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Abstract. A coupled hydrogeophysical forward and in-

verse modeling approach is developed to illustrate the abil-

ity of frequency-domain airborne electromagnetic (AEM)

data to characterize subsurface physical properties associated

with sublacustrine permafrost thaw during lake-talik forma-

tion. Numerical modeling scenarios are evaluated that con-

sider non-isothermal hydrologic responses to variable forc-

ing from different lake depths and for different hydrologic

gradients. A novel physical property relationship connects

the dynamic distribution of electrical resistivity to ice sat-

uration and temperature outputs from the SUTRA ground-

water simulator with freeze–thaw physics. The influence of

lithology on electrical resistivity is controlled by a surface

conduction term in the physical property relationship. Re-

sistivity models, which reflect changes in subsurface condi-

tions, are used as inputs to simulate AEM data in order to

explore the sensitivity of geophysical observations to per-

mafrost thaw. Simulations of sublacustrine talik formation

over a 1000-year period are modeled after conditions found

in the Yukon Flats, Alaska. Synthetic AEM data are analyzed

with a Bayesian Markov chain Monte Carlo algorithm that

quantifies geophysical parameter uncertainty and resolution.

Major lithological and permafrost features are well resolved

by AEM data in the examples considered. The subtle geome-

try of partial ice saturation beneath lakes during talik forma-

tion cannot be resolved using AEM data, but the gross char-

acteristics of sub-lake resistivity models reflect bulk changes

in ice content and can identify the presence of a talik. A final

synthetic example compares AEM and ground-based electro-

magnetic responses for their ability to resolve shallow per-

mafrost and thaw features in the upper 1–2 m below ground

outside the lake margin.

1 Introduction

Permafrost thaw can have important consequences for the

distribution of surface water (Roach et al., 2011; Rover et

al., 2012), stream discharge and chemistry (O’Donnell et

al., 2012; Petrone et al., 2007; Striegl et al., 2005; Walvo-

ord and Striegl, 2007), and exchange between groundwater

and surface water systems (Bense et al., 2009; Callegary

et al., 2013; Walvoord et al., 2012). Likewise, hydrologic

changes that alter the thermal forcing supplied by surface

water or groundwater systems can modify the distribution

of permafrost, illustrating the strong feedbacks between per-

mafrost and hydrology. In addition to hydrologic processes,

permafrost is affected by climate warming in Arctic and sub-

Arctic regions (Hinzman et al., 2005; Jorgenson et al., 2001)

as well as disturbance by fire (Yoshikawa et al., 2002).

Climate feedbacks associated with permafrost thaw include

changes in the amount of organic carbon stored in soils that is

vulnerable to decomposition (Koven et al., 2011; O’Donnell

et al., 2011) and subsequent methane and carbon dioxide re-

leased from soils by the degradation of organic material pre-

viously sequestered in frozen ground (Anthony et al., 2012).

Permafrost thaw also has significant implications for land

management and infrastructure, including the potential to
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damage buildings, roadways, or pipelines due to ground set-

tling, and thermal erosion that can alter coastlines and land-

scape stability (Larsen et al., 2008; Nelson et al., 2002).

Several investigations have shown the significance of cli-

mate and advective heat transport in controlling the distribu-

tion of permafrost in hydrologic systems (Bense et al., 2009;

Rowland et al., 2011; Wellman et al., 2013). These results

yield important insight into the mechanistic behavior of cou-

pled thermal–hydrologic systems and are a means for pre-

dicting the impact on permafrost from a wide range of cli-

mate and hydrologic conditions. However, few techniques

are capable of assessing the distribution of permafrost, and

most approaches only capture a single snapshot in time.

Satellite remote-sensing techniques have proven useful in

detecting the distribution and changes in shallow permafrost,

vegetation, and active layer thickness over large areas (Liu et

al., 2012; Panda et al., 2010; Pastick et al., 2014) but are only

sensitive to very near-surface properties. Borehole cores and

downhole temperature or geophysical logs provide direct in-

formation about permafrost and geologic structures but tend

to be sparsely located and are not always feasible in remote

areas. Geophysical methods are necessary for investigating

subsurface physical properties over large and/or remote ar-

eas. Recent examples of geophysical surveys aimed at char-

acterizing permafrost in Alaska include an airborne electro-

magnetic (AEM) survey used to delineate geologic and per-

mafrost distributions in an area of discontinuous permafrost

(Minsley et al., 2012), ground-based electrical measurements

used to assess shallow permafrost aggradation near recently

receded lakes (Briggs et al., 2014), electrical and electro-

magnetic surveys used to characterize shallow active layer

thickness and subsurface salinity (Hubbard et al., 2013), and

surface nuclear magnetic resonance soundings used to infer

the thickness of unfrozen sediments beneath lakes (Parsekian

et al., 2013). A challenge with geophysical methods, how-

ever, is that geophysical properties (e.g., electrical resistiv-

ity) are only indirectly sensitive to physical properties of in-

terest (e.g., lithology, water content, thermal state). In addi-

tion, various physical properties can produce similar electri-

cal resistivity values. Therefore, it is critically important to

understand the relationship between geophysical properties

and the ultimate physical properties and processes of interest

(Minsley et al., 2011; Rinaldi et al., 2011).

The non-isothermal hydrologic simulations of Wellman et

al. (2013) predict the evolution of lake taliks (unfrozen sub-

lacustrine areas in permafrost regions) in a two-dimensional

axis-symmetric model under different environmental scenar-

ios (e.g., lake size, climate, groundwater flow regime). Here,

we investigate the ability of geophysical measurements to re-

cover information about the underlying spatial distribution of

permafrost and hydrologic properties. This is accomplished

in three steps: (1) development of a physical property relation

that connects permafrost and hydrologic properties to geo-

physical properties, (2) generation of synthetic geophysical

data that would be expected for various permafrost hydro-

logic conditions that occur during simulated lake-talik for-

mation, and (3) inversion of the synthetic geophysical data

using realistic levels of noise to investigate the ability to re-

solve specific physical features of interest. Our focus is on

electromagnetic geophysical methods as these types of data

have previously been acquired near Twelvemile Lake in the

Yukon Flats, Alaska (Ball et al., 2011; Minsley et al., 2012);

this lake is also the basis for the lake simulations discussed

by Wellman et al. (2013).

2 Methods

2.1 Coupled thermal–hydrologic simulations

Wellman et al. (2013) describe numerical simulations of

lake-talik formation in watersheds modeled after those found

in the lake-rich Yukon Flats of interior Alaska. Modeling

experiments used the SUTRA groundwater modeling code

(Voss and Provost, 2002) enhanced with capabilities to simu-

late freeze–thaw processes (McKenzie and Voss, 2013). The

phase change between ice and liquid water occurs over a

specified temperature range and accounts for latent heat of

fusion as well as changes in thermal conductivity and heat

capacity for ice–water mixtures. Ice content also changes

the effective permeability, thereby altering subsurface flow-

paths and enforcing a strong coupling between hydraulic and

thermal processes. The modeling domain, which is adapted

for this study, is axis-symmetric with a central lake and

upwards-sloping ground surface that rises from an elevation

of 500 m at r = 0 to 520 m at the outer extent of the model,

r = 1800 m (Fig. 1). The model uses a layered geology con-

sistent with the Yukon Flats (Minsley et al., 2012; Williams,

1962), with defined hydrologic and geophysical parameters

for each layer summarized in Table 1. Initial permafrost con-

ditions prior to lake formation were established by running

the model to steady state under hydrostatic conditions with

a constant temperature of −2.25 ◦C applied to the land sur-

face, which produces a laterally continuous permafrost layer

extending to a depth of about 90 m.

Subsequent hydrologic simulations assume fully saturated

conditions and are performed over a 1000-year period un-

der 36 different scenarios of climate (warmer than, colder

than, and similar-to-present conditions), hydrologic gradient

(hydrostatic, gaining, and losing lake conditions), and lake

depth/extent (3, 6, 9, and 12 m deep lakes that intersect the

ground surface at increasing distance, as shown in Fig. 1).

Complete details and results of the hydrologic simulations

can be found in Wellman et al. (2013). At each simulation

time step, the SUTRA model outputs temperature, pressure,

and ice saturation. Conversion of these hydrologic variables

to electrical resistivity – the geophysical property needed to

simulate electromagnetic data considered here – is described

below.
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Figure 1. Axis-symmetric model geometry indicating different

lithologic units and simulated lake depths/extents.

2.2 A physical property relationship

Electrical resistivity is the primary geophysical property of

interest for the electromagnetic geophysical methods used in

this study. It is well established that resistivity is sensitive

to basic physical properties such as unfrozen water content,

soil or rock texture, and salinity (Palacky, 1987). Here, we

build on earlier efforts to simulate the electrical properties of

ice-saturated media (Hauck et al., 2011) by using a modified

form of Archie’s Law (Archie, 1942) that also incorporates

surface conduction effects (Revil, 2012) to predict the dy-

namic electrical resistivity structure for the evolving state of

temperature and ice saturation (Si) in the talik simulations.

Bulk electrical conductivity is described by Revil (2012) as

σ =
Snw

F

[
σf+m

(
S−nw F − 1

)
σs

]
, (1)

where σ is the bulk electrical conductivity [Sm−1]; Sw is

the fractional water saturation [–] in the pore space, where

Sw = 1−Si ; σf is the conductivity of the saturating pore fluid

[Sm−1]; m is the Archie cementation exponent [–]; n is the

Archie saturation exponent [–]; F is the formation factor [–],

where F = φ−m and φ is the matrix porosity [–]; and σs is

the conductivity [S m−1] associated with grain surfaces. The

Archie exponentsm and n are known to vary as a function of

pore geometry; here, we usem= n= 1.5, which is appropri-

ate for unconsolidated sediments (Sen et al., 1981). Simula-

tion results are presented as electrical resistivity [�m], which

is the inverse of the conductivity, i.e., ρ = 1/σ .

The first term in Eq. (1) describes electrical conduction

within the pore fluid, where fluid conductivity is defined as

σf = Fc

∑
i

βi |zi |Ci . (2)

The summation in Eq. (2) is over all dissolved ionic species

(Na+ and Cl− are assumed to be the primary constituents

in this study), where Fc is Faraday’s constant [Cmol−1] and

Ci , βi , and zi are the concentration [molL−1], ionic mobility

[m2 V−1 s−1], and valence of the ith species, respectively.

Table 1. Description of geologic units and physical properties used

in numerical simulations. Entries separated by commas represent

parameters with different values for each of the lithologic units.

Geologic unit properties

Lithology:

Unit 1 Sediment (silty sand)

Unit 2 Sediment (gravelly sand)

Unit 3 Lacustrine silt

Unit depth range [m] 0–2, 2–30, 30–250

Porosity [–] 0.25, 0.25, 0.20

Geophysical parameters

Archie cementation exponent (m) [–] 1.5

Archie saturation exponent (n) [–] 1.5

Water salinity (C) [ppm] 250 (Si = 0)

Na+ ionic mobility (β) [m2 V−1 s−1] 5.8× 10−8 (25 ◦C)

Cl− ionic mobility (β) [m2 V−1 s−1] 7.9× 10−8 (25 ◦C)

Na+ surface ionic mobility (βs) [m2 V−1 s−1] 0.51× 10−8 (25 ◦C)

Grain mass density (ρg) [kgm−3] 2650

Cation exchange capacity (χ ) [Ckg−1] 200, 10, 500

Salinity exponent (a) [–] 0.8

Surface conduction effects, described by the second term

in Eq. (1), are related to the chemistry at the pore–water inter-

face, and can be important in fresh water (low conductivity)

systems at low porosity (high ice saturation). Additionally,

the surface conduction term provides a means for describing

the conductivity behavior for different lithologies, as will be

described below. The surface conductivity is given by

σs =
2

3

(
φ

1−φ

)
βsQv, (3)

where βs is the cation mobility [m2 V−1 s−1] for counterions

in the electrical double layer at the grain-water interface (Re-

vil et al., 1998) andQv is the excess electrical charge density

[Cm−3] in the pore volume, and

Qv = S
−1
w ρg

(
1−φ

φ

)
χ, (4)

where ρg is the mass density of the grains [kgm−3] and χ is

the cation exchange capacity [Ckg−1]. Changes in χ , repre-

sentative of bulk differences in clay mineral content, are used

to differentiate the electrical signatures of the lithologic units

in this study (Table 1).

The temperature, T [C], dependence of ionic mobility af-

fects both the fluid conductivity (Eq. 2) and surface conduc-

tivity (Eq. 3), where mobility is approximated as a linear

function of temperature (Keller and Frischknecht, 1966; Sen

and Goode, 1992) as

β (T )= βT=25 ◦C [1+ 0.019(T − 25)] . (5)

Finally, we consider the effect of increasing ice saturation

on salinity. Because salts are generally excluded as freez-

ing occurs, salinity of the remaining unfrozen pore water

is expected to increase with increasing ice content (Marion,
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1995), leading to a corresponding increase in fluid conduc-

tivity according to Eq. (2). To describe this dependence of

salinity on ice saturation, C(Si), we use the expression

C (Si)= CSi=0S
−α
w , (6)

where α ∼ 0.8 accounts for loss of solute from the pore space

due to diffusion or other transport processes and Si = 1−Sw.

Information about the different lithologic units described

by Wellman et al. (2013) that are also summarized in Table 1

are used to define static model properties such as porosity,

grain mass density, cation exchange capacity, and Archie’s

exponents. Dynamic outputs from the SUTRA simulations,

including temperature and ice saturation, are combined with

the static variables in Eqs. (1)–(6) to predict the evolving

electrical resistivity structure.

2.3 Geophysical forward simulations

Synthetic AEM data are simulated for each snapshot of pre-

dicted bulk resistivity values using nominal system parame-

ters based on the Fugro RESOLVE1 frequency-domain AEM

system that was used in the Yukon Flats survey (Minsley et

al., 2012). The RESOLVE system consists of five horizon-

tal coplanar (HCP) transmitter–receiver coil pairs separated

by approximately 7.9 m that operate at frequencies 0.378,

1.843, 8.180, 40.650, and 128.510 kHz and one vertical coax-

ial coil pair with 9 m separation that operates at 3.260 kHz.

Oscillating currents and associated magnetic fields created

by the transmitter coils induce electrical currents in the sub-

surface that, in turn, generate secondary magnetic fields that

are recorded by the receiver coils (Siemon, 2006; Ward and

Hohmann, 1988). Data are reported as in-phase and quadra-

ture components of the secondary field in parts per million

(ppm) of the primary field, and responses as a function of fre-

quency can be converted through mathematical inversion to

estimates of electrical resistivity as a function of depth (e.g.,

Farquharson et al., 2003). Data are simulated at the nomi-

nal survey elevation of 30 m above ground surface using the

one-dimensional modeling algorithm described in Minsley

(2011), which follows the standard electromagnetic theory

presented by Ward and Hohmann (1988).

The vertical profile of resistivity as a function of depth is

extracted at each survey location and is used to simulate for-

ward geophysical responses. There are 181 sounding loca-

tions for each axis-symmetric model, starting at the center of

the lake (r = 0 m) and moving to the edge of the model do-

main (r = 1800 m) in 10 m increments. Each vertical resis-

tivity profile extends to 200 m depth, which is well beyond

the depth to which we expect to recover parameters in the

geophysical inversion step. A center-weighted five-point fil-

ter with weights equal to [0.0625, 0.25, 0.375, 0.25, 0.0625]

is used to average neighboring bulk resistivity values at each

1Any use of trade, product, or firm names is for descriptive pur-

poses only and does not imply endorsement by the US Government.

depth before modeling in order to partly account for the lat-

eral sensitivity of AEM systems (Beamish, 2003). Forward

simulations are repeated for each of the 50 simulation times

between output of 0 and 1000 years from SUTRA, resulting

in 9050 data locations per modeling scenario.

Synthetic ground-based electromagnetic data presented in

Sect. 3.3 are simulated using nominal system parameters

based on the GEM-2 instrument (Huang and Won, 2003).

The GEM-2 has a single HCP transmitter–receiver pair sepa-

rated by 1.66 m, and data are simulated at six frequencies:

1.5, 3.5, 8.1, 19, 43, and 100 kHz. A system elevation of

1 m above ground is assumed, which is typical for this hand-

carried instrument.

2.4 Parameter estimation and uncertainty

quantification

The inverse problem involves estimating subsurface resistiv-

ity values given the simulated forward responses and realistic

assumptions about data errors. Geophysical inversion is in-

herently uncertain; there are many plausible resistivity mod-

els that are consistent with the measured data. In addition,

the ability to resolve true resistivity values is limited both

by the physics of the AEM method and the level of noise

in the data. Here, we use a Bayesian Markov chain Monte

Carlo (McMC) algorithm developed for frequency-domain

electromagnetic data (Minsley, 2011) to explore the ability

of simulated AEM data to recover the true distribution of

subsurface resistivity values at 20-year intervals within the

1000-year lake-talik simulations. This McMC approach is an

alternative to traditional inversion methods that find a single

“optimal” model that minimizes a combined measure of data

fit and model regularization (Aster et al., 2005). Although

computationally more demanding, McMC methods allow for

comprehensive model appraisal and uncertainty quantifica-

tion. AEM-derived resistivity estimates for the simulations

considered here will help guide interpretations of future field

data sets, identifying the characteristics of relatively young

versus established thaw under different hydrologic condi-

tions.

The McMC algorithm provides comprehensive model as-

sessment and uncertainty analysis and is useful in diagnos-

ing the ability to resolve various features of interest. At

every data location along the survey profile, an ensemble

of 100 000 resistivity models is generated according to the

Metropolis–Hastings algorithm (Hastings, 1970; Metropolis

et al., 1953). According to Bayes’ theorem, each model is

assigned a posterior probability that is a measure of (1) its

prior probability which, in this case, is used to penalize mod-

els with unrealistically large contrasts in resistivity over thin

layers; and (2) its data likelihood, which is a measure of how

well the predicted data for a given resistivity model match

the observed data within data errors. A unique aspect of this

algorithm is that it does not presuppose the number of lay-

ers needed to fit the observed data, which helps avoid biases
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due to assumptions about model parameterization. Instead,

trans-dimensional sampling rules (Green, 1995; Sambridge

et al., 2013) are used to allow the number of unknown layers

to be one of the unknowns. That is, the unknown parameters

for each model include the number of layers, layer interface

depths, and resistivity values for each layer.

Numerous measures and statistics are generated from the

ensemble of plausible resistivity models, such as the single

most-probable model, the probability distribution of resistiv-

ity values at any depth, the probability distribution of where

layer interfaces occur as a function of depth, and the proba-

bility distribution of the number of layers (model complex-

ity) needed to fit the measured data. A detailed description

of the McMC algorithm can be found in Minsley (2011).

Finally, probability distributions of resistivity are combined

with assumptions about the distribution of resistivity values

for any lithology and/or ice content in order to make a prob-

abilistic assessment of lithology or ice content, as illustrated

below.

3 Results

3.1 Electrical resistivity model development

Information about the different lithologic units described by

Wellman et al. (2013) that are also summarized in Table 1

are used to define static model properties such as porosity,

grain mass density, cation exchange capacity, and Archie’s

exponents. Dynamic outputs from the SUTRA simulations,

including temperature and ice saturation, are combined with

the static variables in Eqs. (1)–(6) to predict the evolving

electrical resistivity structure. The behavior of bulk resistiv-

ity as a function of ice saturation is shown in Fig. 2. Separate

curves are shown for a range of χ (cation exchange capacity)

values, which are the primary control in defining offset resis-

tivity curves for different lithologies, where increasing χ is

generally associated with more fine-grained material such as

silt or clay.

For each of the 1000-year simulations, the static variables

summarized in Table 1 are combined with the spatially and

temporally variable state variables T and Si output by SU-

TRA to predict the distribution of bulk resistivity at each time

step using Eqs. (1)–(6). An example of SUTRA output vari-

ables for the 6 m deep gaining lake scenario at 240 years (the

approximate sub-lake talik breakthrough time for that sce-

nario) is shown in Fig. 3a and b, and the predicted resistivity

for this simulation step is shown in Fig. 3c. The influence

of different lithologic units is clearly manifested in the pre-

dicted resistivity values, whereas lithology is not overly ev-

ident in the SUTRA state variables. For a single unit, there

is a clear difference in resistivity for frozen versus unfrozen

conditions. Across different units, there is a contrast in re-

sistivity when both units are frozen or unfrozen. Resistivity

can therefore be a valuable indicator of both geologic and ice
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Figure 2. Bulk resistivity as a function of ice saturation using the

physical properties defined for each of the lithologic units described

in Table 1.

content variability. However, there is also ambiguity in resis-

tivity values as both unfrozen unit 2 and frozen unit 3 appear

to have intermediate resistivity values of approximately 100–

300�m (Fig. 3c) and cannot be characterized by their resis-

tivity values alone. This ambiguity in resistivity can only be

overcome by additional information such as borehole data or

prior knowledge of geologic structure. Synthetic bulk resis-

tivity values according to Eq. (1) are shown in Fig. 4 for the

four different lake depths (3, 6, 9, and 12 m) at three different

simulation times (100, 240, and 1000 years) output from the

hydrostatic/current climate condition simulations.

Lithology and ice saturation are the primary factors that

control simulated resistivity values (Fig. 2), though ice sat-

uration is a function of temperature. The empirical relation

between temperature and bulk resistivity is shown in Fig. 3d

by cross-plotting values from Fig. 3b and c. Within each

lithology resistivity is relatively constant above 0 ◦C, with

a rapid increase in resistivity for temperatures below 0 ◦C.

This result is very similar to the temperature–resistivity rela-

tionships illustrated by Hoekstra et al. (1975, Fig. 1), lend-

ing confidence to our physical property definitions described

earlier. Above 0 ◦C, the slight decrease in resistivity is due

to the temperature dependency of fluid resistivity. The rapid

increase in resistivity below 0 ◦C is primarily caused by re-

ductions in effective porosity due to increasing ice satura-

tion, though changes in surface conductivity and salinity at

increasing ice saturation are also contributing factors. Below

−1 ◦C, the change in resistivity values as a function of tem-

perature rapidly decreases. This is an artifact caused by the

imposed temperature–ice saturation relationship defined in

SUTRA that, for these examples, enforces 99 % ice satura-

tion at −1 ◦C. It is more likely that ice saturation continues

to increase asymptotically over a larger range of tempera-

tures below 0 ◦C, with corresponding increases in electrical

resistivity. However, because AEM methods are limited in

www.the-cryosphere.net/9/781/2015/ The Cryosphere, 9, 781–794, 2015
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Figure 4. Synthetic bulk resistivity images under hydrostatic flow and current climate conditions. Lake depths of 3 m (a–c), 6 m (d–f),

9 m (g–i), and 12 m (j–l) are illustrated at simulation times 100, 240, and 1000 years.

their ability to discern differences among very high resistivity

values, as discussed later, this artifact does not significantly

impact the results presented here.

3.2 Parameter estimation and uncertainty

quantification

AEM data (not shown) are simulated for each of the elec-

trical resistivity models (e.g., Fig. 4) using the methods de-

scribed in Sect. 2.3. The simulated data are then used to re-
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Figure 5. Mean resistivity model extracted from McMC ensembles. Results are shown for the 6 m deep hydrostatic lake scenario outputs at

(a) 100 years, (b) 240 years, and (c) 1000 years.

cover estimates of the original resistivity values according to

the approach outlined in Sect. 2.4, assuming 4 % data error

with an absolute error floor of 5 ppm. Resistivity parameter

estimation results for the 6 m deep hydrostatic lake scenario

(Fig. 4d–f) are shown in Fig. 5. At each location along the

profile, the average resistivity model as a function of depth

is calculated from the McMC ensemble of 100 000 plausible

models. The overall pattern of different lithologic units and

frozen/unfrozen regions is accurately depicted in Fig. 5, with

two exceptions that will be discussed in greater detail: (1) the

specific distribution of partial ice saturation beneath the lake

before thaw has equilibrated (Fig. 5a and b) and (2) the shal-

low sand layer (unit 1) that is generally too thin to be resolved

using AEM data.

A point-by-point comparison of true (Fig. 4f) versus pre-

dicted (Fig. 5c) resistivity values for the hydrostatic 6 m deep

lake scenario at the simulation time 1000 years is shown in

Fig. 6a. The cross-plot of true versus estimated resistivity

values generally fall along the 1 : 1 line, providing a more

quantitative indication of the ability to estimate the subsur-

face resistivity structure. Estimates of the true resistivity val-

ues for each lithology and freeze–thaw state (Fig. 6b) tend to

be indistinct, appearing as a vertical range of possible values

in Fig. 6a due to the inherent resolution limitations of inverse

methods and parameter tradeoffs (Day-Lewis et al., 2005;

Oldenborger and Routh, 2009). Although the greatest point

density for both frozen and unfrozen silts (unit 3) falls along

the 1 : 1 line, resistivity values for these components of the

model are also often overestimated; this is likely due to un-

certainties in the location of the interface between the silt and

gravel units. This is in contrast with the systematic underes-

timation of frozen gravel resistivity values due to the inabil-

ity to discriminate very high resistivity values using electro-

magnetic methods (Ward and Hohmann, 1988). Frozen sands

(true log resistivity ∼ 2.8 in Fig. 6b) are also systematically

overestimated in Fig. 6a; in this case, due to the inability to

resolve this relatively thin resistive layer.

While useful, single “best” estimates of resistivity values

at any location (Fig. 6) are not fully representative of the in-

formation contained in the AEM data and associated model

uncertainty. From the McMC analysis of 100 000 models at

each data location, estimates of the posterior probability den-

sity function (pdf) of resistivity are generated for each point

in the model. Probability distributions are extracted from a

depth of 15 m, within the gravel layer (unit 2), at one location

where unfrozen conditions exist (r = 0 m) and a second loca-

tion outside the lake extent (r = 750 m) where the ground re-

mains frozen (Fig. 7a). Results from a depth of 50 m, within

the silt layer (unit 3), are shown in Fig. 7b. With the excep-

tion of the frozen gravels, the resistivity of which tends to be

underestimated, the peak of each pdf is a good estimate of

the true resistivity value at that location.

Resistivity values are translated to estimates of ice satu-

ration, which is displayed on the upper axis of each panel

in Fig. 7, using the appropriate lithology curve from Fig. 2.

Using the ice-saturation-transformed pdfs, quantitative infer-

ences can be made about the probability of the presence or

absence of permafrost. For example, the probability of ice

content being less than 50 % is estimated by calculating the

fractional area under each distribution for ice-content values
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Figure 6. Performance of geophysical parameter estimation in re-

covering true parameter values. (a) True versus McMC-estimated

resistivity values for the hydrostatic 6 m deep lake scenario at simu-

lation time 1000 years compared with the frequency distribution of

true resistivity values (b). Estimated resistivity values generally fall

along the dashed 1 : 1 line in (a), with the exception of underpredic-

tion of the resistive frozen gravels, overprediction of the thin surfi-

cial frozen sand, and some overprediction of the frozen silt where it

is in contact with frozen gravel.

less than 0.5. Probability estimates of ice content less than

50 % and greater than 95 % for the four distributions shown

in Fig. 7 are summarized in Table 2. High probabilities of ice

content exceeding 95 % are associated with the r = 750 m

location outside the lake extent, whereas high probability of

ice content below the 50 % threshold are observed at r = 0

beneath the center of the lake. The pdfs for each lithology

shown in Fig. 7 are end-member examples of frozen and un-

frozen conditions. Within a given lithology, a smooth tran-

sition from the frozen-state pdf to the unfrozen-state pdf is

observed as thaw occurs, with corresponding transitions in

the calculated ice threshold probabilities.
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Figure 7. McMC-estimated resistivity posterior distributions within

frozen and unfrozen unit 2 gravels (a) and frozen and unfrozen unit

3 silts (b) for the hydrostatic 6 m deep lake scenario at 1000 years.

Unfrozen resistivity distributions are extracted beneath the center of

the lake (r = 0) at depths of 15 and 50 m for the gravels and silts,

respectively. Frozen distributions are extracted at the same depths

but at r = 750 m. The upper x-axis labels indicate approximate ice

saturation based on the lithology-dependent ice saturation versus

resistivity curves shown in Fig. 2.

Table 2. Probability of ice saturation falling above or below spec-

ified thresholds based on the McMC-derived resistivity probability

distributions shown in Fig. 7.

p (ice< 0.5) p (ice> 0.95)

Unit 2 (gravel), r = 0 m 0.76 0.05

Unit 2 (gravel), r = 750 m 0.00 0.88

Unit 3 (silt), r = 0 m 0.76 0.05

Unit 3 (silt), r = 750 m 0.00 0.98

Further illustration of the spatial and temporal changes in

resistivity pdfs are shown in Fig. 8. The resistivity pdf is dis-

played as a function of distance from the lake center at the

same depths (15 and 50 m) shown in Fig. 7, corresponding to

gravel (Fig. 8a, c, and e) and silt (Fig. 8b, d, and f) locations.

High probabilities, i.e., the peaks in Fig. 7, correspond to

dark-shaded areas in Fig. 8. Images are shown for three dif-

ferent time steps in the SUTRA simulation for the hydrostatic

6 m deep lake scenario: 100 years (Fig. 8a and b), 240 years

(Fig. 8c and d), and 1000 years (Fig. 8e and f). Approxi-

mate ice-saturation values, translated from the ice versus re-

sistivity relationships for each lithology shown in Fig. 2, are

displayed on the right axis of each panel in Fig. 8, and true

resistivity values are plotted as a dashed line. Observations

from Fig. 8 include the following:

1. Outside the lake boundary, pdfs are significantly more

sharply peaked (darker shading) for the gravel unit than

The Cryosphere, 9, 781–794, 2015 www.the-cryosphere.net/9/781/2015/



B. J. Minsley et al.: Geophysical signatures of sublacustrine permafrost thaw 789

A

FE

DC

B

p(resistivity)

True value

0 200 18001600140012001000800600400
Distance (m)

100 years, 15 m depth

R
es

is
tiv

ity
 (o

hm
-m

)

Ic
e 

Sa
tu

ra
tio

n

0
0.5
0.75
0.9
0.95

0.99

102

103

104

0 200 18001600140012001000800600400
Distance (m)

240 years, 15 m depth

R
es

is
tiv

ity
 (o

hm
-m

)

Ic
e 

Sa
tu

ra
tio

n

0
0.5
0.75
0.9
0.95

0.99

102

103

104

0 200 18001600140012001000800600400

1,000 years, 15 m depth

R
es

is
tiv

ity
 (o

hm
-m

)

Ic
e 

Sa
tu

ra
tio

n
0
0.5
0.75
0.9
0.95

0.99

102

103

104

Distance (m)

0 200 18001600140012001000800600400
Distance (m)

100 years, 50 m depth

R
es

is
tiv

ity
 (o

hm
-m

)

Ic
e 

Sa
tu

ra
tio

n

0
0.5
0.75
0.9
0.95

0.99

102

103

101

0 200 18001600140012001000800600400
Distance (m)

240 years, 50 m depth

R
es

is
tiv

ity
 (o

hm
-m

)

Ic
e 

Sa
tu

ra
tio

n

0
0.5
0.75
0.9
0.95

0.99

102

103

101

0 200 18001600140012001000800600400

1,000 years, 50 m depth

R
es

is
tiv

ity
 (o

hm
-m

)

Ic
e 

Sa
tu

ra
tio

n

0
0.5
0.75
0.9
0.95

0.99

102

103

101

Distance (m)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Lake edge

Figure 8. Resistivity probability distributions for the hydrostatic 6 m deep lake scenario at simulation times 100 years (a–b), 240 years (c–d),
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center (r = 0 m) to the edge of the model (r = 1800 m). Dashed lines indicate the true resistivity values. Ice saturation is displayed on the

right axis of each image and is defined empirically for each lithology using the relationships in Fig. 2.

the silt unit, suggesting better resolution of shallower

resistivity values within the gravel layer. It should be

noted, however, that this improved resolution does not

imply improved model accuracy; in fact, the highest

probability region slightly underestimates the true re-

sistivity value.

2. Probability distributions for the silt layer track the true

values but with greater uncertainty.

3. Inside the lake boundary, gravel resistivity values are

not as well resolved compared with locations outside

the lake boundary due to the loss of signal associated

with the relatively conductive lake water.

4. Increasing trends in resistivity/ice saturation towards

the outer extents of the lake are captured in the pdfs but

are subtle.

5. Within the silt layer at early times before the talik is

fully through-going (Fig. 8b and d), the AEM data are

insensitive to which layer is present, hence the bi-modal

resistivity distribution with peaks associated with char-

acteristic silt and gravel values. This ambiguity disap-

pears at later times when the low-resistivity unfrozen

silt layer extends to the base of the unfrozen gravels,

which is a more resolvable target (Fig. 8f).

A more detailed analysis of the changes in resistivity and

ice saturation as a function of time, and for the differences

between hydrostatic and gaining lake conditions, is presented

in Fig. 9. Average values of resistivity/ice saturation within

100 m of the lake center are shown within the gravel layer

at a depth of 15 m (Fig. 9a) and a depth of 50 m within

the silt layer (Fig. 9b) at 20-year time intervals. Outputs are

displayed for both 6 m deep hydrostatic and gaining lake

scenarios. Thawing due to conduction occurs over the first

∼ 200 years within the gravel layer (Fig. 9a), with similar

trends for both the hydrostatic and gaining lake conditions

and no clear relationship to the talik formation times indi-

cated as vertical lines. Conduction-dominated thaw is ob-

served for the gravel layer in the gaining lake scenario be-

cause significant advection does not occur until after the thaw

bulb has extended beneath the gravel layer. In the deeper silt

layer (Fig. 9b), however, very different trends are observed

for the hydrostatic and gaining lake conditions. Ice content

decreases gradually as thawing occurs in the hydrostatic sce-

nario, consistent with conduction-dominated thaw, reaching

a minimum near the time of talik formation at 687 years

(Wellman et al., 2013, Table 3). In contrast, there is a rapid

loss in ice content in the gaining lake scenario resulting from

the influence of advective heat transport as groundwater is

able to move upwards through the evolving talik beneath the
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lake. This rapid loss in ice content begins after the gravel

layer thaws and reaches a minimum near the 258-year time

of talik formation for this scenario. These trends, captured

by the AEM-derived resistivity models, are consistent with

the plots of change in ice volume output from the SUTRA

simulations reported by Wellman et al. (2013, Fig. 3).

3.3 Near-surface resolution

Finally, we focus on the upper sand layer (unit 1), which

is generally too thin (2 m) and resistive (> 600�m) to be

resolved using AEM data, though may be imaged using

other ground-based electrical or electromagnetic geophys-

ical methods. Seasonal thaw and surface runoff cause lo-

cally reduced resistivity values in the upper 1 m, which is

still too shallow to resolve adequately using AEM data. In

practice, shallow thaw and sporadic permafrost trends are ob-

served to greater depths in many locations, including inactive

or abandoned channels (Jepsen et al., 2013b). To simulate

these types of features, the shallow resistivity structure of the

6 m deep hydrostatic lake scenario at 1000 years is manually

modified to include three synthetic “channels”. These chan-

nels are not intended to represent realistic pathways relative

to the lake and the hydrologic simulations; they are solely

for the purpose of illustrating the ability to resolve shallow

resistivity features.

Figure 10a shows the three channels in a zoomed-in view

of the uppermost portion of the model outside the lake extent.

Each channel is 100 m wide but with different depths: 1 m

Figure 10. Comparison of airborne and ground-based measure-

ments for recovering shallow thaw features. (a) True shallow re-

sistivity structure extracted from the hydrostatic 6 m deep lake sce-

nario at a simulation time of 1000 years, shown outside of the lake

extent (distance> 500 m). Three shallow low-resistivity channels

with thicknesses of 1, 2, and 3 m were added to the resistivity model

to provide added contrast. McMC-derived results using simulated

AEM data (b) and ground-based electromagnetic data (c) illustrate

the capability of these systems to image shallow features.

(half the unit 1 thickness), 2 m (full unit 1 thickness), and 3 m

(extending into the top of unit 2). Analysis of AEM data sim-

ulated for this model, presented as the McMC average model,

is shown in Fig. 10b. All three channels are clearly identified,

but their thicknesses and resistivity values are overestimated

and cannot be distinguished from one another. To explore the

possibility of better resolving these shallow features, syn-

thetic electromagnetic data are simulated using the charac-

teristics of a ground-based multi-frequency electromagnetic

tool (the GEM-2 instrument) that can be hand carried or

towed behind a vehicle and is commonly used for shallow

investigations. The McMC average model result for the sim-

ulated shallow electromagnetic data is shown in Fig. 10c. An

error model with 4 % relative data errors and an absolute er-

ror floor of 75 ppm was used for the GEM-2 data. Channel

thicknesses and resistivity values are better resolved com-

pared with the AEM result, though the 1 m deep channel near

r = 800 m appears both too thick and too resistive. In addi-

tion, the shallow electromagnetic data show some sensitivity

to the interface at 2 m depth between frozen silty sands and

frozen gravels, though the depth of this interface is overes-

timated due to the limited sensitivity to these very resistive

features.
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4 Discussion

Understanding the hydrogeophysical responses to permafrost

dynamics under different hydrologic and climatic conditions,

and in different geological settings, is important for guid-

ing the interpretation of existing geophysical data sets and

also for planning future surveys. Geophysical models are

inherently uncertain and ambiguous because of (1) the res-

olution limitations of any geophysical method and (2) the

weak or non-unique relationship between hydrologic proper-

ties and geophysical properties. We have presented a general

framework for coupling airborne and ground-based electro-

magnetic predictions to hydrologic simulations of permafrost

evolution, including a novel physical property relationship

that accounts for the electrical response to changes in lithol-

ogy, temperature, and ice content, as well as a rigorous anal-

ysis of geophysical parameter uncertainty. Although the fo-

cus here is on AEM data, other types of electrical or elec-

tromagnetic measurements could be readily simulated using

the same resistivity model. Future efforts will focus on the

simulation of other types of geophysical data (e.g., nuclear

magnetic resonance or ground penetrating radar) using the

same basic modeling approach.

In the specific examples of lake-talik evolution presented

here, which are modeled after the physical setting of the

Yukon Flats, Alaska (Minsley et al., 2012), AEM data are

shown to be generally capable of resolving large-scale per-

mafrost and geological features (Fig. 5), as well as thermally

and hydrologically induced changes in permafrost (Figs. 8

and 9). The Bayesian McMC analysis provides useful de-

tails about model resolution and uncertainty that cannot be

assessed using traditional inversion methods that produce a

single “best” model. A fortuitous aspect of the Yukon Flats

model is the fact that the silt layer (unit 3) is relatively con-

ductive compared with the overlying gravels (unit 2), making

it a good target for electromagnetic methods. If the order of

these layers were reversed, if the base of permafrost were

hosted in a relatively resistive lithology, or if the base of per-

mafrost was significantly deeper, AEM data would not likely

resolve the overall structure with such good fidelity. In addi-

tion, knowledge of the stratigraphy helps to remove the ambi-

guity between unfrozen gravels and frozen silts, which have

similar intermediate resistivity values (Figs. 4 and 5). The

methods developed here that use a physical property model to

link hydrologic and geophysical properties provide the nec-

essary framework to test other more challenging hydrogeo-

logical scenarios.

Two key challenges for the lake-talik scenarios were iden-

tified: (1) resolving the details of partial ice saturation be-

neath the lake during talik formation and (2) resolving near-

surface details associated with shallow thaw. The first chal-

lenge is confirmed by Figs. 5 and 8, which show that AEM

data cannot resolve the details of partial ice saturation be-

neath a forming talik. However, there is clearly a change in

the overall characteristics of the sub-lake resistivity struc-

ture as thaw increases (Fig. 9). One notable feature is the

steadily decreasing depth to the top of the low-resistivity

unfrozen silt (red) beneath the lake (Fig. 5a–b) as thaw in-

creases, ultimately terminating at the depth of the gravel–

silt interface when fully unfrozen conditions exist (Fig. 5c).

Measurements of the difference in elevation between the in-

terpreted top of unfrozen silt and the base of nearby frozen

gravels were used by Jepsen et al. (2013a) to classify whether

or not fully thawed conditions existed beneath lakes in the

Yukon Flats AEM survey described by Minsley et al. (2012).

The simulations presented here support use of this metric to

distinguish full versus partial thaw beneath lakes. However,

without the presence of a lithological boundary, the shal-

lowing base of permafrost associated with talik development

beneath lakes would be much more difficult to distinguish.

Finally, it is important to note that resistivity is sensitive

primarily to unfrozen water content and that significant un-

frozen water can remain in relatively warm permafrost that is

near 0 ◦C, particularly in fine-grained sediments. Resistivity-

derived estimates of talik boundaries defined by water con-

tent may therefore differ from the thermal boundary defined

at 0 ◦C.

The second challenge, to resolve near-surface details as-

sociated with supra-permafrost thaw, is addressed in Fig. 10.

For the scenarios considered here, AEM data can identify

shallow thaw features but have difficulty in discriminating

their specific details. There are many combinations of resis-

tivity and thickness that produce the same electromagnetic

response; therefore, without additional information it is not

possible to uniquely characterize both thaw depth and re-

sistivity. Ground-based electromagnetic data show improved

sensitivity to the shallow channels and also limited sensi-

tivity to the interface between resistive frozen gravels and

frozen silty sands (Fig. 5). By restricting the possible values

of resistivity and/or thickness for one or more layers based

on prior assumptions, Dafflon et al. (2013) showed that im-

proved estimates of active layer and permafrost properties

can be obtained. The quality of these estimates, of course,

depends on the accuracy of prior constraints used. In many

instances, it may be possible to auger into this shallow layer

to provide direct observations that can be used as constraints.

This approach could be readily applied to the ensemble of

McMC models. For example, if the resistivity of the chan-

nels in Fig. 10a were known, the thickness of the channels

could be estimated more accurately by selecting only the set

of McMC models with channel resistivity close to the true

value, thereby removing some of the ambiguity due to equiv-

alences between layer resistivity and thickness.

AEM data are most likely to be useful for baseline char-

acterization of subsurface properties as opposed to monitor-

ing changes in permafrost. Although there are some cases of

rapid change associated with near-surface freeze–thaw pro-

cesses (Koch et al., 2013), and the case of catastrophic loss

of ice in the gaining lake scenario (Fig. 9b), that may be of in-

terest, large-scale changes in permafrost generally occur over
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much longer time periods than is practical for repeat AEM

surveys. One exception could be related to infrastructure

projects such as water reservoirs or mine tailing impound-

ments behind dams, where AEM could be useful for baseline

characterization and repeat monitoring of the impact caused

by human-induced permafrost change. Geophysical model-

ing, thermophysical hydrologic modeling, and field observa-

tions create a synergy that provides greater insight than any

individual approach and can be useful for future characteri-

zation of coupled permafrost and hydrologic processes.

5 Summary

Analysis of AEM surveys provide a means for remotely de-

tecting subsurface electrical resistivity associated with the

co-evolution of permafrost and hydrologic systems over ar-

eas relevant to catchment-scale and larger processes. Cou-

pled hydrogeophysical simulations using a novel physical

property relationship that accounts for the effects of lithol-

ogy, ice saturation, and temperature on electrical resistiv-

ity provide a systematic framework for exploring the geo-

physical response to various scenarios of permafrost evolu-

tion under different hydrological forcing. This modeling ap-

proach provides a means of robustly testing the interpreta-

tion of AEM data given the paucity of deep boreholes and

other ground truth data that are needed to characterize sub-

surface permafrost. A robust uncertainty analysis of the geo-

physical simulations provides important new quantitative in-

formation about the types of features that can be resolved

using AEM data given the inherent resolution limitations of

geophysical measurements and ambiguities in the physical

property relationships. In the scenarios considered here, we

have shown that large-scale geologic and permafrost struc-

ture is accurately estimated. Sublacustrine thaw can also be

identified, but the specific geometry of partial ice saturation

beneath lakes can be poorly resolved by AEM data. Under-

standing the geophysical response to known simulations is

helpful both for guiding the interpretation of existing AEM

data and to plan future surveys and other ground-based data

acquisition efforts.
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