge with the subsurface reflection (1) forming a convolved power
at this range bin, degrading the range resolution.
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Fig. 3. EM-wave velocities calculated by inserting a metal reflector at various depths in the
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Fig. 4. Site “cry1”: (a) ground-truth data, i.e. bulk density, typical crystal diameter, ice layer
thickness, neutron probe profile and the position of the Last Summer Surface (LSS) (at 13 ns).
The two-way travel time depth conversion is done using a speed of 2.28×108 m s−1 (Note the
multiple y-axes). (b) average trace at the snow pit position (13.5 GHz center frequency and
8 GHz bandwidth). Numbers indicate features discussed in the text. (c) VHB profile extending
from the snow pit, located at distance zero, along ASIRAS profile 1.
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Fig. 5. ASIRAS data from site “cry1” (dB). Each profile comprises 500 traces. Due to variation
in aircraft velocity, the length of the two profiles differs. The response of a corner reflector
(∼2 m above the surface) is marked by white arrow. Black dash-dotted lines shows the data
used for direct comparison with the ground-based VHB radar data (Fig. 6). A wave velocity of
2.28×108 m s−1 has been used to convert two-way travel time to depth.
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Fig. 6. (a) 8 GHz bandwidth ground-based VHB radar profile (power) at site “cry1”. (b) Cor-
responding profile after reducing the bandwidth to 1 GHz and stacking to give 5 m average
traces, more comparable to the ASIRAS 5×50 m footprint. (c) ASIRAS and VHB median traces
(normalized) (d) ASIRAS intensity (power) along profile 1.
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Fig. 7. Site “cry2”: (a) ground-truth data i.e. bulk density, typical crystal diameter, ice layer
thickness, neutron probe profile and the position of LSS (1.81 m). (b) Average trace at the
snow pit position (13.5 GHz center frequency and 8 GHz bandwidth). Numbers indicate features
discussed in the text. (c) VHB radar profile (snow pit located at distance zero).
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Fig. 8. ASIRAS profile 1 passing over site “cry2” (500 traces in dB format). The corner reflector
is marked by white arrow. The traces used to compare to ground-based radar measurements
(Fig. 9) are within the black dash-dotted vertical lines.
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Fig. 9. (a) 8 GHz bandwidth ground-based VHB radar profile (power) at site “cry2”. (b) Cor-
responding profile (5 m stacking) at 1 GHz bandwidth. (c) ASIRAS and VHB median traces
(normalized) (d) ASIRAS intensity (power) format profile 1.
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Fig. 10. Site “camp07”: (a) ground-truth data i.e. bulk density, typical crystal diameter, ice
layer thickness, neutron probe profile and the position of LSS (1.73 m). (b) Average trace at
the closest position of the snow pit, ∼5 m (13.5 GHz center frequency and 8 GHz bandwidth).
(c) VHB profile. Note, the two low-backscatter bands at and just above 20 ns, are artifacts of
removing an imperfectly matched background signal.
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Fig. 11. Site “coreF”: (a) ground-truth data i.e. bulk density, typical crystal diameter, ice layer
thickness, neutron probe profile and the position of LSS (1.64 m). (b) Average trace next to the
snow pit (13.5 GHz center frequency and 8 GHz bandwidth). (c) VHB profile extending out from
the snow pit (located at distance zero).
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Fig. 12. ASIRAS data from the vicinity of the “coreF” site (dB). Each illustrated profile section
comprises 500 traces, but vary in length due to different aircraft velocity. Dashed black lines
shows the parts of the profiles closest to the ground site “coreF” (∼800 m away).
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