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Abstract. The surface mass balance (SMB) of the Antarc-

tic Ice Sheet cannot be reliably deduced from global cli-

mate models (GCMs), both because their spatial resolution

is insufficient and because their physics are not adapted for

cold and snow-covered regions. By contrast, regional cli-

mate models (RCMs) adapted for polar regions can physi-

cally and dynamically downscale SMB components over the

ice sheet using large-scale forcing at their boundaries. Polar-

oriented RCMs require appropriate GCM fields for forcing

because the response of the cryosphere to a warming cli-

mate is dependent on its initial state and is not linear with

respect to temperature increase. In this context, we evalu-

ate the current climate in 41 climate models from the Cou-

pled Model Intercomparison Project Phase 5 (CMIP5) data

set over Antarctica by focusing on forcing fields which may

have the greatest impact on SMB components simulated by

RCMs. Our inter-comparison includes six reanalyses, among

which ERA-Interim reanalysis is chosen as a reference over

1979–2014. Model efficiency is assessed taking into account

the multi-decadal variability of the fields over the 1850–1980

period. We show that fewer than 10 CMIP5 models show

reasonable biases compared to ERA-Interim, among which

ACCESS1-3 is the most pertinent choice for forcing RCMs

over Antarctica, followed by ACCESS1-0, CESM1-BGC,

CESM1-CAM5, NorESM1-M, CCSM4 and EC-EARTH. Fi-

nally, climate change over the Southern Ocean in CMIP5 is

less sensitive to the global warming signal than it is to the

present-day simulated sea-ice extent and to the feedback be-

tween sea-ice decrease and air temperature increase around

Antarctica.

1 Introduction

The mass balance of the Antarctic Ice Sheet is a major

source of uncertainty in estimates of projected sea-level

rise. Projections of Antarctic mass changes are based on

the input–output method, in which ice-sheet surface mass

balance (SMB, input) and ice-sheet dynamics (output) are

modelled separately. The mass budget of the Antarctic Ice

Sheet is 10 times lower in magnitude than the individual in-

put/output components. Consequently, when using the input–

output method, uncertainty in the total mass budget equals

the sum of the uncertainties of input and output estimates,

which are of the same order of magnitude as the mass budget

itself. This drives efforts to better estimate and reduce uncer-

tainty on each of these two components.

The SMB of the Antarctic Ice Sheet is driven by snow-

fall at the ice-sheet margins, although sublimation, melt, re-

freezing, and drifting snow can be of importance locally.

These components cannot be reliably deduced from reanaly-

ses or global climate models (GCMs) because their horizon-

tal resolution (∼ 100 km) is insufficient and because their

physics are not adapted for cold and snow-covered regions.

Polar-oriented regional climate models (RCMs) are able to

fill this gap because their physics have been specifically de-

veloped/calibrated for these areas. Forced with reanalyses,

their results can be evaluated directly against meteorologi-

cal, remote-sensing and SMB observations available in these

high-latitude regions. With regard to climate change, the re-

sponse of the cryosphere will depend both on its initial state

and on the climate change signal. Accordingly, RCM re-

sults will rely on the ability of GCMs to adequately simulate

the current climate as well as on GCM estimates of future

changes.
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Unlike previously published evaluations of the Coupled

Model Intercomparison Project Phase 5 (CMIP5) models

over Antarctica which focus on specific fields such as west-

erly winds (Bracegirdle et al., 2014) or sea ice (Turner et al.,

2013; Mahlstein et al., 2013; Shu et al., 2015), in this paper

we aim to evaluate the CMIP5 fields that will be used as in-

put for RCMs (atmospheric fields at lateral boundaries and

surface oceanic conditions into the integration domain) and

those that may have the greatest impact on RCM-based SMB

components (air temperature, air humidity, surface pressure,

sea-ice concentration and sea surface temperature).

After describing models, measures and variable selection

in Sect. 2, we perform multi-variable analysis and establish

relationships between climate change in GCMs and their rep-

resentation of the current climate in Sect. 3. We conclude by

discussing potential sources of bias in our method and by

summarizing our main outcomes.

2 Data and methods

2.1 CMIP5 climate models and reanalyses

Monthly mean fields from 41 CMIP5 models and 6 re-

analyses, listed in Table 1, are compared in this work. All

data were bi-linearly interpolated onto a common regular

longitude–latitude horizontal grid (1.5◦× 1.5 ◦) with a spa-

tial domain extending south of 40◦ S over the ocean. We

did not include land and ice-covered areas because (i) RCM

lateral boundaries are set over the ocean when possible

and (ii) RCMs are never forced by GCM outputs over

the land surface, except for the initialization. Seasonal val-

ues are defined by 3-month means, with winter consist-

ing of June-July-August for atmospheric variables and July-

August-September for oceanic variables. All other seasons

are defined with a similar 1-month lag for oceanic variables.

CMIP5 data were retrieved from the historical (1850–

2005 period) and representative concentration pathway 8.5

(“RCP85”, 2006–2100 period) coupled ocean–atmosphere

experiments. The RCP85 scenario is an upper range of plau-

sible future emission in which greenhouse gas radiative forc-

ing continues to rise throughout the 21st century until the

1370 ppm CO2 equivalent (Moss et al., 2010). In this sce-

nario, stratospheric ozone recovery is represented across the

CMIP5 models, with recovery over Antarctica to near pre-

ozone hole amounts by 2100. We merged historical and

RCP85 to form continuous time series from 1850 to 2100.

We focused on the first realization (r1i1p1) but also consid-

ered r2i1p1 and r3i1p1 realizations, when available, to check

the robustness of our results. Given the high number of mod-

els investigated, we highlighted models which contained ob-

vious similarities in code or were produced by the same insti-

tution (colours in Figs. 2 and 3), following the work of Knutti

et al. (2013, colours in their Fig. 1).

Recent reanalysis inter-comparisons have shown the Eu-

ropean Centre for Medium-Range Weather Forecasts “In-

terim” re-analysis (ERA-Interim, 1979–present; Dee et al.,

2011) to be the most reliable contemporary global reanal-

ysis over Antarctica (Bromwich et al., 2011; Bracegirdle

and Marshall, 2012), prompting our choice of ERA-Interim

as a reference for representing the current climate (1980–

2010). However, comparisons with five other reanalyses

were also performed in our study: the Japanese 55-year Re-

analysis from the Japan Meteorological Agency (JRA-55,

1958–present; Kobayashi et al., 2015), the National Aero-

nautics and Space Administration Modern-Era Retrospective

Analysis for Research and Applications (MERRA, 1979–

present; Rienecker et al., 2011); the National Centers for

Environmental Prediction (NCEP)/National Center for At-

mospheric Research Global Reanalysis 1 (NCEP-NCAR-v1,

1948–present; Kalnay et al., 1996); the NCEP/Department

of Energy Atmospheric Model Intercomparison Project 2 re-

analysis (NCEP-DOE-v2, 1979–present; Kanamitsu et al.,

2002); and the National Oceanic and Atmospheric Admin-

istration (NOAA) Twentieth Century Reanalysis v2 (NOAA-

20CR-v2, 1870–2012, Compo et al., 2011).

We will later define measures to compare CMIP5 GCM

outputs with ERA-Interim over the period 1980–2010

(31 years). In order to reduce the sensitivity of our compar-

isons to the choice of this reference period, we computed the

multi-decadal intrinsic variability of those measures. Over

the Antarctic region considered, CMIP5 GCM metrics show

no significant trends until the 1980s, but they evolve sig-

nificantly afterwards. Consequently, we estimated the multi-

decadal climate variability of each metric for every CMIP5

GCM by considering the variability of the 31-year running

metric during the stable period 1850–1980. We present this

estimate in detail in Appendix A. The multi-decadal variabil-

ity estimate gives an error bar around the reference period

value, which depends on each metric and each model (Ta-

ble 1).

2.2 Measures

The climate prediction index (CPI) introduced by Murphy

et al. (2004) is widely used in climatology studies for model

evaluation and weighted projections (for example Connol-

ley and Bracegirdle, 2007; Franco et al., 2011). It is based

on statistical theory for normally distributed variables, which

maintains that the probability that a realization r belongs to

a population of mean µ and a standard deviation σ is propor-

tional to exp(−(|r −µ|/σ)2/2). It is defined as follows:

CPIs =

√〈(
µm

s −µ
o
s

)2〉
xy
/
〈
σ o

s

〉2
xy
= rmses/

〈
σ o

s

〉
xy
, (1)

where the index s denotes the season, m and o exponents

are for model outputs and observations respectively, µs is

the time average of seasonal values for each grid point, σ o
s

is the temporal standard deviation of seasonal observation
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Table 1. Reanalyses (first six rows) and CMIP5 model details. Climate prediction indexes (CPIs) are given plus/minus estimate of the multi-

decadal variability. Ranks given in parentheses are the modified ranks when using CPI plus/minus multi-decadal variability for the considered

model while not changing CPIs of other models. On the ERA-Interim line, we give the ERA-Interim standard deviation of spatially averaged

annual values, which are the scaling factors for the indexes, and when combining several seasons we give the mean standard deviation

plus/minus (maximum–minimum)/2.

Name Modelling Lat. CPI and ranks

groups grid msie[win] prw[s/w] psl[ann] ta850[s/w] ta850[sum] tos[sum]

spacing CPI Rank CPI Rank CPI Rank CPI Rank CPI Rank CPI Rank

ERA-Interim ECMWF 0.7◦ – 0.75± 0.1 kgm−2 3.2± 0.5 hPa 0.95± 0.06 K 0.89 K 0.56 K

JRA-55 JMA 1.25◦ 0.5± 1.0 4 (2–5) 0.6± 0.5 3 (2–10) 0.2± 0.4 4 (2–9) 0.7± 0.4 3 (3–10) 0.8± 0.4 5 (3–11) 0.9± 0.9 6 (2–7)

MERRA-v1 NASA 0.5◦ 0.1± 1.0 2 (2–5) 0.5± 0.5 2 (2–5) 0.1± 0.4 2 (2–6) 0.3± 0.4 2 (2–2) 0.3± 0.4 2 (2–2) 0.2± 0.9 2 (2–6)

NCEP-DOE-v2 NCEP-DOE 2.5◦ 0.4± 1.0 3 (2–5) 2.5± 0.5 40 (37–42) 0.3± 0.4 5 (2–10) 1.0± 0.4 7 (3–23) 0.9± 0.4 7 (3–14) 0.4± 0.9 4 (2–6)

NCEP-NCAR-v1 NCEP-NCAR 2.5◦ 0.5± 1.0 5 (2–6) 2.0± 0.5 36 (28–39) 0.2± 0.4 3 (2–7) 0.8± 0.4 4 (3–14) 0.7± 0.4 3 (3–11) 0.3± 0.9 3 (2–6)

NOAA-20CR-v2 NOAA 2.0◦ 3.6± 1.0 29 (23–38) 1.9± 0.5 31 (21–37) 0.3± 0.4 6 (2–14) 1.0± 0.4 6 (3–23) 0.9± 0.4 6 (3–13) 0.6± 0.9 5 (2-6)

ACCESS1-0 CSIRO-BOM 1.25◦ 1.9± 0.4 11 (6–17) 1.0± 0.3 7 (4–16) 0.6± 0.2 9 (7–21) 1.1± 0.1 9 (6–11) 1.3± 0.1 15 (12-15) 3.7± 0.4 28 (25–32)

ACCESS1-3 CSIRO-BOM 1.25◦ 2.1± 0.2 15 (12–18) 1.1± 0.2 8 (5–15) 0.7± 0.2 10 (7–22) 0.9± 0.2 5 (3–8) 0.8± 0.2 4 (3–7) 2.7± 0.3 14 (11–22)

BCC-CSM1-1 BCC 2.8◦ 3.1± 0.5 28 (23–29) 1.9± 0.3 33 (28–37) 1.3± 0.2 35 (35–37) 1.2± 0.3 12 (6–27) 1.1± 0.3 11 (6–15) 2.1± 0.4 8 (7–13)

BCC-CSM1-1-m BCC 1.0◦ 4.0± 1.5 31 (20–42) 1.9± 0.4 34 (26–37) 1.4± 0.1 37 (35–37) 1.1± 0.3 8 (4–22) 1.0± 0.3 9 (3–15) 2.2± 0.5 10 (7–15)

BNU-ESM GCESS 2.8◦ 6.7± 0.9 46 (45–47) 2.0± 0.4 35 (28–39) 1.8± 0.3 41 (38–47) 2.3± 0.4 44 (38–45) 1.5± 0.3 19 (12–31) 3.3± 0.4 26 (18–28)

CanESM2 CCCma 2.8◦ 2.1± 0.5 14 (8–22) 1.3± 0.4 18 (6–30) 0.7± 0.2 15 (8–26) 1.9± 0.4 37 (28–44) 1.8± 0.4 31 (16–38) 2.2± 0.3 9 (8–10)

CCSM4 NSF-DOE-NCAR 1.25◦ 2.7± 0.5 23 (16–28) 1.3± 0.1 17 (12–20) 1.0± 0.2 28 (14–34) 1.2± 0.4 13 (5–29) 1.1± 0.4 10 (3–19) 2.9± 0.2 19 (16–22)

CESM1-BGC NSF-DOE-NCAR 1.25◦ 2.4± 0.7 19 (11–27) 1.4± 0.2 19 (12–27) 0.9± 0.2 26 (14–34) 1.1± 0.5 10 (3–27) 1.0± 0.5 8 (3–16) 2.7± 0.1 15 (14–17)

CESM1-CAM5 NSF-DOE-NCAR 1.25◦ 1.6± 0.3 7 (6–11) 1.4± 0.3 20 (9–29) 0.6± 0.2 8 (7–15) 1.3± 0.4 19 (6–30) 1.6± 0.4 26 (12–33) 3.0± 0.5 22 (12-26)

CESM1-1-FV2 NSF-DOE-NCAR 1.25◦ 1.7± 0.1 10 (7–10) 2.1± 0.2 37 (32–37) 0.6± 0.1 7 (7–10) 1.3± 0.2 20 (11–27) 1.6± 0.2 27 (16–32) 3.9± 0.3 31 (28–32)

CMCC-CESM CMCC 3.75◦ 2.3± 0.7 17 (7–26) 2.4± 0.3 39 (38–41) 1.7± 0.5 39 (35–47) 1.8± 0.2 31 (29–37) 2.2± 0.2 38 (35–41) 3.3± 0.3 25 (23–27)

CMCC-CM CMCC 0.75◦ 2.3± 0.6 18 (10–25) 1.5± 0.3 23 (13–30) 1.0± 0.4 29 (8–35) 1.3± 0.2 21 (11–27) 1.6± 0.1 25 (18–28) 2.8± 0.2 17 (14–22)

CMCC-CMS CMCC 1.8◦ 2.0± 0.6 13 (6–22) 2.4± 0.3 38 (38–41) 1.1± 0.4 34 (12–37) 1.2± 0.2 14 (8–27) 1.5± 0.2 17 (14–29) 3.0± 0.3 21 (14–24)

CNRM-CM5 CNRM-CERFACS 1.4◦ 3.8± 1.5 30 (19–41) 1.7± 0.4 28 (14–36) 0.9± 0.3 25 (8–34) 1.6± 0.4 30 (17–40) 1.7± 0.4 29 (16–35) 4.7± 0.9 38 (29–41)

CSIRO-Mk3-6-0 CSIRO-QCCCE 1.9◦ 1.6± 0.2 9 (6–10) 0.8± 0.2 4 (3–7) 1.0± 0.3 32 (20–35) 1.8± 0.3 32 (27–42) 2.1± 0.4 37 (32–43) 2.5± 0.1 13 (11–13)

EC-EARTH EC-EARTH 1.125◦ 2.0± 0.4 12 (7–18) – – 0.8± 0.3 19 (7–33) 1.2± 0.3 11 (6–27) 1.5± 0.1 20 (16–28) 4.9± 0.4 39 (37–40)

FGOALS-g2 LASG-IAP 2.8◦ 2.9± 0.4 25 (23–28) 1.2± 0.3 13 (5–27) 1.8± 0.4 42 (36–47) 1.8± 0.3 34 (28–42) 2.0± 0.3 34 (30–40) 3.0± 0.2 20 (17–23)

FIO-ESM FIO 2.875◦ 3.1± 0.3 27 (24-28) 1.3± 0.2 16 (11–25) 1.9± 0.2 46 (40–47) 1.9± 0.3 35 (28–42) 2.1± 0.3 36 (32–42) 2.5± 0.3 12 (11–16)

GFDL-CM3 NOAA GFDL 1.8◦ 5.2± 1.0 41 (35–45) 1.2± 0.2 14 (8–20) 1.0± 0.2 27 (18–34) 1.3± 0.2 22 (11–27) 1.6± 0.1 22 (16–29) 4.4± 0.6 36 (31–39)

GFDL-ESM2G NOAA GFDL 2.0◦ 4.0± 0.9 32 (28–40) 1.2± 0.1 15 (12–18) 0.9± 0.2 22 (9–34) 1.6± 0.2 29 (26–33) 2.0± 0.2 35 (33–38) 5.6± 0.5 41 (40–41)

GFDL-ESM2M NOAA GFDL 2.0◦ 5.4± 1.4 42 (32–46) 1.5± 0.4 27 (12–33) 0.8± 0.4 17 (7–34) 1.9± 0.3 36 (28–42) 2.4± 0.4 43 (35–45) 7.1± 0.9 46 (42–46)

GISS-E2-H NOAA GFDL 2.5◦ 6.0± 1.3 45 (39–46) 1.9± 0.4 32 (21–37) 1.4± 0.3 36 (35–39) 3.2± 0.7 47 (46–47) 3.6± 0.7 46 (46–47) 9.2± 1.2 47 (47–47)

GISS-E2-H-CC NOAA GFDL 2.5◦ 4.1± 0.7 34 (29–39) 1.1± 0.4 9 (4–20) 1.0± 0.3 33 (13–35) 2.0± 0.4 40 (31–44) 2.3± 0.5 39 (32–45) 6.5± 0.9 42 (41–46)

GISS-E2-R NOAA GFDL 2.5◦ 4.2± 0.3 36 (31–37) 1.5± 0.3 22 (12–30) 1.0± 0.3 30 (15–34) 1.2± 0.2 15 (8–27) 1.3± 0.1 12 (10–15) 3.8± 0.5 29 (25–33)

GISS-E2-R-CC NOAA GFDL 2.5◦ 4.2± 0.1 35 (34–36) 1.4± 0.3 21 (12–29) 1.0± 0.3 31 (16–35) 1.3± 0.2 18 (11–27) 1.3± 0.2 14 (11–15) 4.1± 0.4 32 (28–36)

HadGEM2-AO MOHC 1.25◦ 4.6± 0.8 38 (30–42) – – 0.7± 0.2 11 (7–26) 1.6± 0.3 28 (18–35) 1.5± 0.2 16 (14–28) 4.4± 0.6 34 (29–39)

HadGEM2-CC MOHC 1.25◦ 4.7± 0.3 39 (37–40) 1.1± 0.1 11 (6–13) 0.8± 0.2 18 (8–29) 1.4± 0.1 27 (19–27) 1.5± 0.1 21 (16–28) 4.4± 0.3 35 (33–38)

HadGEM2-ES MOHC 1.25◦ 4.1± 0.7 33 (29–39) 1.1± 0.2 10 (5–15) 0.7± 0.3 12 (7–30) 1.2± 0.2 16 (8–27) 1.3± 0.2 13 (10–15) 3.8± 0.5 30 (27–33)

INM-CM4 INM 1.5◦ 5.8± 0.6 44 (42–45) 2.8± 0.4 42 (40–43) 0.8± 0.2 16 (8–29) 2.4± 0.2 45 (43–45) 2.0± 0.1 33 (33–37) 4.6± 0.4 37 (33–39)

IPSL-CM5A-LR IPSL 1.9◦ 1.6± 0.6 8 (6–15) 1.5± 0.4 24 (9–34) 2.0± 0.4 47 (39–47) 2.8± 0.4 46 (46–47) 3.6± 0.4 47 (46–47) 4.3± 0.2 33 (32–36)

IPSL-CM5A-MR IPSL 1.3◦ 2.5± 0.6 22 (12–26) 1.2± 0.4 12 (5–27) 1.6± 0.4 38 (35–46) 2.0± 0.3 41 (31–44) 2.5± 0.4 45 (38–45) 3.5± 0.4 27 (24–30)

IPSL-CM5B-LR IPSL 1.3◦ 5.8± 0.7 43 (41–45) 3.8± 1.0 45 (42–45) 1.8± 0.3 45 (38–47) 2.2± 0.4 43 (36–45) 2.3± 0.2 41 (37–45) 6.8± 1.0 44 (42–46)

MIROC-ESM MIROC 2.8◦ 2.5± 0.5 21 (13–25) 1.0± 0.4 6 (4–20) 1.8± 0.2 44 (39–47) 1.4± 0.4 26 (8–34) 1.8± 0.4 32 (16–38) 2.9± 0.3 18 (14–24)

MIROC-ESM-CHEM MIROC 2.8◦ 2.3± 0.8 16 (6–26) 0.9± 0.4 5 (2–19) 1.8± 0.3 43 (38–47) 1.4± 0.5 23 (5–34) 1.8± 0.4 30 (16–37) 2.8± 0.4 16 (11–23)

MIROC5 MIROC 1.4◦ 7.3± 0.4 47 (47–47) 2.6± 0.3 41 (38–42) 1.7± 0.3 40 (38–47) 2.0± 0.2 39 (35–42) 1.6± 0.1 23 (16–29) 5.2± 0.4 40 (39–40)

MPI-ESM-LR MPI-M 1.9◦ 4.8± 0.6 40 (37–41) 1.5± 0.3 25 (16–30) 0.7± 0.3 13 (7–29) 1.4± 0.2 25 (15–27) 1.6± 0.2 24 (16–31) 3.2± 0.2 24 (23–26)

MPI-ESM-MR MPI-M 1.8◦ 4.5± 0.3 37 (35–40) 1.7± 0.3 29 (20–34) 0.8± 0.4 20 (7–34) 1.3± 0.3 17 (8–27) 1.5± 0.3 18 (12–31) 3.1± 0.1 23 (22–24)

MRI-CGCM3 MRI 1.1◦ 3.0± 0.3 26 (23–28) 3.2± 0.2 43 (43–43) 0.9± 0.3 24 (9–34) 1.8± 0.1 33 (31–37) 2.3± 0.2 40 (38–43) 6.7± 0.2 43 (42–44)

MRI-ESM1 MRI 1.1◦ 2.8± 0.4 24 (19–28) 3.5± 0.4 44 (43–45) 0.9± 0.2 23 (10–34) 2.0± 0.2 38 (31–42) 2.5± 0.2 44 (40–45) 7.1± 0.3 45 (44–46)

NorESM1-M NCC 1.9◦ 1.5± 0.4 6 (6–11) 1.7± 0.2 30 (26–34) 0.7± 0.3 14 (7–30) 1.4± 0.3 24 (11–30) 1.6± 0.4 28 (12–33) 1.9± 0.1 7 (7–7)

NorESM1-ME NCC 1.9◦ 2.4± 0.5 20 (12–25) 1.5± 0.2 26 (17–30) 0.8± 0.2 21 (10–29) 2.0± 0.2 42 (34–43) 2.4± 0.3 42 (37–45) 2.5± 0.1 11 (11–13)
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values for each grid point, 〈.〉xy is the area-weighted spatial

average, and rmses is the spatial root mean square error for

the season s.

When aggregating several seasons, we compute the CPI as

the root mean square of the seasonal indexes:

CPI=

√∑
s

CPI2
s . (2)

2.3 Variable selection

Our variable selection is based on three criteria: (i) the vari-

able should be a forcing field for RCMs, (ii) the variable

should have an impact on RCM-modelled SMB, and (iii) the

variable should be constrained with sufficient observations

so that reanalyses could confidently be considered an “ob-

servation”. Consequently, we focus on the variables detailed

below.

2.3.1 Sea-level pressure

Sea-level pressure (psl) is a proxy for the large-scale circu-

lation patterns which significantly impact the precipitation

patterns simulated by RCMs. The psl spatial anomalies com-

pared to ERA-Interim for the period 1980–2010 are shown

in Fig. 1. We observe that the four seasonal psl CPIs are sim-

ilar (see Fig. S1 in the Supplement), suggesting that the most

relevant metric for psl is the combination of the four seasons’

CPI values, denoted by psl[ann].

2.3.2 Air temperature at 850 hPa

The air temperature in the free atmosphere (here at 850 hPa;

ta850) has an impact on phase changes in RCMs (re-

freeze/melt of snowpack, snow/rainfall). It also controls the

maximal water vapour content of the atmosphere. Because

of its pronounced seasonal cycle, ta850 presents large tem-

poral variability in autumn and spring, such that seasonal

means are not reliable for these seasons, though it is more

stable in summer and winter. As summer and winter CPIs are

both relevant and similar (see Fig. S1), the combined CPIs

of these two seasons form a robust metric. However, special

attention should be given to summer ta850, since it has the

highest impact on the melt/refreezing amounts and on the

hydrometeors’ phase changes. In conclusion, the most rele-

vant metrics for our study are the summer/winter ta850 CPI,

denoted by ta850[s/w], and the summer ta850 CPI, denoted

by ta850[sum].

2.3.3 Precipitable water

Column-integrated atmospheric water vapour, or precipitable

water (prw), is a proxy for the humidity content of the atmo-

sphere, which impacts the amount of precipitation in RCMs.

It is affected by the same strong seasonal cycle as tempera-

ture since the maximum water vapour content of an air parcel

is related to the temperature through the Clausius–Clapeyron

relationship. Consequently, as with ta850, seasonal prw is

relevant when its value reaches its minima and maxima, i.e.

in winter and summer. Consequently we chose to focus on

the summer/winter prw CPI, which we denote by prw[s/w].

2.3.4 Surface oceanic conditions

Since most RCMs are not coupled with an oceanic model,

sea surface temperature (tos) and sea-ice concentration from

the forcing GCM are used to simulate oceanic conditions in

the RCM’s integration domain. Instead of sea-ice concen-

tration, we considered the meridional sea-ice extent (msie),

defined as sea-ice concentration times cell area summed for

each longitude (see Appendix B regarding normality issues).

Sea-ice and open-water extents are complementary and show

very strong seasonal cycles. Consequently, seasonal analyses

for these oceanic variables should refer to winter msie CPI

(msie[win]) and summer tos CPI (tos[sum]).

3 Results

3.1 Multi-variable analysis

The CPI values range from 0 to ∼ 7 for msie[win] and

tos[sum] and from 0 to ∼ 3 for the other variables (Table 1).

In order to obtain a global metric which gives an equal weight

to each of the variables, we first ranked the models by CPI

values for each variable and then computed the average of

ranks. More oriented comparisons can be carried out by as-

signing different weights to the variables of greatest interest.

A variable-by-variable comparison remains the most objec-

tive when a unique skill score is used to evaluate a model.

In Fig. 2a we show for each model the ranks of its vari-

ables, with models ordered according to the average of ranks.

We evaluate the effect of multi-decadal variability of the

variables on the ranking by computing for each model and

each variable the modified rank when using CPIs plus/minus

multi-decadal variabilities while not changing CPIs for other

models. Ranks and their associated ranges are detailed in Ta-

ble 1, and the impact on the average of ranks is displayed in

Fig. 2b (green lines). In addition, the average of ranks for the

first realization (r1i1p1) is similar to that of the second and

third realizations when available (Fig. 2b, markers), which is

a good indicator of the robustness of the method.

As expected, the five reanalyses march to the head of the

podium, although the ACCESS models perform surprisingly,

with ACCESS1-3 overtaking NCEP-DOE-v2 as well as

NOAA-20CR-v2 and with ACCESS1-0 overtaking NOAA-

20CR-v2. These results are explained by the significant pos-

itive bias in precipitable water shared by NCEP-NCAR-v1,

NCEP-DOE-v2 and NOAA-20CR-v2 compared to the other

reanalyses. In addition, NOAA-20CR-v2 presents a misspec-

ification of sea ice, with ice concentrations never exceeding

55 % far from the coast (Compo et al., 2011), which explains

its low CPI for winter meridional sea-ice extent. With regards
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Figure 1. Mean differences of sea-level pressure between models and ERA-Interim over the period 1980–2010 (in hPa). CMIP5 model

names are in black, and reanalysis names are in blue. Hashes are for areas where the difference is higher that 2 times the ERA-Interim annual

sea-level pressure standard deviation over the same period. External circle is 40◦ S, and intermediate black circle is 60◦ S. Green rectangle

is a typical domain boundary for regional climate models over Antarctica (e.g. Ligtenberg et al., 2013). ERA-Interim sea-level pressure over

the period 1980–2010 is displayed in the low-right panel (in hPa).

to the other variables, the five reanalyses do not differ signif-

icantly from ERA-Interim over 1980–2010.

Each of the CMIP5 models shows at least one variable

ranked under the median value except ACCESS1-3. The five

models with the highest average ranks are ACCESS1-3 and

ACCESS1-0, although they show a significant warm bias for

summer sea surface temperature; CESM1-BGC, although it

shows incorrect circulation pattern; and CESM1-CAM5 and

NorESM1-M, although they show a moderate cold bias for

summer air temperature and a wet bias for precipitable wa-

ter. Two other models have only one strong bias compared to

ERA-Interim: CCSM4, showing a significant overestimation

of winter meridional sea-ice extent, and EC-EARTH, show-

ing a strong warm bias for summer sea surface temperature

(precipitable water was unavailable). Detailed maps of spa-

tial anomalies relative to ERA-Interim similar to Fig. 1 can

be found in Figs. S2 to S7.

3.2 Climate change

Knutti et al. (2010) showed that model skills in simulat-

ing present-day climate conditions relate only weakly to the

magnitude of predicted change for surface temperature, ex-

cept for sea-ice-covered regions in winter. We looked for

emergent constraints for our region by correlating projected

www.the-cryosphere.net/9/2311/2015/ The Cryosphere, 9, 2311–2321, 2015



2316 C. Agosta et al.: Evaluation of CMIP5 models in the aim of regional modelling of the Antarctic SMB

(a) (b)

Figure 2. Model ranking according to CPI values: external circle is for rank 1 (ERA-Interim), while internal circle is for rank 47 (largest CPI).

Models with obvious similarities in code or produced by the same institution are marked with the same colour (clusters), following Knutti

et al. (2013). (a) Model rank for winter meridional sea-ice extent (msie[win], blue diamonds), summer sea surface temperature (tos[sum], red

pentagons), annual sea-level pressure (psl[ann], black squares), summer/winter precipitable water (prw[s/w], black circles), summer/winter

850 hPa air temperature (ta850[s/w], black stars), and summer 850 hPa air temperature (ta850[sum], red stars). Models are ordered by the

average of ranks. (b) Average of ranks for r1i1p1 (green dots), r2i1p1 (blue diamonds), and r3i1p1 (red squares) model realizations. When a

field was not available for the second or the third realizations, we used the CPI value of the first realization for computing ranks. Green lines

show variations of the average of ranks when using CPIs plus/minus multi-decadal variabilities for the considered model while not changing

CPIs for other models.

changes (2079–2100 mean minus 1980–2010 mean) in win-

ter sea-ice extent, summer sea surface temperature, precip-

itable water and 850 hPa air temperature to biases for the

1980–2010 period. We found that variable evolutions are

significantly correlated to the bias in winter sea-ice extent

(p< 0.01, Fig. 3, 1st column) but are poorly correlated to

biases of other variables.

Changes in precipitable water and in summer sea sur-

face temperature are very strongly correlated with changes

in 850 hPa air temperature (R2> 0.8). Changes in winter sea

ice are also strongly correlated with changes in 850 hPa air

temperature (R2
= 0.68), as well as being just as well corre-

lated with the winter sea-ice bias (R2
= 0.62), such that these

two variables together explain more than 80 % of the variance

of the changes in winter sea ice. This suggests that studying

the changes in air temperature and in sea ice is sufficient for

understanding the changes in the four variables studied.

We introduce midlatitude (40◦ S to 40◦ N) annual surface

air temperature change as a proxy for the global warming

signal. We see that 31 % of the variance of 850 hPa air tem-

perature is explained by the winter sea-ice bias, and almost

the same amount of variance (36 %) is explained by global

warming (Fig. 3, 1st row), despite winter sea-ice bias and

global warming signals being uncorrelated with each other.

Additionally, changes in sea-ice extent are not significantly

correlated with the global warming signal (Fig. 3, 4th row).

This means that (i) the decrease in sea-ice extent is mainly

driven by its simulated state under present-day climate and

that (ii) both decreasing sea-ice extent and increasing air

temperature are influenced heavily by the local feedback be-

tween these two variables. This section highlights the impor-

tance of simulating current climate conditions correctly, as

future projected anomalies in climate over Antarctica will be

significantly dependent on the conditions of winter sea-ice

cover over the present-day period.

4 Discussion and conclusions

The main goal of this work was to provide a fair overview of

the strengths and weaknesses of model outputs from the last

multi-model ensemble CMIP5 as a first and essential step to-

ward regional modelling of the Antarctic ice-sheet surface

mass balance. This study does not give an absolute rank-

ing of CMIP5 climate models over Antarctica as it is de-

liberately driven by the choice of forcing fields for regional

models. The three main factors impacting on the ranking are

the choice of reference fields, the variables selection and the

measure computation.

We chose ERA-Interim as the reference field because it

has been shown to be the most reliable contemporary global
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Figure 3. Y axes: evolution in time (2070–2100 minus 1980–2010) of summer/winter 850 hPa air temperature (1ta850[s/w]), summer/winter

precipitable water (δprw[s/w]), summer sea surface temperature (1tos[sum]) and winter meridional sea-ice extent scaled by ERA-Interim

standard deviation of annual values (1msie[win]). The1 symbol is for absolute differences and the δ symbol for absolute differences divided

by 1980–2010 mean value. X axes: winter msie bias (msie[win]b), 1ta850[s/w] and evolution in time of annual surface air temperature

between 40◦ S and 40◦ N (1tas40S40N[ann]). Horizontal coloured lines in the first column are 2 times the multi-decadal variability of

msie[win]b, and the grey band width is 2 times the 90th percentile of msie[win]b multi-decadal variabilities. Solid black lines are regression

lines computed without considering the outlier BNU-ESM (red dot with black face colour). Blue lines are vertical shift of the regression

line by 1.96 standard deviation of residuals. Three of the five highest-scores models are highlighted with black contours: ACCESS1-3 (star),

CESM1-CAM5 (thin diamond), and NorESM1-M (triangle). Models with obvious similarities in code or produced by the same institution

are marked with the same colour, following Knutti et al. (2013).

reanalysis over Antarctica (Bromwich et al., 2011; Bracegir-

dle and Marshall, 2012), and we included five other reanal-

yses into our study to assess our knowledge of the current

state of the Antarctic climate. Our results show that these

reanalyses are not significantly different from ERA-Interim

for 850 hPa air temperature, sea surface temperature, sea-

level pressure and sea-ice concentration, except for NOAA-

20CR-v2, for which sea ice was misspecified (Compo et al.,

2011). For precipitable water, however, we found that NCEP-

NCAR-v1, NCEP-DOE-v2 and NOAA-20CR-v2 reanalyses

from NOAA share a significant positive bias when compared

to ERA-Interim. This bias was already noted by Nicolas

and Bromwich (2011) for NCEP-DOE-v2. The same paper

shows that ERA-Interim has a constant bias of −0.6 kgm−2

compared to the Special Sensor Microwave Image (SSM/I)

satellite data for the 60–50◦ S area. We compared ERA-

Interim with the most recent version of satellite microwave

radiometer brightness temperatures converted to precipitable

water using the RSS Version-7 algorithm over the 1988–2014

period (RemoteSensingSystems, 2013). We see a bias of only

−0.25 kgm−2 for the 60–50◦ S area and of−0.21 kgm−2 for

the 60–40◦ S area, for all seasons. This bias is much lower

than those encountered between ERA-Interim and models

(see Figs. S5 and S6), leading us to believe that ERA-Interim
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can be confidently used as a reference for precipitable water

in this region.

The variable selection is primarily based on our experi-

ence of forcing evaluation for regional climate modelling of

the Greenland Ice Sheet SMB (Fettweis et al., 2013), with

adaptations specific to the Antarctic Ice Sheet, for which

precipitation is the major component of SMB and where

melt amounts are expected to increase significantly during

the century. We sought to focus on a limited number of vari-

ables and to avoid redundancy. We considered psl rather than

500 hPa geopotential height because the latter can be strongly

impacted by air temperature biases at low atmospheric levels,

while the centred patterns of the two variables are strongly

correlated (see Fig. S8). Another variable that could be of

importance for modelling surface mass balance is the merid-

ional moisture flux (mmf), calculated by integrating specific

humidity times meridional wind from the surface to the top of

the atmosphere. This depends on available precipitable wa-

ter as well as large-scale circulation, driving moisture advec-

tion into the Antarctic domain. However mmf is dominated

by time-varying synoptic-scale motions, also called transient

eddies (Tsukernik and Lynch, 2013), which are captured at

the sub-daily time step. This means that a study of merid-

ional moisture flux requires 6H outputs for all models, which

we were not able to obtain. It would be of interest to put the

vertical integral of northward and eastward water vapour flux

as a standard output in the next CMIP.

With regard to measure computation, we focused on the

widely used climate prediction index, a measure based on

statistical theory for normally distributed variables which we

verified as applicable to our data set. In order to give the same

weight to the six selected variables, we chose to first rank

CMIP5 models by variable according to their CPI and then

use the average of ranks. The use of the first three realiza-

tions showed the robustness of the ranking, after which we

also evaluated the impact of multi-decadal variability on the

ranks.

In the context of these choices, ACCESS1-3 is the CMIP5

model showing the best performance for modelling surface

mass balance with a RCM. It has a significant warm bias

for summer sea surface temperature but shows no signifi-

cant biases for the five other metrics. As shown by Noël

et al. (2014) over Greenland, biases in sea surface temper-

atures only marginally impact the SMB simulated by RCMs.

In addition, ACCESS1-3 variable evolutions are close to the

multi-model ensemble mean evolutions (Fig. 3). Two other

models with high skill scores could also be of particular in-

terest because they cover the range of plausible variable evo-

lutions: CESM1-CAM5 and NorESM1-M, which project fu-

ture high (low) 850 hPa air temperature increase and winter

sea-ice decrease, respectively. However both models are too

cold in summer, which may impact the melt increase pro-

jected by RCMs.

With regard to climate change estimates from CMIP5, we

see no significant change in sea-level pressure patterns for

RCP85 during the 21st century (see Fig. S9), whereas the

other variables evolve significantly from the 1980s to 2100.

We observe that 850 hPa air temperature change combined

with the 1980–2010 winter sea-ice bias explain more than

80 % of the variance of the change in precipitable water, sum-

mer sea surface temperature and winter sea-ice extent, while

these last two variables have null correlation with the global

warming signal. This demonstrates the importance of a ro-

bust evaluation over the current climate, as the future pro-

jected climate anomalies over Antarctica could be signifi-

cantly dependent on a model’s ability to properly simulate

present-day sea-ice extent. In addition, we believe that a bet-

ter understanding of climate change over the Antarctic region

would be achieved with a better quantification of the feed-

back between free-atmosphere warming and winter sea-ice

decrease.

Finally, Krinner et al. (2014) suggested that uncertainties

of climate projections over Antarctica could be better quan-

tified by using Atmospheric Model Intercomparison Project

(AMIP)-type projections, for which sea surface conditions

are computed as anomalies of the observed state. We be-

lieve that if sea surface conditions do not improve in the

next CMIP experiment, this method would be valuable, since

AMIP experiments show reduce biases compared to histori-

cal experiments (see Fig. S10), but a correction should be

applied on anomalies to take into account the present-day

sea-ice bias of the forcing simulation.
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Appendix A: Mean climate and multi-decadal

variability

We computed the six selected metrics – prw[s/w], psl[ann],

ta850[s/w], ta850[sum], tos[sum], and msie[win] – for the

41 CMIP5 GCMs on a 31-year moving average between

1850 and 2100 with respect to ERA-Interim over the period

1980–2010. We observed that all metrics showed no signif-

icant trends from 1850 to 1980, whereas they evolved sig-

nificantly afterwards (see Fig. S9). We estimated the multi-

decadal climate variability of each CMIP5 GCM and each

metric by computing the range of this metric (maximum mi-

nus minimum) during this stable 1850–1980 period. Sub-

sequently, we focused on the period 1980–2010 covered

by ERA-Interim and we considered the 1980–2010 met-

rics values plus/minus the multi-decadal variability estimate

computed over 1850–1980. With regards to the reanalyses,

NOAA-20CR-v2 presents spurious trends during the 1971–

1980 period, and the others do not cover a substantial por-

tion of the stable period. Consequently we approximate their

multi-decadal variability by the 90th percentile of CMIP5

multi-decadal variabilities.

Appendix B: Normality issues

Indexes defined in Sect. 2.2 should be applied on normally

distributed variables to be valid. We checked that seasonal at-

mospheric variables follow normal distributions against time

for all grid points. However, sea-ice concentrations have

bounded distributions; hence we apply the scores on msie

instead.

Furthermore, msie has a lower bound of 0, and tos has

a lower bound of the freezing point of sea water (∼−1.7 ◦C),

which may induce grid points with strongly skewed distri-

butions. However our work focuses on seasons of maximal

extent of sea ice (winter) and free ocean (summer), so the

impact of grid points with a skewed distribution is negligi-

ble.
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The Supplement related to this article is available online

at doi:10.5194/tc-9-2311-2015-supplement.
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