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Abstract. Numerical simulations of land surface processes

are important in order to perform landscape-scale assess-

ments of earth systems. This task is problematic in complex

terrain due to (i) high-resolution grids required to capture

strong lateral variability, and (ii) lack of meteorological forc-

ing data where they are required. In this study we test a to-

pography and climate processor, which is designed for use

with large-area land surface simulation, in complex and re-

mote terrain. The scheme is driven entirely by globally avail-

able data sets. We simulate air temperature, ground surface

temperature and snow depth and test the model with a large

network of measurements in the Swiss Alps. We obtain root-

mean-squared error (RMSE) values of 0.64 ◦C for air tem-

perature, 0.67–1.34 ◦C for non-bedrock ground surface tem-

perature, and 44.5 mm for snow depth, which is likely af-

fected by poor input precipitation field. Due to this we trial a

simple winter precipitation correction method based on melt

dates of the snowpack. We present a test application of the

scheme in the context of simulating mountain permafrost.

The scheme produces a permafrost estimate of 2000 km2,

which compares well to published estimates. We suggest that

this scheme represents a useful step in application of numer-

ical models over large areas in heterogeneous terrain.

1 Introduction

Numerical simulation is an increasingly important tool for

assessment of the energy and mass balance at the earth’s sur-

face for many fields of research and application (e.g. Wood

et al., 2011; Barnett et al., 2005; Gruber, 2012). In addi-

tion, numerical methods allow for transient assessment of

past and future states, an essential step for change detection

of (near-)surface conditions (Etzelmüller, 2013). Numerical

approaches may also provide the means to simulate land sur-

face variables where there are insufficient data for statistical

method,s e.g. remote areas or future periods.

Landscapes that are heterogeneous in terms of e.g. to-

pography, vegetation or redistribution of snow (e.g. Smith

and Riseborough, 2002; Liston and Haehnel, 2007) pro-

vide a great challenge in this respect, as surface and sub-

surface conditions may vary on various, and often short,

length scales, creating highly spatially differentiated surface–

atmosphere interactions. This poses, in particular, a chal-

lenge to large-area simulations, which can be summarised

as follows: (1) high-resolution grids are required to capture

surface heterogeneity, which is often numerically prohibitive

over large areas, and efficient methods are therefore required

to make this task scalable; (2) there is often a lack of a repre-

sentative forcing at the site or scale that it is required, partic-

ularly in remote regions.

Recent efforts in this respect include spatially explicit or

distributed simulations; e.g. Jafarov et al. (2012) and West-

ermann et al. (2013) produced a transient run of the ground

thermal state in Alaska to assess permafrost dynamics un-

der IPCC change scenarios. Another meso-scale modelling

effort, that of Gisnå s et al. (2013), provides an equilibrium

model of permafrost distribution in Norway at a spatial res-

olution of 1 km2. While representing major steps in applica-

tion of numerical models over large areas, the grid resolu-

tion of 1–2 km is too coarse to simulate relevant spatial dif-

ferentiation on fine scales, particularly under heterogeneous

terrain. At site scales several studies have applied numerical

models to investigate the ground thermal regime at specific
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permafrost sites (Scherler et al., 2010, 2014); however, in a

few studies downscaled climate data have been used to force

such a model (e.g. Marmy et al., 2013).

In global climate models, a spatially detailed representa-

tion of the sub-grid land surface still remains somewhat be-

hind the implementation of the atmosphere, yet is recognised

to be key in accurately simulating feedbacks to the atmo-

sphere (Pitman, 2003), e.g. surface albedo–atmosphere ex-

changes in the energy balance (Betts, 2009). For example,

land surface heterogeneity is often represented in tiled ap-

proaches (Koster and Suarez, 1992), where surface types are

represented by a limited number of surface types (or even a

single one). Energy and mass balance is then computed in-

dependently, and finally aggregated at grid level. Here too,

methods capable of representing fine-scale land surface het-

erogeneity efficiently could be useful. Finally, methods exist

(e.g. SAFRAN-Crocus scheme; Durand et al., 1993, 1999)

which classify topography according to fixed classes based

on terrain parameters and enable application of numerical

models over large areas in a semi-distributed fashion.

Gubler et al. (2011) have shown that fine-scale variabil-

ity of surface processes can be high in complex terrain –

e.g. variation in soil moisture, ground cover and local shad-

ing – can cause differences of as much as 3 ◦C mean annual

ground surface temperature (MAGST) within a 10 m× 10 m

grid. This underscores the importance of scale-appropriate

evaluation of models. There are many studies in the liter-

ature where models operating on grids of 10s–100s or, in

extreme cases, 1000s of metres are evaluated by point-scale

measurements, and this is known to pose a serious challenges

to model evaluation (Randall et al., 2003; Li, 2005). How-

ever, methods that provide simulation results over large ar-

eas capable of exploiting distributed site-scale ground truth

are rare.

In previous papers (Fiddes and Gruber, 2012, 2014), meth-

ods have been developed and tested which enable (i) physi-

cally based land surface models (LSMs) to be applied over

large areas using a sub-grid scheme that samples land surface

heterogeneity and (ii) a method that scales gridded climate

data necessary to drive an LSM to the sub-grid using atmo-

spheric profiles. The philosophy behind these approaches is

to develop methods that depend only on globally available

data sets to derive high-quality local results in heterogeneous

and/or remote regions.

The main aim of this study is to establish this combined

method as a proof of concept and perform an initial evalua-

tion of its performance in the context of the ground thermal

regime and specifically permafrost occurrence in the Euro-

pean Alps, as a test case. That said, the aim is not to pro-

vide a best-possible result for e.g. permafrost (as the example

subject of this study) but to provide a demonstration of this

method using simple data sets. It is well known that precipi-

tation bias is a common problem when using climate model

or reanalysis data (e.g.Dai, 2006; Boberg et al., 2008) and a

key driver of the energy and mass balance at the land surface.

Therefore, an additional aim is to explore a simple method

that may be useful in addressing precipitation bias using the

parameter melt date (MD) of the snowpack. Specifically this

paper will

1. conduct a test application of the combined schemes to-

gether with the LSM GEOtop (Endrizzi et al., 2014)

to derive land surface/near-surface variables air temper-

ature (TAIR), ground surface temperature (GST) and

snow depth (SD) over a large area of the European Alps

at a resolution of 30 m, and additionally a derived per-

mafrost estimate;

2. evaluate the performance of the combined schemes

against a large network of TAIR, GST and SD measure-

ments in the Swiss Alps;

3. demonstrate a simple bias correction method for the pre-

cipitation field;

4. interpret results together with uncertainties in the model

chain.

2 Methods

The model chain used in this study uses two previously de-

scribed methods, (i) TopoSUB (Fiddes and Gruber, 2012,

hereafter FG2012) and (ii) TopoSCALE (Fiddes and Gruber,

2014, hereafter FG2013), together with a numerical LSM,

GEOtop (Endrizzi et al., 2014). A brief synopsis of the tools

used is given here to enable full understanding of the current

study, but for further details and results of testing of these

tools please see the respective publications.

2.1 TopoSUB

TopoSUB is a scheme which samples land surface hetero-

geneity at high resolution (here, 30 m). Input predictors de-

scribing relevant dimensions of variability are clustered with

a K-means algorithm to reduce computational units in a

given simulation domain (here, 0.75◦× 0.75◦). A 1-D LSM

is then applied to each sample. For example, in FG2012 we

show that reduction of a domain from 106 pixels to 258 sam-

ples yields comparable results to a full distributed 2-D base-

line simulation. The main outcome is that the computational

load is effectively reduced by a factor of 104, with an accept-

able reduction in the quality of results. The scheme transfers

model results to high-resolution pixels by membership func-

tions (crisp or fuzzy) for a spatialised mapping of simula-

tion results or statistical descriptions of the sub-grid domain.

Additionally, we have an optional informed-scaling training

routine, which regresses model results against input predic-

tors after a training run in order to adjust the weighting of

each input according to its significance; in doing so, it im-

proves the quality of the final result. Limitations to this fun-

damentally 1-D approach include the fact that lateral mass
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and energy transfers can only be parameterised, not mod-

elled explicitly. This approach allows for (1) modelling of

processes at fine grid resolutions, (2) efficient statistical de-

scriptions of sub-grid behaviour, (3) efficient aggregation of

simulated variables to coarse grids and (4) comparing results

and ground truth derived from similar scales.

2.2 TopoSCALE

TopoSCALE is a scheme which provides forcing to the LSM

at fine scale using gridded climate data sets. It works on the

assumption that vertical gradients are often more important

than horizontal gradients in complex topography. Climate

data sets are employed as they provide consistent fields re-

quired for LSM simulation in 3-D, therefore providing a de-

tailed description of the atmospheric profile. In addition, they

provide data with global coverage and so enable simulation

in remote, data-poor regions. Finally, they provide the pos-

sibility of simulating future conditions. The basic principles

of the scheme are as follows: (1) interpolate data available

on pressure levels air temperature (TAIR), relative humid-

ity (RH), wind speed (Ws) and wind direction (Wd) verti-

cally above and below the target site to provide a scaling

according to atmospheric conditions at each model timestep;

(2) downwelling longwave radiation (LWin) is scaled accord-

ing to TAIR, RH and sky emissivity; (3) topographic correc-

tion is made to downwelling radiation fields (SWin/LWin);

and (4) lapse rate with elevation is applied to precipitation,

P (optional disaggregation scheme based on climatology for

site simulation only as this is spatially explicit). The final

output is the time series of meteorological variables required

to drive a numerical model at 3 h timestep. It is a flexible

scheme that can be used to supply inputs to models in 1-D/2-

D or lumped configurations. The scheme has been shown in

FG2013 to improve the scaling of driving daily fields com-

pared to reference methods such as fixed lapse rates.

2.3 Land surface model

The LSM used in this study, GEOtop, is a physically based

model originally developed for hydrological research. It

should be noted that this model is not an LSM in the conven-

tional sense (e.g. Mosaic, CLM, NOAH; Koster and Suarez,

1992; Dai et al., 2003), as it has not been designed to feed

back to the atmosphere. In addition this model has not been

designed for global or hemispheric application. However, it

couples the ground heat and water budgets, represents the en-

ergy exchange with the atmosphere, has a multilayer snow-

pack and represents the water and energy budget of the snow

cover. GEOtop simulates the temporal evolution of the snow

depth and its effect on ground temperature. It solves the

heat conduction equation in one dimension and the Richards

equation for water transport in one or three dimensions, de-

scribing water infiltration in the ground as well as freezing

and thawing processes in the ground. We have used the ther-
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Figure 1. Overview of how the model chain of TopoSUB,

TopoSCALE and LSM operate together. Two main modes of op-

eration, (MP) point and (MS) spatial, are shown.

mal conductivity parameterisation given by Cosenza et al.

(2003). It provides higher conductivities than Calonne et al.

(2011), who show their parameterisation to be preferable to

that of Sturm and Benson (1997), which provides rather low

estimates. For densities below about 300 kg m−3, the results

of Löwe et al. (2013) are also higher than Calonne et al.

(2011). We did not investigate in detail the effects of dif-

ferent parameterisations on soil surface temperature. Given

the other uncertainties discussed in this paper, we do not ex-

pect it to be significant. GEOtop is therefore a suitable tool to

model permafrost relevant variables such as snow and ground

temperatures both at the surface and at depth. It can be ap-

plied in high mountain regions and allows accounting for to-

pographic and other environmental variability. Further infor-

mation is given by Bertoldi et al. (2006), Rigon et al. (2006),

Endrizzi (2007) and Dall’Amico et al. (2011). Further details

specifically relevant to this study are given in Sect. 3. A full

description of the model is given in Endrizzi et al. (2014), and

a description of model uncertainty and sensitivity is given by

Gubler et al. (2013).

2.4 Model chain and modes

The model chain can be employed in two main configu-

rations: point mode (MP) and spatial mode (MS) (Fig. 1).

MS requires TopoSUB and TopoSCALE, while MP re-

quires only TopoSCALE. In terms of output, MP simulates

point-scale results, whilst MS simulates a spatially explicit

mapped result from samples. The basic model chain employs

www.the-cryosphere.net/9/411/2015/ The Cryosphere, 9, 411–426, 2015
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TopoSCALE to derive a forcing at simulation points or sam-

ples, depending upon the mode employed. The LSM simu-

lates target variables at the computed points or sample cen-

troids. TopoSUB is used in MS to pre-process topography

and post-process results.

2.5 Snow correction method

Precipitation is highly variable in time and space, and fields

computed by climate models often do not capture the fre-

quency and/or intensity distribution of events correctly (Pi-

ani et al., 2009; Manders et al., 2012; Dai, 2006). Addition-

ally, sub-grid topographic features may place large controls

on the distribution of precipitation events (Leung and Ghan,

1998). Therefore, a method is required to correct magnitudes

of precipitation inputs due to the important influence of this

field on land surface processes. The method we test in this

study relies on detection of the MD of the snowpack, a pa-

rameter which summarises both energy and mass inputs to

the snowpack. We vary a parameter in the model which ap-

plies a multiplicative correction on precipitation inputs called

snow correction factor (SCF). We vary this parameter over

the range 0.5–3 in steps of 0.25 and run a simulation for each

correction factor. MDs are computed according Schmid et al.

(2012) for each simulation and observation site using GST

(which avoids circularity). We fit the simulation MDs to ob-

served MDs to obtain a correction factor for precipitation in-

put. This method is based on cumulative winter precipitation

and assumes summer and winter distributions of precipita-

tion biases are similar, which is likely not the case. However,

our primary aim is to address the thermal influence of the

winter snowpack. The approach shown here could potentially

be used together with satellite imagery in order to estimate

snowfall bias based on MD. However, this paper evaluates

the point-based performance of the new method without bias

correction.

3 Data

3.1 Input data

All input data used in this experiment are available free of

charge, globally. This does not imply, however, that data

quality is consistent globally.

3.1.1 Driving climate

Driving climate data are obtained from the ERA-Interim

(ERA-I) data set, which is an atmospheric reanalysis pro-

duced by the ECMWF (Dee et al., 2011). ERA-I provides

meteorological data from 1 January 1979 and continues to be

extended in near-real time. Gridded products include a large

variety of 3-hourly (00:00, 03:00, 06:00, 09:00, 12:00, 15:00,

18:00 and 21:00 UTC) grid-surface fields (GRID) and 6-

hourly (00:00, 06:00, 12:00, 18:00 UTC) upper-atmosphere

Table 1. Description of surface and sub-surface parameters used in

this study. These are generic values of natural materials obtained

from the literature.

Parameter Unit Bedrock Debris Vegetation

Residual water content – 0 0.055 0.056

Saturated water content – 0.05 0.374 0.431

Van Genuchten parameter, α – 0.001 0.1 0.002

Van Genuchten parameter, n – 1.2 2 2.4

Hydraulic conductivity mm s−1 10−6 1 0.044

products available on 60 pressure levels (PLs) with the top

of the atmosphere located at 1 mb. ERA-I relies on a 4-D-

Var assimiliation scheme which uses observations within the

windows of 15:00 to 03:00 UTC and 03:00 to 15:00 UTC

(on the next day) to initialise forecast simulations starting

at 00:00 and 12:00 UTC, respectively. In order to allow suf-

ficient spin-up, the first 9 h of the forecast simulations are

not used. All fields used in this study were extracted on the

ECMWF reduced Gaussian N128 grid (0.75◦× 0.75◦). Six

PLs are used in this study covering the range of 1000–500 mb

(1000, 925, 850, 775, 650, 500), corresponding to approxi-

mately an elevation range of 150–5500 m a.s.l.

3.1.2 Surface data

The DEM used in this study is the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER)

Global Digital Elevation Model Version 2 (GDEM V2)

(Tachikawa, 2011) available at approximately 30 m. Land-

cover was derived by a combined bedrock–debris classifi-

cation which relies primarily on slope angle and a vege-

tation mask from a soil-adjusted vegetation index (SAVI)

derived from Landsat Thermal Mapper/Enhanced Thermal

Mapper (TM/ETM+) sensors. Full details together with de-

scription of uncertainty are given in Boeckli et al. (2012a).

This resulted in three landcover classes, which also define

sub-surface properties according to Gubler et al. (2013):

(i) bedrock, (ii) coarse blocks and (iii) vegetation. Table 1

gives a description of sub-surface properties associated with

each class.

3.2 Validation data sets

The validation data set covers a broad elevation range of

1560–3750 m a.s.l.; full range of slopes from flat to verti-

cal rock walls; full range of aspects; and main Alpine sur-

face cover types: Alpine meadows, coarse debris and bedrock

(Fig. 3). The entire Alpine space of Switzerland is well sam-

pled by the data sets (Fig. 2). Table 2 gives an overview of

each data set.

3.2.1 SLF IMIS stations

The WSL-Institut für Schnee- und Lawinenforschung (SLF)

Intercantonal Measurement and Information System (IMIS)

The Cryosphere, 9, 411–426, 2015 www.the-cryosphere.net/9/411/2015/
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Figure 3. Polar plots describing topographic distribution of valida-

tion sites. Elevation range 1560–3750 m a.s.l.; slopes 0–> 90◦; and

all aspects are represented.

stations are used to evaluate TAIR, GST and SD. This net-

work is biased towards high Alpine locations (there are few

valley stations) but represents strong topographical hetero-

geneity, in terms of elevation, slope and aspect. The network

elevation range is 1562–3341 m a.s.l. This data set is quite

well behaved in that generally sites represent mainly eleva-

tion gradients. The data set used covers years 1996–2011;

GST is measured with a white temperature probe resting on

the ground surface. It does not contain MAGST below 0 ◦.

3.2.2 Data loggers

The data logger data set comprises two individual data sets

and is used to evaluate GST only. Sensors measure GST a

few centimetres below the terrain surface to avoid radiation

effects. The dataset PERMOS data set (Swiss Permafrost

Monitoring Network, http://www.permos.ch) contains data

loggers of various types covering years 1995–2012 (ongo-

ing) distributed throughout the Swiss Alps and managed by a

number of institutions in Switzerland. The data set is not ho-

mogeneous but has been compiled using consistent methods.

This data set covers a great diversity of locations but is biased

towards permafrost monitoring sites and therefore clustered

around MAGST of 0 ◦C. In the analysis, PERMOS data are

split into two groups: (a) PERMOS1: predominantly coarse

debris; (b) PERMOS2: bedrock (mainly steep rock walls).

The second logger data set, iBUTTONS, originates from a

single study (Gubler et al., 2011; Schmid et al., 2012). It

covers years 2010–2011 in a single region in the Engadin.

While broader climatic heterogeneity is not represented by

this data set, it does cover strong topographic variability. The

data set is arranged as 10 m× 10 m “footprints” each con-

taining 10 data loggers. In this study footprint mean values

are used.

3.2.3 Data quality control

Observations outside acceptable limits were removed auto-

matically by applying physically plausible thresholds to all

www.the-cryosphere.net/9/411/2015/ The Cryosphere, 9, 411–426, 2015
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Table 2. Description of evaluation data sets used in this study.

Data set Stations/ Type Variables Period Coverage

sites (ERA boxes)

IMIS 81 Station GST/TAIR/SD 1996–2011 12

PERMOS 77 Logger GST 1995–2012 (variable) 4

iButtons 40 Logger GST 2010–2011 1

data sets. Non-changing values beyond prescribed time lim-

its were screened from wind direction data. These checks fol-

low the methods of Meek and Hatfield (1994). Thresholds of

a maximum of 10 % missing data in any given year quali-

fied that year as a valid MAGST value. As data sets and sites

within data sets differ in number of valid MAGST years (as

defined above), validation values are computed as the mean

of all available MAGST years and compared to the mean of

the same modelled years.

4 Simulation experiments

The simulation domain covers an area of approximately

500 km× 250 km, centred over the Swiss Alps (Fig. 2). The

domain contains 18 coarse-grid ERA-I boxes which supply

the driving climate data. We simulate results for both MP and

MS modes. TopoSUB is run at 200 sample resolution on each

coarse-grid unit. The simulation period is 1984–2011. Spin-

up is performed over 50 years (10 times, 1979–1983 period).

This is necessary to obtain soil temperatures at depth that re-

flect atmospheric conditions and are independent of their ini-

tial value. The LSM runs on an hourly timestep. LSM model

parameters are fixed in all simulations as a mean value of

prior distributions defined in Gubler et al. (2013). We com-

pute mean annual air temperature (MAAT), MAGST and

mean annual snow depth (MASD). Focus is placed on mean

annual values as we are primarily interested in analysing the

performance of the spatial prediction of the scheme. In com-

puting a permafrost estimate, we define a permafrost pixel

as one in which the maximum daily ground temperature at

10 m depth (GT10) over the entire observation period time

is ≤ 0 ◦C. Results are analysed statistically using the root-

mean-squared error (RMSE), correlation coefficient (CORR)

and mean bias (BIAS), defined as

BIAS=mod− obs. (1)

5 Results

5.1 Evaluation: simulated variables

Figure 4 gives MP and MS simulated results validated

against measurement sites for MAGST, MAAT and MASD.

MAGST results are validated against IMIS, PERMOS and

iBUTTON data sets. The scheme most successfully simu-

lates IMIS sites with low error and bias; however, there is

cold (warm) bias at cold (warm) sites. The iBUTTON data

cover the largest range of MAGST and demonstrate good

performance of the scheme in cold (i.e. MAGST< 0) loca-

tions. Both iBUTTON and PERMOS site validation shows

the ability of the scheme to capture results influenced by

the fine-scale variability of the topography (Fig. 3). PER-

MOS1 sites (non-bedrock) are reproduced with greater suc-

cess than PERMOS2 sites (steep bedrock). MP gives im-

proved results for IMIS and PERMOS2, whereas the con-

verse is true for IBUTTON and PERMOS1. Over all data

sets an RMSE of 1.29 is obtained for MS and 1.21 for MP.

However, these figures should be interpreted with caution as

there is an implicit weighting based on available data points,

which are unlikely to be representative of the distribution of

underlying surfaces in the simulation domain.

All MAGST results display some degree of positive bias,

with the exception of PERMOS2 data. This is likely due to a

negatively biased snowpack. This fits with PERMOS2 being

the exception as locations of steep rockwalls and therefore no

snowpack. Underestimated snowpacks may have various and

opposing effects on the ground thermal regime, e.g. greater

cooling in winter or greater warming in late spring with ear-

lier melt. The balance of these effects depends on their rela-

tive magnitude. This issue is further explored in Sect. 5.2.

MAAT is well modelled at IMIS stations with low error

and a bias of only 0.18 ◦C, although a counteracting slight

cold (warm) bias at warm (cold) sites is visible in the data.

MS and MP give statistically identical results. MASD is not

captured well due to large biases in driving precipitation

fields. The bias becomes more pronounced at higher values

of SD. A slight improvement is seen in MP over MS. Over-

all, MP generally shows an improvement over MS in repro-

ducing observations, which would be expected as the spa-

tial uncertainty introduced by TopoSUB is removed. How-

ever the difference is generally quite small (most significant

difference is MAGST IMIS), and this is encouraging in that it

seems MS does not introduce significant uncertainty over MP

simulation. Figure 5 gives a visual impression of MS simu-

lated MAGST results as a transect through the experiment

domain.

A simple classification of results according to per-

mafrost and no permafrost based on MAGST> 0 ◦C and

The Cryosphere, 9, 411–426, 2015 www.the-cryosphere.net/9/411/2015/
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Figure 4. A comparison of MP and MS results. Modelled MAGST, MAAT and MASD evaluated against IMIS sites (2006–2011) together

with statistics. Sensitive thresholds of 0 and ±1 ◦C are added to aid interpretation.

MAGST< 0 ◦C, respectively, shows that the model does not

perform very well for PERMOS1 data. However, this data

set is strongly clustered around 0 ◦C, and therefore small un-

certainties lead to misclassification. In addition, strong bias

due to likely underestimated snowpack skews the simulated

results positively.

5.2 Snow bias correction method

Figure 6 illustrates the snow bias correction (SBC) method

with an example from a high-snowfall region (Val Bedretto)

where underestimated snow depth drives warm bias in sum-

mer (cold bias in winter due to inadequate insulation of

simulated snowpack). The SBC successfully corrects simu-

lated snow depths and as a consequence the ground thermal

regime. A broader evaluation is given by Fig. 7, which shows

ground surface temperature (a) without and (b) with SBC at

all available IMIS stations (64). The plots give data by sea-

son, with winter mean ground surface temperature (MGST,

blue), summer MGST (red) and MAGST (green) shown.

Negative bias is seen in winter, whereas a positive bias is

www.the-cryosphere.net/9/411/2015/ The Cryosphere, 9, 411–426, 2015
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Figure 5. A visual impression of MS spatialised results: a section

of a large-area simulation of MAGST with glacier mask for areas

above 1000 m a.s.l. (UTM zone 32◦ N). Switzerland’s southwestern

border is overlaid for orientation.

visible in summer. Annually the positive bias dominates due

to the greater magnitude of values. The effect of correcting

snow depth via the SBC method has more effect on summer

MGST than winter MGST. This is explained by ensuring the

correct end of snowpack date therefore averting strongly pos-

itive GST too early in summer. This agrees with the findings

of Marmy et al. (2013), who found that snow duration rather

than maximum snow height was the most important factor

controlling simulated ground temperatures at a high Alpine

permafrost site. MASD (c) without and (d) with SBC evalu-

ated at the same stations. This shows the ability of the method

to correct MASD, albeit while retaining a systematic bias.

This could be due to the fact that SWE is reproduced accu-

rately but parameters governing density of the snowpack or

wind erosion are not correct. However, without SWE evalu-

ation data at these stations, this is difficult to confirm.

Additionally, in permafrost areas basal temperatures of the

snowpack may vary much more than in non-permafrost areas

(such as those given by the IMIS stations). Therefore under-

estimation of the snowpack may have even stronger effect on

model bias.

5.3 Test application: permafrost estimate

In this study we produced an estimate of 1974.9 km2 per-

mafrost within Switzerland based on the stated definition.

Figure 8 gives a visual comparison of permafrost extent com-

puted by this study with a state-of-the-art statistical model

(Boeckli et al., 2012b) derived from Alpine specific data

sets. The current method compares well in terms of spa-

tial patterns with results of Boeckli et al. (2012b). Compar-

ison of model results, despite differences in the definition

of permafrost area and in observation periods, is intended

to demonstrate the similarity of patterns resulting from both

approaches (cf. face validity, Rykiel, 1996). Boeckli et al.

(2012b) is based on climate normals 1961–1990 whereas the

current estimate covers the period 1984–2011. The method

Table 3. Comparison of PE (km2
× 103) obtained by this study

compared to other methods in the literature.

Author Value Method Relevance

This study 1.97 numerical global

Gruber (2012) 0.7–2.5 statistical global

Boeckli et al. (2012a) 2.2 statistical regional

Keller et al. (1998) 1.7–2.5 statistical regional

we have shown benefits from the simplicity of definition in

actually simulating permafrost (i.e. ground< 0 ◦C for more

than two years), although depth of simulation remains an ar-

guable point. In addition, Table 3 shows that the current study

produces an estimate that fits a range of key estimates from

the literature, well.

5.4 Macroclimatic distribution of error

Figure 9 shows the distribution of bias for all IMIS stations

for TAIR, GST and SD at the macroclimatic scale. The pur-

pose was to investigate whether there are any significant bi-

ases or sign changes of bias at the mountain range scale.

Such biases would largely be a result of how well the driv-

ing climate is simulated in different topo-climatic settings,

e.g. north or south slope of the Alps, inner-Alpine regions or

west to east. TAIR bias is well distributed in sign and gen-

erally small in magnitude. There is no clear pattern in error

distribution, although the north slope seems most well mod-

elled. GST bias is well distributed in magnitude but posi-

tively biased (as shown in Fig. 8). Again north slope seems

to be modelled most successfully. SD bias is very negative

and error magnitude seems to fit magnitudes of precipita-

tion i.e. greater north and south of the main Alpine ridge and

less in inner-Alpine regions (Frei and Schaer, 1998). How-

ever, stations on the north-slope of the main Alpine chain ap-

pear to be modelled well. Overall, there is no clear evidence

of topo-climatic gradients in error patterns at the mountain

range scale.

However, Fig. 9 is supporting evidence that generally neg-

atively biased snowpack (too shallow) is most likely driving a

positively biased MAGST (too warm) at least at the IMIS sta-

tions given in this figure. In addition, air temperature seems

to be excluded as a driver of bias in MAGST as it displays no

obvious bias pattern.

6 Discussion

6.1 Model chain uncertainty

In order to place these results in context we provide a semi-

quantitative analysis of uncertainty through the model chain.

The main sources of uncertainty we identify are: (1) bias in

driving fields, (2) error in scaling approach, (3) uncertainty in

The Cryosphere, 9, 411–426, 2015 www.the-cryosphere.net/9/411/2015/
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Figure 6. Evolution of SD and GST at a high-snowfall IMIS site (Val Bedretto); linkage between GST and SD is very clear. Correction of

SD using the SBC method improves GST estimate.
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Figure 7. Ground surface temperature (a) without and (b) with SBC method evaluated at all available IMIS stations (64). Winter (blue) and

summer (red) MGST, and MAGST (green) are shown. Negative bias is seen in winter and positive bias in summer. Annually the positive bias

dominates due to greater magnitude of values. MASD (c) without and (d) with SBC method evaluated at the same stations. This shows the

ability of the method to correct MASD, albeit while retaining a systematic bias.
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Figure 8. Visual comparison of permafrost extent computed by (a) this study (MS setup) and (b) a state-of-the-art statistical model (Boeckli

et al., 2012b). Comparison of model results, despite differences in the definition of permafrost area and in observation periods, is intended to

demonstrate the similarity of patterns resulting from both approaches.

the lumped scheme, (4) LSM uncertainties (parameters and

processes) and, (5) surface data based uncertainties (scale

discussed separately).

1. Uncertainty in the driving fields can be due to bias, spa-

tial/temporal issues or model physics and parameteri-

sations. This issue was explored in FG2013 and rea-

sonable to good results were reported for the variables

tested. The exception being precipitation. Additionally,

reanalysis data sets are expected to vary spatially and

temporally with density of observations assimilated.

Bias in driving precipitation is a commonly reported

problem in atmospheric models (e.g. Dai, 2006; Boberg

et al., 2008), and we have attempted to address this is-

sue with the correction method detailed in this study.

Two notes of caution are worth mentioning with respect

to this method: (a) this method is only valid currently

at site scale, and (b) it relies on GST measurements.

However, the approach shown here could potentially be

used together with satellite imagery in order to estimate

snowpack bias based on MD to enable scalability of

the method. However this is beyond the scope of this

paper. Other uncertainties in modelling snow precipita-

tion lie in the definition of the snow/rain threshold; the

fact that errors are cumulative over a season; and also

that significant inputs are relatively infrequent, discrete

events, which means that missing an event can have

a large impact on season totals. Bias associated with

snow-based precipitation may have strong impacts on

the ground thermal regime due to the thermal properties

of the snowpack, duration of snowpack or even cooling

effects of very shallow snowpacks where the albedo ef-

fect may dominate. In this study the snowpack tends to

be negatively biased (too shallow), leading to often neg-

atively biased winter temperatures (too cold, possibly

exacerbated by choice of snow thermal conductivity pa-

rameterisation) due to lack of adequate insulation, and

positively biased (too warm) summer temperatures, due

to early melt of spring snowpack (Fig. 7. Out of these

seasonal effects the summer warm bias dominates on

average due to higher magnitude of values.

2. In discussing uncertainty in the scaling approach

(TopoSCALE), we focus on TAIR as this is the only

driving variable evaluated in this study due to its impor-

tance in driving the ground thermal regime. Other driv-

ing fields (including TAIR) were previously evaluated

in FG2013. Frei (2014) reports a TAIR RMSE of 1.5 ◦C

in the Alps using a sophisticated interpolation technique

of station data. While these are daily values and cannot

be compared directly to an RMSE of 0.64 as obtained

in this study, in FG2013 we show that TopoSCALE

is able to achieve an RMSE of 1.93 on daily TAIR

values. To place this in context, the method of Frei

(2014) interpolates station data to model non-linearities

in the vertical thermal profile together with a distance-

weighting scheme to account for terrain effects. Given

this, TopoSCALE compares quite favourably given that

only vertical profiles are modelled explicitly. In addi-

tion there are possibly advantages in the gridded ERA

data set over interpolated station data in terms of rep-

resenting larger-scale, synoptic conditions. It should be

noted that TAIR at the majority of stations is modelled

at considerably lower RMSE but the overall value is af-

fected by four key outliers (RMSE is sensitive to out-

liers), which degrade the overall result (Figs. 4 and 9).

3. Uncertainty of the sub-grid scheme (TopoSUB) has two

main sources: (1) the resolution of the base DEM and

(2) the description of surface cover. The resolution of

the DEM defines the range of parameter space, irre-

spective of number of samples computed. For example,

the base DEM of 30 m in this study produces in several

cases a steepest sample of under 60◦, whereas in real-

ity vertical slopes exist. This has an effect on both mass

and energy balance computed at such sites. In this study,
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Figure 9. Distribution of bias in (a) TAIR, (b) GST and (c) SD

at the macroclimatic scale. Blue indicates negative bias (model

colder/less); red indicates positive bias (model warmer/more). Size

of circle indicates the relative magnitude. Sites correspond to all

IMIS stations included in the analysis.

surface cover is prescribed as an average value of sur-

face characteristics within a TopoSUB sample, which

are derived from a simple landcover data set. Landcover

could however be used as a predictor in sample forma-

tion if this was deemed to be important, e.g. vegetation

mosaics that significantly affect soil moisture, wind drift

or energy balance at the surface. While surface cover is

often a function of topographic predictors in the study

domain, samples with complex surface characteristics

– e.g. vegetation, boulder and bedrock matrix – will

exhibit a degree of uncertainty due to the fact that all

members are modelled as the modal surface type. Due to

the significance of surface (and prescribed sub-surface)

characteristics in simulating surface (sub-surface) pro-

cesses, this may constitute an important source of un-

certainty.

4. Uncertainties due to the LSM have three main source:

(i) process description (or omission), (ii) parameterisa-

tion of processes not explicitly modelled and (iii) val-

ues given to sensitive parameters. This topic has been

well discussed in the literature (e.g. Gupta et al., 2005;

Beven, 1995), and so here we focus on parameter values

that are sensitive and therefore have a large influence on

the final result. Parameter values were fixed and taken

from a distribution described by Gubler et al. (2013).

The exception to this is sub-surface properties (Table 1)

which vary as a function of surface type. Gubler et al.

(2013) provide a thorough analysis of sensitivities and

uncertainties related to parameter values used in the

model GEOtop, and their analysis is likely applicable to

many other LSMs that have similar process description

to GEOtop. In this study the authors found a total para-

metric uncertainty based on intensive Monte Carlo sim-

ulation of 0.1–0.5 for clay silt and rock and 0.1–0.8 for

peat sand and gravel – the higher values being related to

higher hydraulic conductivity of these surface classes.

Therefore a portion of the error statistics given in Fig. 4

could be explained by LSM uncertainty alone.

While addressing all these sources of uncertainty within

the analysis is beyond the scope of the paper, an impor-

tant outcome of this work is that through the improved ef-

ficiency of simulation by several orders of magnitude, inten-

sive simulation-based uncertainty analysis starts to become

feasible.

6.2 Scale issues

While scale issues are a central topic of this work in scal-

ing between atmospheric forcing and surface simulation, an-

other important aspect of scale mismatch arises in valida-

tion. Evaluation exercises are often carried out in the litera-

ture where model results representing cells with side lengths

of 10s–100s or, in extreme cases, 1000s of metres are com-

pared to point-scale measurements. In this study the PER-

MOS data set is point scale in both measurements and to-

pographic properties upon which modelled results are based,

as these properties have been measured locally and not ex-

tracted from the DEM. The IMIS data set is comprised of

point-scale measurements. The iButton measurements are

aggregated to a footprint mean, representing a 10 m pixel.

Modelled results of both data sets are based on properties de-

rived from a 10 m DEM. While this seems a reasonable com-

parison, Gubler et al. (2011) demonstrated large differences

in surface conditions within such a scale domain. Smooth-

ing of slope angles by DEM resolution, localised shading or
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snow drifting at a measurement point may cause large differ-

ences in measured and modelled conditions. Additionally, as

stated above, there is a limitation based on resolution of base

DEM (30 m) which under-represents steep slopes in Topo-

SUB sampling.

6.3 Important limitations

Key limitations are discussed in terms of (a) TopoSCALE

and (b) TopoSUB. TopoSCALE based limitations primarily

originate from the horizontal resolution of driving fields. In

this study ERA-I fields at 0.75◦× 0.75◦ are used. This reso-

lution is far too coarse to represent sub-grid effects such as

valley temperature inversions. In addition, topographic pre-

cipitation barriers are unresolved in regions like the Matter-

tal (SW Switzerland) which produce important rain shad-

ows. Finally, spatial patterns of sub-grid effects such as shal-

low (mainly cumulus) convective precipitation, which is im-

portant in simulating correct precipitation intensities, only

start to become resolved at resolutions of around 1 km (e.g.

Kendon et al., 2012). In the case of ERA-I this is because

shallow convection is parameterised by a bulk mass flux

scheme, as described by Tiedtke (1989), which cannot re-

solve the level of spatial differentiation that is present in

the measurements. This process is particularly significant in

spring and summer months, as surface heating occurs during

a typical diurnal cycle, driving convective mass fluxes. An

outlook in this respect is that the presented scheme is read-

ily scalable to higher-resolution driving climate data that will

likely come into the public domain in the next few years.

Another key limitation of the TopoSCALE scheme is that

boundary effects are not included in the scaling of atmo-

spheric profiles that represent the free atmosphere. It was

shown in FG2013 that the diurnal amplitude of fields such

as TAIR and shortwave (SW) radiation was not as great as

surface-affected measurements within the boundary layer.

This may have important implications for processes which

are driven by strong daily amplitudes, such as spring melt of

the snowpack.

TopoSUB-based limitations are largely derived from the

scale of the base DEM on which sampling is based (as pre-

viously discussed), together with the description of surface

cover. However, an important limitation comes from the in-

herent 1-D structure of samples as simulation units. This

means that all lateral processes can only be parameterised

and not modelled explicitly. For example, in computing hori-

zon angles that are important for cast-shadow calculations

(Dubayah and Rich, 1995), we apply a mean horizon an-

gle derived from the sky-view factor and local slope. This

has obvious problems when the horizon is highly asymmet-

ric; e.g. consider a steep, south-facing mountain slope over-

looking a plain. In this situation the horizon angle would

be artificially raised in the southerly direction to a mean

level, therefore reducing radiation inputs and consequently

introducing a cold bias. This effect may also give biases in

terms of reduced radiation in westerly directions under con-

vective systems (e.g. Marty et al., 2002) or under strongly

anisotropic local horizons. Another example of neglected 2-

D effects is illustrated well by the PERMOS2 results (steep

rock walls, Fig. 4). The results here are negatively biased, in-

dicating that part of the energy balance is missing or poorly

described. Missing or inadequately described physical pro-

cesses is a well-known and common characteristic of most

physical models (Arneth et al., 2012; Beven, 1995); however,

as testing of the physical model GEOtop is not the focus of

this study, we provide only a limited discussion on this topic.

GEOtop computes the emissivity (LW) and albedo (SW) of

its hypothetical surroundings as identical to that of the point

itself – in this case a steep rock wall. This will reduce the SW

radiation reflected from surrounding terrain, which can be a

significant energy input to steep rock walls when a winter

snowpack is present. From a mass balance perspective we do

not model redistribution of snow by wind or avalanche. This

has an important effect on the surface energy balance where

melt dates can be several weeks later due to heavy accumu-

lations at bases of avalanche slopes (Harris et al., 2009) or

earlier on wind-eroded slopes (Bernhardt et al., 2010). This

sub-grid effect can be parameterised by computing multiple

cases for increased/decreased snow cover, but corresponding

results will be difficult to spatialise. We model the loss of

snow on steep slopes as a function of slope angle; however

this is not a mass-conservation method as the removed mass

is not redistributed.

6.4 Snowpack issues

The winter snowpack is extremely important in controlling

the ground thermal regime (cf. Smith, 1975; Goodrich, 1982;

Ling and Zhang, 2003; Zhang et al., 1996; Zhang, 2005b).

Therefore, here we summarise the main issues with respect to

this paper together with a brief assessment of the modelling

approach used.

Precipitation is often the most difficult model driver to es-

timate both in quantity and timing, whether originating from

a model or extrapolated from a nearby station. This challenge

is increased in the case of winter precipitation, which is of-

ten harder to measure (gauge undercatch, satellite insensitiv-

ity) or model (solid/liquid thresholds, densities etc.). In our

study the use of output from an atmospheric model (even re-

analysed) has been shown to have inherent biases. This can

be clearly seen in how precipitation is distributed (cf. Fiddes

and Gruber (2014), Figs. 7 and 8), for example in the ab-

sence of high-intensity precipitation events which contribute

strongly to build-up of the winter snowpack. Additionally, er-

rors accumulate over the winter season, which can be a chal-

lenging characteristic of the modelled seasonal snowpack.

All our results display some degree of positive bias in

MAGST with the exception of steep rock wall sites, indicat-

ing the importance of the snowpack (and driving precipita-

tion) as a controlling variable. We have shown that correction
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of the snowpack can be extremely important in successfully

modelling the ground thermal regime. Underestimated snow-

packs may have various and opposing effects on ground tem-

peratures, e.g. greater cooling in winter due to albedo effects

or greater warming in late spring with earlier melt of a shal-

low snowpack. The balance of these effects over an annual

cycle depends upon their relative magnitude. In our study re-

gion we have shown that a shallow snowpack is likely driv-

ing positively biased MAGST. However, at a seasonal scale

we see negatively biased winter temperatures due to radiative

cooling and higher thermal conductivities (generally cooling

atmosphere) and positively biased spring/summer tempera-

tures due to earlier melt of snowpack and exposure to at-

mosphere (generally warming). Negative biases in winter are

not necessarily insignificant and may have process-relevant

effects, but they are often masked in this study by positive

summer biases. In addition these opposing biases can cause

a cancelling effect of errors at annual timescales. How these

results scale out to other geographical regions very much

depends upon the topo-climatic conditions. However, some

generally applicable conclusions may be drawn: (1) biased

snowpacks can be a common feature of model simulations

due to bias in driving precipitation field, (2) correction of

snowpack bias is often important to address bias in the un-

derlying ground thermal regime and (3) determining the sign

of the effect of a biased snowpack upon ground temperatures

is complex and likely varies strongly with location and sea-

son.

The approach taken in this study offers a straightforward

correction, which can compliment the downscaling strategy

in its simplicity. In this sense, the primary aim is to correct

major biases in the water balance and therefore the magni-

tude of resulting biases in the ground’s energy balance. How-

ever, as this correction is used only on input precipitation, it

assumes that this is the dominating bias. It does not address

possible biases in temperature (or other variables influencing

snowpack evolution, e.g. wind) or biases due to snowpack-

related model parameters, such as thermal conductivities.

6.5 Applications and outlook

In this study we provide a large-scale permafrost model esti-

mate as a test case. However, the scheme is generic in that it

is able to generate surface fields of any variable the LSM is

able to simulate. The scheme can be used to simulate high-

resolution maps of current conditions as well as recent dy-

namics which can be used to generate estimates of near-

future trajectories of change. In longer-term planning appli-

cations the scheme, when driven by suitable climate model

data, can be used to produce scenarios of site-specific fu-

ture conditions. A core strength of the scheme is computa-

tion reduction, which means that multiple repeat simulations

are more likely to be possible. This can be utilised by pro-

ducing a range of outcomes that consider significant uncer-

tainties in the model chain and therefore a range of scenarios

that should be considered in a given study. Such scenarios

could be interpreted together with site-specific knowledge

to provide an improved quality of result, or a range of out-

comes to be planned for in terms of uncertainty related to

future conditions or other unknowns. In terms of model eval-

uation the scheme has two important contributions: it pro-

vides model data at an appropriate scale for validation mea-

surements (e.g. site of measurement); secondly, by utilising

an LSM, the scheme can generate a wide range of variables,

in order to maximise use of all available evaluation data and

therefore provide more robust evaluations.

With respect to this permafrost application (but also rel-

evant to other land surface variables), it is important to

remember that we currently have a strong environmental

change and we assume permafrost thaw in many areas; there-

fore it is not so much only the classification of permafrost vs.

non-permafrost that we are interested in, i.e. a classic distri-

bution map, but also the ability to describe the evolution over

time or, in other words, map a process. Much of the inherent

uncertainty (including whether there is permafrost in the first

place) will have to be accepted and estimated. For this, our

scheme provides a way to reduce the computational effort of

a thorough uncertainty analysis.

7 Conclusions

This study has shown that the presented scheme is able to

simulate GST and TAIR reasonably well over large areas in

heterogeneous terrain, using global data sets. We have pre-

sented a simple method that enables correction of winter pre-

cipitation inputs and thus greatly improves simulation of SD,

where data are available. As a test application, an estimate

of permafrost distribution in Switzerland has been computed

with the scheme, which is comparable to published statistical

model results. However, the scheme described in this study

is additionally capable of producing transient simulations; re-

sults in remote areas; and many more useful variables besides

the simple variable of distribution, such as changing sub-

surface properties (e.g. ground ice loss). This underscores a

key strength of the scheme: through efficiency gains, it al-

lows for application of LSMs at high resolutions over large

areas with transient simulation possible. This opens a num-

ber of new possibilities in the field of land surface change

assessments in heterogeneous environments. In addition it al-

lows model results to be validated at an appropriate scale by a

wide range of measurement types due to the comprehensive

set of physically consistent outputs that are generated. We

summarise the main contributions and insights of this work

as the following:

– the presented scheme works well in large-area simula-

tion of the tested variables due to an efficient sub-grid

sampling of surface heterogeneity and scaling of driving

climate;
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– simple bias correction of winter precipitation may be

possible based on the melt date of the snowpack;

– the scheme produces an estimate of permafrost area in

the Swiss Alps that is comparable to statistical methods;

– all inputs are derived from global data sets, suggesting

that consistent application globally in heterogeneous

and/or remote terrain is possible.
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