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Abstract. Sea ice exhibits considerable seasonal and longer-

term variations in extent, concentration, thickness, and age,

and is characterized by a complex and continuously chang-

ing distribution of floe sizes and thicknesses, particularly in

the marginal ice zone (MIZ). Models of sea ice used in cur-

rent climate models keep track of its concentration and of the

distribution of ice thicknesses, but do not account for the floe

size distribution and its potential effects on air–sea exchange

and sea-ice evolution. Accurately capturing sea-ice variabil-

ity in climate models may require a better understanding

and representation of the distribution of floe sizes and thick-

nesses. We develop and demonstrate a model for the evolu-

tion of the joint sea-ice floe size and thickness distribution

that depends on atmospheric and oceanic forcing fields. The

model accounts for effects due to multiple processes that are

active in the MIZ and seasonal ice zones: freezing and melt-

ing along the lateral side and base of floes, mechanical inter-

actions due to floe collisions (ridging and rafting), and sea-

ice fracture due to wave propagation in the MIZ. The model

is then examined and demonstrated in a series of idealized

test cases.

1 Introduction

Sea ice is a major component of the climate system, cover-

ing about 12 % of the ocean surface. It drives the ice-albedo

feedback, a potential source of climate instability and polar

amplification, and it affects deep water formation and air–

sea fluxes of heat, fresh water, and momentum between the

atmosphere and ocean. Its presence also provides a platform

for high-latitude ecosystems and determines polar shipping

routes. Additionally, sea ice is well-correlated with patterns

of atmospheric variability such as the North Atlantic Oscilla-

tion (Strong et al., 2009), the Antarctic Oscillation (Wu and

Zhang, 2011), and the Madden–Julian Oscillation (Hender-

son et al., 2014). Over the past few decades, Arctic sea ice has

become thinner, less extensive, and more seasonal (Cavalieri

and Parkinson, 2012). Regions that were once covered by ice

year-round now are ice-free in the summer (Stroeve et al.,

2012), and the Arctic marginal ice zone, defined as either the

region of the ocean over which waves lead to the fracture of

ice (e.g. Williams et al., 2013b), or as the area of ice with

concentration between 15 and 80 %, which has been widen-

ing during the summer season (Strong and Rigor, 2013).

High-latitude storms are capable of breaking thinning pack

ice into smaller floes, changing ocean circulation and air–sea

exchange (Asplin et al., 2012; Zhang et al., 2013; Kohout

et al., 2015), with evidence suggesting that these storms will

become more prevalent in the future (Vavrus et al., 2012).

Sea-ice cover is heterogeneous, composed of a distribu-

tion of floes of different areas and thicknesses. Floes can

vary dramatically in size, ranging from newly formed frazil

crystals millimeters in size, to pack ice in the Canadian Arc-

tic with floes up to 10 m thick in places and hundreds of

kilometers wide. The most dramatic intra-annual variability

in sea-ice cover is found in the MIZ, and in seasonal ice

zones, regions which range from being ice-covered to ice-

free over the year. As summer sea-ice cover becomes thin-

ner and more fractured, these regions will become larger,

and the distribution of these floes and their size, shape, and

properties may change. Events that generate surface waves,

such as a fortuitously observed Arctic cyclone in 2011, the

so-called “Great Arctic Cyclone” of 2012, and an energetic

wave event observed in the Barents Sea, can lead to the frac-

turing of floes (Asplin et al., 2012; Zhang et al., 2013; Collins

et al., 2015). The fractured sea-ice cover has increased floe

perimeter, which may lead to enhanced melting and a more
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rapid reduction in sea-ice area compared to an unfractured

sea-ice cover. Steele (1992) indeed demonstrated an increas-

ing sensitivity of the ice cover to lateral melting with de-

creasing floe size, finding that below 30 m, lateral melting

was critically important. Smaller floe sizes may additionally

lead to changes in the mechanical response of the sea-ice

cover to forcing from the ocean and atmosphere, as floe size

is a parameter in collisional models of ice rheology (Shen

et al., 1986, 1987; Feltham, 2005, 2008). As sea ice atten-

uates wave energy, the diminished ice fraction may lead to

further surface wave propagation into the ice field, enhanc-

ing fracturing farther from the sea-ice edge, and leading to

further sea-ice area loss in a positive feedback loop (Asplin

et al., 2014). Floe sizes can also affect the surface drag co-

efficient and therefore air–sea fluxes (Birnbaum and Lüpkes,

2002). Along floe edges, ocean eddies may be generated due

to the gradient in surface heat and stress boundary condi-

tions between ice edge and open water (Niebauer, 1982; Jo-

hannessen et al., 1987). These eddies may more rapidly mix

air–sea heat flux absorbed by open water to underneath sea-

ice floes when floe sizes are comparable to the eddy length

scale, but not when floe sizes are much larger. This in turn

may have consequences for ice melt rates and ocean circula-

tion (Horvat and Tziperman, 2014).

Given that it is not computationally practical to simu-

late all individual floes, properties of the ice cover can in-

stead be described using statistical distributions. This ap-

proach was pioneered by Thorndike et al. (1975), who de-

veloped a framework for simulating the ice thickness distri-

bution (ITD), g(h), defined such that g(h)dh is the fractional

area of the sea surface covered by ice with thickness between

h and h+ dh. The Thorndike model evolves the prognostic

equation

∂g(h)

∂t
=−∇ · (gu)−

∂

∂h
(g(h)Gh)+ψ, (1)

where u is the horizontal ice velocity,Gh is the rate of change

of ice thickness due to melting and freezing (thermodynam-

ics), and ψ , the “redistribution function”, describes the cre-

ation of ice of thickness h by mechanical combination of ice

of different thicknesses. Measurements of ice thickness are

made possible by a variety of remote sensing techniques such

as submarine sonar, fixed moorings, helicopter borne elec-

tromagnetic induction, and satellite measurements (Bourke

and Garrett, 1987; Yu and Rothrock, 1996; Renner and Ger-

land, 2014), which may be used to test model skill. Variants

of the Thorndike model have been implemented in several

general circulation models (GCMs, Bitz, 2008; Hunke et al.,

2013), and have been used to understand sea-ice behavior and

predictability (Bitz et al., 2001; Chevallier and Salas-Mélia,

2012).

Modern approaches to modeling sea ice in GCMs, such as

the community ice model (Hunke et al., 2013), generally ap-

proximate ice cover as a non-Newtonian fluid with vertically

layered thermodynamics, and simple thickness distribution

Table 1. Variables appearing in several components of the FSTD

model.

Variable Description Section

g(h) Ice thickness distribution (ITD) 1

u Ice velocity vector 1

ψ Ice thickness redistribution function 1

n(r) Ice floe size distribution (FSD) 1

r = (r,h) Floe size and thickness 1

f (r) Joint floe size and 1

thickness distribution (FSTD)

φ Open water fraction 2.1

c Ice concentration 2.1

N(r) Floe number distribution 2.1

C(r) Cumulative floe number distribution 2.1

(Thorndike et al., 1975; Semtner, 1976; Hibler, 1979). This

approximation may not suffice, because it does not account

for the distribution of floe sizes and therefore for the above-

mentioned related effects.

We aim to describe the subgrid-scale variability of the sea-

ice cover by extending the ice thickness distribution to a joint

distribution that includes both ice thickness and floe size.

Rothrock and Thorndike (1984) were among the first to de-

scribe the distribution of lateral floe sizes, defining the floe

size distribution (FSD) n(r) dr as the fractional area of the

sea surface covered by floes with lateral size between r and

r + dr . The size of a floe with area a is represented by its

effective radius, r =
√
a /π , which represents floes as cylin-

ders of radius r . Modeling of the lateral floe size distribu-

tion is hampered by the difficulty of measurement, as floe

sizes vary over many orders of magnitude. Even with suf-

ficient imagery, algorithms that identify and measure floes

must overcome many obstacles, such as submerged floes,

melt ponds, and clouds. In spite of these challenges, many

observations of the floe size distribution have been made, of-

ten using helicopter or ship-board cameras, notably in the

Alaskan and Russian Arctic (Holt and Martin, 2001), Sea of

Okhotsk (Toyota and Enomoto, 2002; Toyota et al., 2006),

Prydz Bay (Lu et al., 2008), and Weddell Sea (Herman, 2010;

Toyota et al., 2011). These studies have focused on deriv-

ing and fitting scaling relationships measured distributions,

leading to power-law (Toyota et al., 2006), Pareto (Herman,

2010), or joined power-law (Toyota et al., 2011) distributions

of floe sizes. The temporal evolution of the floe size distribu-

tion has been examined in a small number of observational

studies (Holt and Martin, 2001; Steer et al., 2008; Perovich

and Jones, 2014), that analyzed the change in the floe size

distribution over several weeks or seasonally, but these ob-

servations, particularly in the marginal ice zone, are limited.

Herman (2010) modeled the FSD as a generalized Lotka–

Volterra system, which exhibits a Pareto distribution of floe

sizes as a solution, and suggested that this distribution might

fit observed FSDs. Toyota et al. (2011) showed that observed
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FSDs in the Weddell Sea may be fit by a power law and that

such a scaling relationship may be obtained by assuming that

ice fracture is a self-similar process, following a renormaliza-

tion group method. Zhang et al. (2015) developed a model for

the floe size distribution evolution, assuming that all floes of

different sizes have the same ITD. The present paper, how-

ever, develops a model for the joint floe size and thickness

distribution, allowing for different ice thickness distribution

for each horizontal size class. The Zhang et al. (2015) pa-

per shares many of our goals and we refer to it below, fur-

ther elaborating on additional differences between the two

studies in the treatment of thermodynamics, mechanical in-

teractions, and wave fracturing. Other modeling studies in-

volving the temporal evolution of the floe size distribution

have mainly focused on understanding ocean wave propaga-

tion and attenuation in the marginal ice zone (Dumont et al.,

2011; Williams et al., 2013a, b). These studies developed

models of ocean wave propagation, attenuation and associ-

ated ice breakage, and modeled the FSD using the renormal-

ization group method of Toyota et al. (2011).

The purpose of the present paper is to develop and demon-

strate a framework for modeling the joint distribution of

floe sizes and thicknesses (referred to below as the FSTD)

f (r,h), with f (r,h) dr dh being the fraction of the ocean

surface area covered by floes of thickness between h and

h+ dh and lateral size between r and r + dr (a list of vari-

able names and descriptions are provided in Table 1). The ice

thickness distribution g(h) and floe size distribution n(r) are

obtained by integrating over the joint distribution f (r,h):

g(h)=

∞∫
0

f (r,h)dr,

n(r)=

∞∫
0

f (r,h)dh.

The prognostic equation for the joint floe size and thickness

distribution has the form

∂f (r)

∂t
=−∇ · (f (r)u)+LT+LM+LW, (2)

where r = (r,h), and ∇ = ( ∂
∂x
, ∂
∂y
) is the two-dimensional

Laplacian. The two-dimensional spatial domain may be

thought of as corresponding to a single grid cell of a cli-

mate model, on the order of tens of kilometers on a side. The

term ∇ · (f (r)u) describes advection of the floe size distri-

bution by the flow of ice. LT is the time rate of change of

the floe size distribution due to thermodynamic effects. LM

is the time rate of change due to mechanical interaction (raft-

ing and ridging of floes). LW is the time rate of change due to

floes being fractured by surface ocean waves. We parameter-

ize each of the above processes, forced by grid-scale atmo-

spheric and oceanic forcing fields. The major contributions

of this paper are, first, that it presents the first treatment of

the joint floe size and thickness distribution. In addition, each

of the terms in Eq. (2) as developed below contains a novel

formulation of the corresponding process that is physically

based and less heuristic than used in previous studies.

The paper proceeds as follows: we first develop explicit

representations for the different processes affecting the joint

floe size and thickness distribution in response to atmo-

spheric and oceanic forcing in Sect. 2. The model response

to individual forcing fields, in the form of air–sea heat fluxes,

ice flow that leads to floe collisions, and surface waves, is an-

alyzed in Sect. 3. We conclude in Sect. 4.

2 Representing processes that affect the joint floe size

and thickness distribution

2.1 Thermodynamics

Air-sea heat fluxes in the polar oceans lead to the freezing

and melting of ice. In regions of open water, cooling pro-

duces frazil ice which may consolidate with other floes or

form “pancakes”. When floes grow due to the accumulation

of frazil crystals, or by congelation growth at their bases,

their size and thickness will change, but the total number of

floes will not. Suppose that the only source or sink of ice vol-

ume is due to freezing and melting of existing floes, which

causes them to change their size at a rate we denote asGr and

thickness at a rateGh, and we defineG≡ (Gr,Gh). LetN be

the number distribution, such that N(r)dhdr is the number

of floes in the range (h,h+dh), (r,r+dr) (a list of the vari-

ables used to describe FSTD thermodynamics is provided in

Table 2). The cumulative number distribution is defined as

C(r)=

r∫
0

N(r ′)dr ′ =

r∫
0

(f (r ′)/πr ′
2
)dr ′,

with ∂2

∂r∂h
(C)=N(r)= f (r)/πr2, and it obeys the conser-

vation equation

C(r, t)= C(r +Gdt, t + dt),

since floes with a finite size and thickness r = (r,h) are, by

assumption, neither created nor destroyed by thermodynamic

growth and melting. Expanding the right-hand side and rear-

ranging in the limit as dt→ 0 leads to the time rate of change

of the cumulative number distribution

∂C(r, t)

∂t
=− G ·∇rC, (3)

where ∇r = (
∂
∂r
, ∂
∂h
) is the vector of partial derivatives in

(size, thickness) space. Changes to the cumulative number

distribution are due to the transfer of ice to larger or smaller

sizes by thermodynamic growth and melting. We next make

the assumption that thickness changes due to melting and
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Table 2. Variables used in the representation of thermodynamical processes in the FSTD model.

Variable Description Section

LT Thermodynamic component of FSTD model 1

G= (Gr,Gh) Ice size and thickness growth rate 2.1

(rmin,hmin) Size of smallest ice pancakes 2.1

rlw Width of lead region 2.1

Alead Lead area fraction 2.1

Qlead Lead area heat flux 2.1

Qo Open water heat flux 2.1

Ȧp Rate of pancake area growth 2.1

Ql,l Fraction of lead heat flux transmitted to floe sides 2.1

Ql,b Fraction of lead heat flux transmitted to floe bases 2.1

freezing do not depend on the floe radius, and that hori-

zontal size changes do not depend on the thickness, i.e.,
∂
∂h
(Gr)=

∂
∂r
(Gh)= 0. The time evolution of the floe size

distribution solely due to freezing and melting of existing

floes is derived by taking derivatives with respect to both

thickness and size of Eq. (3):

∂f (r)

∂t

∣∣∣∣
melt/freeze

=−πr2 ∂

∂r

(
f (r)

πr2
Gr

)
−
∂f (r)

∂h
Gh,

=−∇r · (f (r)G)+
2

r
f (r)Gr. (4)

Without loss of generality, consider the interpretation of

this equation for the case of freezing in which existing floes

get thicker and larger. This implies that some of the area

f (r) now moves to larger ice classes, represented by the first

term in Eq. (4). Note that the integral over all size classes

and thickness of the first term vanishes, and therefore it does

not describe ice area growth. The total ice area added or re-

moved that belongs to floes of size r , N(r)d / dt (πr2), equal

to N(r)2πr Gr, which is equal to the second term in Eq. (4).

Zhang et al. (2015) include the effects of melting and

freezing on the FSD, in a way that depends on the lateral

growth rate (ourGr), but without evaluating this rate in terms

of thermodynamic forcing. Their formulation seems to lack

the second term on the right-hand side of Eq. (4). The for-

mulation presented here is for the joint FSTD, and therefore

depends on both Gr and Gh. We further evaluate these rates

below in terms of air–sea fluxes.

In addition to melting and freezing of existing floes, we

must also consider the rate of growth of pancake ice, Ȧp, due

to the flocculation of frazil crystals in patches of open water

away from existing floes. Pancakes are assumed to be created

by freezing at the smallest size and thickness accounted for

in the model, with an effective radius rp and thickness hmin.

The full expression for the rate of change of the floe size and

thickness distribution due to thermodynamics, LT, is there-

fore

LT =−∇r · (f (r)G)+
2

r
f (r)Gr+ δ(r − rmin)δ(h−hmin)Ȧp. (5)

The floe size and thickness change rate vector G=

(Gr,Gh) is determined using the balance of heat fluxes at the

ocean–ice–atmosphere interface. Note that our focus here is

the impact of thermodynamic forcing on the FSTD: we are

not modeling internal ice thermodynamics explicitly. In an

application of the FSTD model, a full thermodynamic model

of the ocean mixed layer and sea ice would simulate the ice

energy budget. Net heat flux in ocean regions adjacent to

ice floes (which we refer to as lead regions) is assumed to

affect the development of adjacent floes laterally and verti-

cally, while cooling in open water away from existing floes

may lead to pancake ice formation (the model does not re-

solve frazil ice, nor arbitrarily small pancake ice). The lead

region is defined as the annulus around each floe of width

rlw, and the division of ocean area into lead and open water

areas is shown as the blue and white regions in Fig. 1, (see

also Parkinson and Washington, 1979). The total lead area,

Alead, is approximated as

Alead =min

∫
r

(
N(r)π(r + rlw)

2
−N(r)πr2

)
dr,φ


=min

∫
r

f (r)

(
2rlw

r
+
r2

lw

r2

)
dr,φ

 ,
where φ is the open water fraction, and the above integration

is over the entire ranges of effective radius and thickness rep-

resented in the model. A net air–sea heat flux Q at the ocean

surface is therefore partitioned into a lead heat flux Qlead =

AleadQ and an open water heat flux Qo = (φ−Alead)Q. If

the water is at its freezing point, a cooling heat flux leads to

freezing of pancakes of ice of radius rmin and thickness hmin,

producing the area Ȧp of ice pancakes per unit time where

there was formerly open water:

Ȧp =
Qo

ρ0Lf hmin

.

The lead region heat flux, Qlead, is further partitioned into

a part that leads to basal freezing or melting of existing
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r-ᶖ
cz

Acore

Acz

r

Core

Contact Zone r lw

Lead Region 

Alead

Open 
Water

Figure 1. A section of a floe, showing the division of a floe and

the surrounding sea surface for the thermodynamic and mechanical

interaction components of the FSTD model. The floe itself, of radius

r , is divided into the core which is unaffected by ridging and rafting

(blue, width r − δcz) and contact zone which participates in these

interactions (green, width δcz). The floe is surrounded by the lead

region of width rlw where net heat fluxes lead to freezing or melting

of the floe itself (blue) and then by open water where cooling may

lead to new pancake ice formation (white).

ice floes, Ql,b, and a component that leads to lateral freez-

ing or melting along perimeters of existing floes, Ql,l. Mul-

tiple choices for this partitioning are possible, including

a binary partition (Washington et al., 1976) with Ql,b =

Qlead, Ql,l = 0 or Ql,l =Qlead, Ql,b = 0, a parameterization

with a quadratic dependence on open water fraction Ql,l ∝

A2
lead (Parkinson and Washington, 1979), and diffusive and

molecular-sublayer parameterizations based on the temper-

ature of the surface waters (Steele, 1992; McPhee, 1992).

While these parameterizations have been tested in some de-

tail (Harvey, 1990; Steele, 1992), sensitivity analyses in pre-

vious studies have fixed (either explicitly or implicitly) the

floe size distribution, and the impact of this assumption on

the results is unclear. We choose to simply assume that the

lead heat flux is mixed uniformly over the exposed surface of

a floe, partitioned according to the ratio of ice basal and lat-

eral surface areas, where it contributes to ice growth or melt.

The total fractional lateral surface area (that is, the area of

the vertical edges of ice floes, per unit ocean area) is

∫
r

N(r)2πrhdr =

∫
r

f (r)
2h

r
dr = 2h/r,

where N is the number distribution introduced above, 2πrh

is the lateral area of one floe, and 2h/r represents an average

over all ice floes, weighted by the floe size and thickness dis-

tribution. The above result depends on the model including

an explicit joint FSTD, without which this estimate for the

lateral area would not be possible to obtain. The total basal

ice surface area per unit ocean area is the ice concentration,

c. The partitioning of heat flux from the lead region between

the ice base and ice edges is therefore

Ql,l =Qlead

(
1+

c

2h/r

)−1

;

Ql,b =Qlead

(
1+

2h/r

c

)−1

.

The rate of change of ice thickness can be found using a

model of ice thermodynamics, given the above-derived open

water air–sea flux contribution Ql,b to the heat budget at the

ice base. For example, ignoring ice heat capacity, ice thick-

ness changes due to melting and freezing are related to the

net heat flux into the ice from the surface above, Qsurf (de-

fined negative upward), and from below (where negative flux

means ocean cooling):

ρiLfGh =−(Ql,b+Qsurf). (6)

The rate of change of the lateral floe size is calculated from

the corresponding contribution of the air–sea heat flux from

the lead region Ql,l:

ρiLfGr =−Ql,l. (7)

The above equations can now be used to express the thermo-

dynamic floe growth rate vector, G= (Gr,Gh).

2.2 Mechanical interactions

Wind and ocean currents can drive individual floe collisions,

and therefore merge them together. When one floe overrides

another while remaining intact, the interaction is referred to

as rafting. If the ice at the point of contact disintegrates into

a rubble pile, forming a “sail” and a “keel”, and the two floes

consolidate, the interaction is referred to as ridging. To de-

scribe these processes, open water in the floe size and thick-

ness distribution f (r) is represented by a delta function at

r = 0, multiplied by the area fraction of open water. The dy-

namics of open water formation by ice flows may then be

derived by taking integrals over the prognostic Eq. (2) that

include or exclude r = 0 (a list of the variables used to de-

scribe the FSTD response to floe collisions is provided in

Table 3). The integral of f (r) over all floe sizes and thick-

nesses, including open water, is equal to 1. Therefore, ignor-

ing thermodynamic and wave effects, we integrate Eq. (2)

over a range of floe sizes that include a vanishingly small

www.the-cryosphere.net/9/2119/2015/ The Cryosphere, 9, 2119–2134, 2015
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Table 3. Variables used in the representation of mechanical interactions in the FSTD model.

Variable Description Section

LM Mechanical component of FSTD model 1

DM /Dt Rate of change incorporating ice collisions 2.2

Lc Normalized fraction of concentration lost/gained by collisions 2.2

ε̇ Ice flow strain rate tensor 2.2

E Vector of strain rate tensor invariants 2.2

K(r1,r2,r) Collision kernel: two floes of size r1 and r2, forming a floe of size r 2.2

Pcoll(r1,r2) Probability of two floes of sizes r1 and r2 colliding 2.2

δraft/ridge Width of contact zone for collisions rafting/ridging 2.2

Acz Area of floe contact zone 2.2

Acore Area of floe core 2.2

γ (h) Interpolation coefficient between rafting and ridging 2.2

interval of sizes around r = (r,h)= 0:

∫
0−

LM(r)dr ≡ lim
|(ε1,ε2)|→0

∞∫
−ε1

∞∫
−ε2

LM(r,h)dr dh,

=

∫
0−

[
∂f (r)

∂t
+∇ · (f (r)u)

]
dr,

=
∂1

∂t
+∇ · (1u)=∇ ·u. (8)

The integral of f (r) over all floe sizes and thicknesses, but

excluding open water (r = 0), is equal to the ice concentra-

tion, c. Integrating Eq. (2) as before but now excluding r = 0,

∫
0+

LM(r)dr ≡ lim
|(ε1,ε2)|→0

∞∫
ε1

∞∫
ε2

LM(r,h)dr dh,

=

∫
0+

[
∂f (r)

∂t
+∇ · (f (r)u)

]
dr,

=
∂c

∂t
+u · ∇c+ c(∇ ·u)≡

DMc

Dt
. (9)

The above definition of the operator DM /Dt implies that

DM(1)/Dt =∇ ·u. The subscript M indicates that this op-

erator represents concentration changes due to mechanical

interactions only. DMc
Dt

is equal to the total sea-ice area which

is eliminated due to the collisions of floes per unit of time.

Subtracting Eq. (8) from Eq. (9),

0+∫
0−

LM(r)dr =∇ ·u−
DMc

Dt
.

This result implies that LM(r) has a δ(r) component

due to open water creation in floe collisions, or the in-

tegral on the infinitesimally small range near size zero

would have vanished. Note that the function δ(r) is the

two-dimensional delta function: δ(r)= δ([r,h])≡ δ(r)δ(h).

Equation (9) suggests that there should be another term in

LM(r) that, when integrated over all sizes, leads to DMc
Dt

. This

suggests the following form:

LM = (∇ ·u)δ(r)+
DMc

Dt
[Lc(r)− δ(r)] , (10)

where Lc(r) is yet unspecified except that its integral over all

sizes is 1, and it is non-singular at ||r|| = 0:∫
0+

Lc(r) dr =

∫
0−

Lc(r) dr = 1. (11)

The factor Lc(r) quantifies the relative fraction of the to-

tal concentration lost due to collisions at each floe size. The

terms in Eq. (10) that are proportional to δ(r) represent to-

gether the formation of open water due to collisions driven

by divergent ice motions. The remaining term represents the

rearrangement of ice area among floe classes. It remains to

derive expressions for the rate of open water formation due

to collisions DMc
Dt

, and the rearrangement of the floe size and

thickness distribution in response to a unit amount of open

water formation due to collisions, Lc(r).

Thorndike et al. (1975) described the rate of mechanical

interactions as depending on the divergence, convergence,

and shear of the ice flow, weighted by the relative size of

the invariants of the ice strain rate tensor ε̇:

ε̇ij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (12)

Defining the deviatoric strain tensor, ε̇′ij = ε̇ij − δij∇ ·u/ 2,

equal to the divergence-free part of ε̇ij , two relevant invari-

ants may be written asE = (εI,εII)= (∇ ·u,2|− ε̇
′
|
1/2). The

first invariant is the flow divergence and the second is calcu-

lated from the determinant of the deviatoric strain rate ten-

sor, and is equal to the maximal shear strain rate. Given these

definitions, we parameterize the rate of ice area loss due to

collisions as

DMc

Dt
=

1

2
(εI− ||E||)≤ 0, (13)
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which allows us to write the mechanical interaction term in

the FSTD equation as

LM = δ(r)εI+
1

2
(||E|| − εI) [δ(r)−Lc] . (14)

This formulation is exactly equivalent to that of Thorndike

et al. (1975); see Appendix for details. In the case of ice flow

characterized by pure divergence, E = (∇ ·u,0) and ∇ ·u>

0, the mechanical interactions are represented as a delta func-

tion at r = 0, representing only the formation of open wa-

ter by divergent ice flow. In pure convergence, E = (∇ ·u,0)

and ∇ ·u< 0, and mechanical interactions create open water

through collisions and LM(r)= |∇ ·u|Lc(r). When the ice

flow is characterized by shear motions, ||E|| = εII, and col-

lisions still occur due to the differential motion of neighbor-

ing floes, which forms open water at a rate of DMc
Dt
= εII / 2

per second. Other choices of DMc
Dt

could satisfy Eq. (10), but

the Thorndike parameterization meets the intuitive require-

ments that in pure divergence no collisions occur, while in

pure convergence they do, and in pure shear, collisions occur

such that the rate of open water formation per unit strain is

reduced relative to the case of pure convergence.

The effects of mechanical interactions on the FSD are rep-

resented by Zhang et al. (2015) similarly to Eq. (10), with the

rate of area loss (our DMc
Dt

) taken from Hibler III (1980), and

assuming that all floes of different sizes have the same ITD.

In our joint FSTD formulation, the mechanical interactions

are represented for floes characterized by both specific thick-

ness and specific size. Here, interactions between floes are

treated as binary collisions, and our model does not consider

multiple simultaneous collisions in a single time step. Such

multiple collisions lead to clustering, which is relevant for

granular media undergoing deformation (Shen and Sankaran,

2004), with sea ice being a possible example. However, Her-

man (2013) demonstrated in numerical simulations that floes

may also aggregate into clusters via a sequence of binary in-

teractions between pairs of floes.

The rearrangement of floe area in response to a unit

amount of open water formation, Lc(r), is represented using

a collision kernelK(r1,r2;r). LetK(r1,r2;r)dr1 dr2 dr be

equal to the number of collisions per unit time between floes

in the range (r1,r1+ dr1) and floes in the range (r2,r2+

dr2), that form floes in the range (r,r + dr), per unit area

of open water formation. In general, the floe number distri-

bution subject to mechanical combination of floes evolves

according to

∂N(r)

∂t
=

∫
r1

∫
r2

[
1

2
N(r1)N(r2)K(r1,r2;r)

−N(r)N(r2)K(r,r2;r1)

]
dr1 dr2, (15)

where the notation
∫
r

dr is taken to mean an integral over all

floe sizes and thicknesses resolved by the model. The fac-

tor of 1/2 prevents double-counting: since K is symmetric

with respect to its first two arguments, each interaction pair

(r1,r2) is counted twice in the integral in Eq. (15). This rep-

resents the rate of change in the number of floes of size r3

due to mechanical interactions. In reality, some floe colli-

sions may lead to a rebound and erosion of floe edges rather

than to a merging of the floes, yet we do not account for such

a process. The first term on the right-hand side of Eq. (15)

represents the increase in floe number at size r due to colli-

sions between floes of other sizes, and the second term rep-

resents the loss in floe number at size r due to combination

of floes of size r with other floes. Equation (15) is a gener-

alization of the Smoluchowski coagulation equation that has

been previously used to model the sea-ice thickness distribu-

tion (Godlovitch et al., 2011). If we multiply Eq. (15) by the

area of a floe of size r , we obtain the rate of change of the

fractional area covered by floes of size r due to mechanical

interactions, which is nothing but the definition of LM(r):

∂f (r)

∂t
= (πr2)

∂N(r)

∂t
= LM(r);(r 6= 0). (16)

We have already concluded above that away from r = 0 we

have LM(r)= Lc(r). Therefore the above equation gives

Lc(r)= (πr
2)
∂N(r)

∂t
, (17)

where ∂N /∂t is taken from Eq. (15). We represent the ker-

nel K(r1,r2,r) as the product of two factors. The first is

the probability of collision via ridging or rafting of two floes

of size r1 and r2, termed Pcoll(r1,r2) where the subscript

“coll” is either “ridge” or “raft”, and the probabilities are to

be defined more specifically shortly.

The second factor is a delta function, δ(r −R(r1,r2)),

that limits the pairs of collision partners to only those that

form a floe of size r = R(r1,r2), specified below, and whose

area is smaller than the area of the two colliding floes com-

bined. Noting again that the number distribution and area dis-

tribution are related through N(r)= πr2f (r), we combine

Eq. (17) and (15) to find

Lc(r)= L
∗
c

∫∫
r1,r2

[
1

2

r2

πr2
1 r

2
2

f (r1)f (r2)Pcoll(r1,r2)δ(r −R(r1,r2))

−
1

πr2
2

f (r)f (r2)Pcoll(r,r2)δ(r1−R(r,r2))

]
dr1dr2. (18)

The coefficient L∗c is a normalization constant ensuring that

the integral over Lc(r) is 1 (Eq. 11). In the discretized ver-

sion of Eq. (18), two floe classes of discrete size rd
1 and

rd
2 which combine to form floes of discrete size rd do not

necessarily satisfy π(rd
1 )

2hd
1+π(r

d
2 )

2hd
2 = π(r

d)2hd. Ice vol-

ume conservation that is independent of the discretization is

achieved by determining the newly formed area of the new

floes, in each time step, using the constraint that volume must

be conserved:

1f (rd
1)h

d
1+1f (r

d
2)h

d
2 =−1f (r

d)hd,
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where1f (r) is the area change at size r in a single time step

due to the mechanical interaction considered here. Thus the

total volume lost by floes at size rd
1 and rd

2 (left-hand side) is

equal to the corresponding volume gained at size rd
3 (right-

hand side).

2.2.1 Probability of collision

We choose the functions Pcoll(r1,r2) to be proportional to

the probability that two floes of size r1 and r2 will overlap

if placed randomly in the domain, and they are calculated in

a similar manner for both mechanical processes (rafting or

ridging). We consider such an overlap as an indication that

mechanical interaction has occurred. The area of each floe

that may be deformed due to mechanical interactions is re-

stricted to a small region near the edge of the floe, repre-

sented in our model by a narrow annulus, which we term a

“contact zone”, of width δcz = δridge or δcz = δraft at the floe

edge, which depends on the floe size and the interaction type;

we also term the interiors of floes “cores” (Fig. 1). The area

of a single floe of size s is therefore broken down as

πs2
= Acore(s)+Acz(s)= π(s− δcz)

2
+π(2δczs− δ

2
cz).

The above-defined probability of collision between floes of

size r1 and r2 is proportional to the product of contact zone

areas divided by the open ocean area, A, not including the

core areas:

Pcoll(r1,r2)∝
Acz(r1)Acz(r2)

(A−Acore(r1)−Acore(r2))2
.

The above probability that two floes will collide is based

on geometric constraints. However, the rate of collisions de-

pends also on the ice strain rate tensor ε̇ as explained above,

and this tensor depends on external forcings such as the

strength of the prevailing winds and currents (Shen et al.,

1987; Herman, 2011, 2013; Bennetts and Williams, 2015),

but the determination of that relationship is not a focus of the

FSTD model presented here.

Data of the morphology and width distribution of ridges

and rafts as a function of the size of the combining ice floes

are scarce, though there are indications that rafts can be

substantially larger than ridges (Hopkins et al., 1999). We

crudely define the width of the contact zone in ridging to be

5 m, or the size of the smaller of the two combining floes,

whichever is smaller:

δridge(r1, r2)=min(5m, r1, r2).

For rafting, we assume a larger portion of the smaller floe

may be uplifted, up to 10 m:

δraft(r1, r2)=min(10m, r1, r2).

Both choices lead to larger ridges and rafts as the size of the

interacting floes increases. Given observations of these pro-

cesses, one can refine the above choices, to which our model

is not overly sensitive. Finally, we assume that ridging oc-

curs for floes thicker than 0.3 m, and rafting occurs when

both floes are thinner than 0.3 m, consistent with the study of

Parmerter (1975), with a smooth transition between the two

regimes implemented by a coefficient γ (h) which tends to 1

for thicknesses that are prone to rafting and to 0 for ridging:

K(r1,r2;r)= γ (h1)γ (h2)Praft(r1,r2)δ(r −Rraft(r1,r2))

+ (1− γ (h1)γ (h2))Pridge(r1,r2)δ(r −Rridge(r1,r2)),

γ (h)=
1

2
−

1

2
tanh

[
(h− 0.3)/ 0.05

]
.

2.2.2 New floe size

The ice area lost in an interaction is different for rafting and

ridging. In rafting, the entire contact zone is replaced by ice

whose thickness is the sum of that of the original floes. In

ridging, the contact zone is increased in thickness by a factor

of 5, compressing its area by a factor of 1/5 (Parmerter and

Coon, 1972). Given that our model assumes each floe has a

uniform thickness, we treat floes formed by ridging or rafting

to be of uniform thickness, chosen to conserve volume. This

choice eliminates the need for keeping track of sea-ice mor-

phology. Observations (Collins et al., 2015; Kohout et al.,

2015) have indicated that floes may break up along ridges,

in which case Eq. (18) may be used to provide information

about the ridge density. This is a potential future extension of

the present work.

Assuming without loss of generality that r1 ≤ r2, the area

of the newly formed floes is therefore given by the sum of the

areas minus the area lost to either ridging or rafting. We then

divide this area by π and take the square root to find the size

of the newly formed floes. The thickness of the formed floe

is calculated from volume conservation. We therefore have

[r,h] = R([r1,h1], [r2,h2])raft

=

(√
r2

1 + r
2
2 −

1

2
Acz,raft(r1)/π,

V (r1)+V (r2)

πr2

)
,

[r,h] = R([r1,h1], [r2,h2])ridge

=

(√
r2

1 + r
2
2 −

4

5
Acz,ridge(r1)/π,

V (r1)+V (r2)

πr2

)
,

where V (r)= V ([r,h])= hπr2 is the volume of an ice floe.

2.3 Swell fracture

Sea surface height variations due to surface ocean waves

strain and possibly break sea-ice floes into smaller floes of

varying sizes. Since this process does not create or destroy

sea-ice area, the response of the FSTD to the fracture of sea

ice by waves obeys the conservation law∫
r

LW (r)dr = 0,
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Table 4. Variables used in the representation of the fracture of ice by surface waves in the FSTD model.

Variable Description Section

LW Ice fracture component of FSTD model 1

�(r, t) Area of floes of size r fractured by waves 2.3

F(r,s) Floe size and thickness distribution of new floes formed by the fracture of floes of size r by waves 2.3

α(λ,h) Attenuation coefficient (per floe) for waves of wavelength λ encountering ice of thickness h 2.3

D Width of computational domain onto which waves are incident 2.3

S(λ) Incident wave spectrum 2.3

η(x) Sea surface height record 2.3

φi Phase of ith component of sea surface height Fourier spectrum 2.3

a(λi) amplitude of ith component of sea surface height Fourier spectrum 2.3

εcrit Critical strain rate for breaking of floes 2.3

Hs Significant wave height (height of 1/3 highest waves) 2.3

X∗ Collection of potential fracture lengths 2.3

R(r,h) Histogram of lengths that lead to fracture of ice of thickness h 2.3

λz Wavelength corresponding to zero-crossing period 2.3

cg Group velocity of waves of wavelength λ to cross domain 2.3

Tz Zero-crossing period for wave record 3

where LW (r) is the time rate of change of floes of size

and thickness r = (r,h) due to the fracture of ice by surface

waves in Eq. 2, and the integral is over all sizes and thick-

nesses (a list of the variables used to describe the response

of the FSTD to ice fracture by waves is provided in Table 4).

Suppose that an area of floes �(r, t)dr with sizes between r

and r + dr is fractured per unit time. Let new floes resulting

from this process have the floe size distribution F(r,s)ds,

equal to the fraction of �(r, t) that becomes floes with size

between s and s+ ds. The rate of change of area of floes of

size r due to fracture by ocean surface waves is then

LW (r)=−�(r, t)+
∫
s

�(s, t)F (s,r)ds. (19)

The first term is the loss of fractional area of size r that is

fractured per unit time, and the second is the increase in the

area occupied by floes of size r due to the fracture of floes of

larger sizes.

Kohout and Meylan (2008) modeled floes as long floating

elastic plates, and showed ocean surface waves to be attenu-

ated exponentially as a function of the number,3, of ice floes

the waves encounter as they propagate into an ice pack. Wave

energy therefore decays as exp(−α3), where the attenuation

coefficient is α(T , h̄), T is the wave period, and h̄ the mean

ice thickness. We approximate the number of floes per unit

distance as c(2r̄)−1, where c is the ice concentration and r̄

the average effective radius, and approximate this attenua-

tion by fitting the attenuation coefficient α(T , h̄) calculated

by Kohout and Meylan (2008) (their Fig. 6) to a quadratic

function of the period and mean thickness (Fig. 2). Kohout

and Meylan (2008) only report an attenuation coefficient for

wave periods longer than 6 s and thicknesses less than 3 m

(red box in Fig. 2), so we extrapolate to shorter periods and

higher thicknesses using this fit when necessary. We convert
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Figure 2. The natural logarithm of the attenuation coefficient α

calculated by Kohout and Meylan (2008) (dashes, inside the red

box) and a quadratic fit to this attenuation coefficient that is used

in Sect. 2.3 (solid lines). Solid contours outside of the red box are

extrapolated using the quadratic fit. The fit is given by lnα(T , h̄)=

−0.3203+2.058h̄−0.9375T −0.4269h̄2
+0.1566h̄T +0.0006T 2.

the attenuation coefficients from a function of wave period to

a function of wavelength using the deep-water surface grav-

ity wave dispersion relation λ= gT 2 / 2π .

Scattering models may under-predict attenuation rates

(Williams et al., 2013b), which may allow for longer pene-

tration of waves into the MIZ than is physically realistic. Up-

dated models of the wave attenuation (Bennetts and Squire,

2012) suggest different attenuation coefficients as a function

of wave period and ice thickness. We tested our model with

the Bennetts and Squire (2012) attenuation coefficient, and

show in the Supplement (Sect. S1.4) that our FSTD model

can be sensitive to the choice of attenuation model. Future

applications of this FSTD model should therefore carefully

consider the wave attenuation formulation, based on both

model estimates and observations (e.g., Meylan et al., 2014).
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We determine the floe size distribution caused by the frac-

ture of ice of size s by surface waves, F(s,r)dr , based on

the wave spectrum S(λ) (in units of meters, see Bouws et al.,

1998, p. 11), which is equal to the wave energy spectrum nor-

malized by ρg. Williams et al. (2013a) used a Rayleigh dis-

tribution for the strain spectrum to predict breaking of floes;

however this does not determine the floe sizes produced by

the breaking, which we address as follows. First, the contin-

uous spectrum and attenuation coefficients are used to gen-

erate realizations of the sea surface height. Next, these re-

alizations are used to calculate the strain applied to the ice

floes. Finally, a statistical distribution of resulting floe size

is calculated from the sea surface height plus a critical strain

condition. Details of this procedure follow, and are demon-

strated in detail in the supplementary material section S3.

We consider for simplicity a one-dimensional domain and

assume that floes flex with the sea surface height field η(x),

experiencing a strain ε = h
2
∂2η

∂x2 (Dumont et al., 2011, p. 4). If

the maximum strain, which occurs at the trough and crest

of a wave, exceeds an empirically defined value εcrit, the

floe will break. For a monochromatic swell wave of wave-

length λ, this leads to floes of size λ/ 2. For a discretiza-

tion into Nλ spectral lines with spacing 1λ, spectral ampli-

tudes are defined as ai =
√

2S(λi)1λ, so that
∫
S(λ)dλ≈∑Nλ

i=1S(λ)1λ=
∑Nλ
i=1a

2
i / 2. Let the width of the domain to

which the FSTD model is applied be D (e.g., the width of a

GCM grid cell which borders on open water). A realization

of the sea surface height η(x) is generated according to

η(xj )=

Nλ∑
i=1

aie
−α(λi )xj cos

(
2πxj

λi
+φi

)
, (20)

where x ranges from 0 toD, the random phases φi are drawn

from a uniform distribution between 0 and 2π , and α(λi) is

the attenuation coefficient for waves of wavelength λi .

If the strain is calculated locally from η(x), the critical

strain is reached almost everywhere for a realistically gen-

erated wave field (see the Supplement, Fig. S10). Instead, a

floe is assumed to fracture when it is strained between three

successive local extrema of η, where points are defined to

be extrema if they are a local maximum or minimum over

a distance of 10 m on both sides, based on the observations

of Toyota et al. (2011) who find this to be the order of the

smallest floe size affected by wave fracture. For a triplet of

successive extrema (max, min, max; or min, max, min) of

η, (x∗i−1,x
∗

i ,x
∗

i ), the strain felt by the floe at x∗i is calcu-

lated by a finite difference approximation (see the Supple-

ment, Sect. S3). When the magnitude of this strain exceeds

the critical strain, εcrit = 3× 10−5, the floe will break. This

determines a set of points at which a floe of thickness h will

fracture, X∗i (h). From this set of points we define the size

of the fractured floe as X∗i+1−X
∗

i . We form a histogram

R(r,h) of the number of occurrences of each fracture of size

r , which is normalized so that
∫
rR(r,hs)dr =D. In this

way, R(r,hs)dr is equal to the number of fractures with size

between r and r + dr and thickness hs when waves affect a

fully ice-covered domain of length D. We assume that a floe

of size s will fracture only whenX∗i+1−X
∗

i = r < s, and that

the number of fractures of size r is either proportional toR(r)

(for r < s), or 0 (for r>=s). The total length of fractures of

size r is thus proportional to rR(r), or 0, for r > s. The floe

size distribution formed by the fracture of a floe of size s,

F(s,r) is therefore equal to the total length of floes of size r

that are formed by this fracturing of a floe of size s, normal-

ized such that
∫
∞

0
F(s,r)dr = 1, i.e.,

F(s,r)= F([s,hs], [r,h])=
rR(r,hs)

s∫
0

rR(r,hs)dr

δ(h−hs). (21)

The upper limit of the normalization integral in the denom-

inator is truncated to s because the integrand vanishes for

larger values of r as explained above. The delta function

δ(h−hs) represents the fact that fracture does not change

ice thickness, i.e., any floes formed from the fracture of ice

with thickness hs will also have thickness hs.

The function �(r, t)dr is the fractional area that belongs

to floes of size between r and r + dr that is fractured per

unit time. It is set equal to the the area fraction covered by

floes of size r , f(r), multiplied by the fraction of the domain

reached by waves of group velocity cg per unit time, cg /D,

multiplied by the probability that floes of size r will fracture

by waves. To calculate this probability, we note that r ′R(r ′)

is the total length of the domain covered by waves that can

break floes into size r ′. Integrating this over r ′ from 0 to a size

r , we find the total width of the domain covered by waves

that can produce floes smaller than r , which is the same as

the length of the domain covered with waves that can break

floes of size r into smaller sizes. Normalizing by the domain

width D, we find the final factor in the expression for �:

�([r,h], t)= f (r)(cg /D)

 r∫
0

r ′R(r ′,h)dr ′ /D

 . (22)

The group velocity is taken to be that of the mean zero-

crossing wavelength, cg =

√
λzg
8π

. Observations of wave

propagation in ice (Collins et al., 2015) have suggested that

the propagation speed of fracture in ice may be slower than

the group velocity of surface waves. With more data, the

above choice for cg may be re-evaluated.

The effects of the fracture of ice by waves on the FSD is

represented by Zhang et al. (2015) based on an expression

similar to Eq. (19), assuming that only floes with horizontal

size larger than a specified threshold break, that a fractured

floe is equally likely to form any smaller size within a spec-

ified range, and that all floes in a given size class have the

same ITD. In the representation in the present paper of the

effects of ice fracture by waves on the joint FSTD, the wave

spectrum plays a central role in determining the resulting floe
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sizes, as well as the propagation distance over which ocean

waves are attenuated by the ice field. Information about the

specific thickness of individual floe sizes informs the strain

rate failure criterion and therefore determines which floes

will be fractured.

3 Model results

To demonstrate and understand the model’s response to a

variety of forcing scenarios, we first examine its response

over a single time step in three runs with idealized forcing

fields. Each of these scenarios applies one of the follow-

ing forcing fields: a net surface cooling Q=−100 W m−2

which induces ice growth, a rate of ice flow convergence of

∇ ·u=−5× 10−9 s−1 which induces floe collisions, and a

surface gravity wave field of a single wavelength λ= 56 m

and amplitude of 1 m, leading to ice fracture. The model is

initialized with a size and thickness distribution composed

of two Gaussian peaks (Fig. 3a). The first (referred to as

size I below) has a mean size of 90 m and a mean thick-

ness of 0.25 m. Ice at this size and thickness is suscepti-

ble to fracture by surface waves and rafting. The second

peak (size II) has a mean size of 15 m and a mean thick-

ness 1.5 m. Ice at this size and thickness tends to ridge rather

than raft, and is not susceptible to fracture given our speci-

fied wave field. This second point is important, as it demon-

strates a possible scenario in which knowledge of the ITD

and FSD, separately, would not be sufficient to evolve the

FSTD, as some floes, independent of their thickness, will not

fracture. The initial sea-ice concentration is 75 %. The do-

main width is D = 10 km, and the width of the lead region

is set to be rlw = rmin = 0.5 m, the smallest floe size resolved

in this model. The critical strain amplitude for flexural fail-

ure, εcrit, is set to 3× 10−5 in line with other studies (Ko-

hout and Meylan, 2008; Dumont et al., 2011). Williams et al.

(2013a) formulated a more complex expression for the criti-

cal failure limit, and this was found to have a significant ef-

fect on wave fracturing (Williams et al., 2013b). We examine

the model sensitivity to some of the main parameters used in

these model simulations in the Supplement (Sect. S1).

When two floes of size r and s combine due to rafting or

riding interactions, they form a new floe with effective ra-

dius r ′ >max(r,s). For an arbitrary floe size discretization

into size bins, this new size may not lie within a bin repre-

senting a size larger than those of the two interacting floes.

As a result, interacting floes may accumulate at a single bin

size rather than move into bins representing larger sizes. The

minimum bin resolution necessary to avoid this problem is

set by the interaction of two floes that are the same size r ,

with r smaller than the ridge width δridge. When two such

small floes interact via ridging in our model, one of them

becomes 5 times thicker and its area is reduced by a factor

of 5. They therefore form a floe of size
√

6/5r . We select

a variable discretization, with rn+1 =
√

6/5rn, with 64 floe

sizes between 0.5 and 156 m. There are 14 thickness cate-

gories, 13 of which are equally spaced between 0.1 to 2.5 m.

To conserve volume when thick floes combine or grow due

to freezing, the fourteenth thickness category incorporates all

thicknesses greater than 2.5 m. We examine the numerical

convergence of the model in the Supplement (Sect. S2), find-

ing that increasing this resolution does not significantly alter

the numerical results.

The difference between the model state after a single

1 h time step and the model initial conditions is shown in

Fig. 3b–d. Cooling leads to growth in both thickness and

size (Fig. 3b) with the impact of lateral growth being less

visible than the change in thickness. The shift in thickness

is seen by the negative tendency (blue shading) for thick-

nesses smaller than the maximum of the initial distribution,

and positive tendency at sizes larger than the initial maxi-

mum (red shading). These tendencies correspond to the shift-

ing of floes from thinner to thicker floes due to the freez-

ing. The shift in horizontal size is less apparent in the figure,

due to the separation of scales between size and thickness;

lateral growth rates are comparable to vertical growth rates

(1 cm day−1), but given that there is more than an order of

magnitude difference between the floe size and thickness, the

size change corresponds to a smaller relative change than the

thicknesses change. The size response would be more appar-

ent for smaller initial floe sizes not included in this idealized

model experiment.

Mechanical interactions (Fig. 3c) lead to growth at three

distinct clusters of size and thickness. The first, due to the

self-interaction (rafting) of floes of size I, is shown as a posi-

tive tendency at a floe size of 123 m and thickness of 0.35 m.

This cluster would not be resolved in a model that repre-

sented the ice thickness distribution only. The second cluster

is due to a ridging interaction between floes of size I and II,

leading to new floes of around 90 m size and 0.5 m thickness.

The third, due to self-interaction (ridging) between floes of

size II, leads to a positive tendency at floe sizes around 17 m

and thickness around 1.7 m. Both the second and third clus-

ters of floes would not be resolved in a model that represents

the floe size distribution only, showing again the importance

of representing the joint FSTD.

Swell fracture (Fig. 3d) leads to the fracturing of many

of the floes of size I, shown as a negative tendency at the

eliminated size class. Floes of size II are not affected because

they are smaller than twice the wavelength of the specified

surface gravity wave field. Since the specified wave field is

monochromatic, the area of floes of size I that are broken is

shown as a positive tendency at a floe size equal to half of

the wavelength of the surface gravity wave, λ/ 2= 28 m. Ice

thickness does not change when the ice is fractured.

Next, two 1-month simulations are performed using the

same initial distribution to show the behavior of the model

forced by two different fixed strain rate scenarios (Fig. 4).

The first (Fig. 4a, b) simulates convergence of fixed magni-

tude (εI =−10−7,εII = 0) s−1, and the second (Fig. 4c, d)
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Figure 3. Response of the FSTD to idealized single-process experiments over a single time step (Sect. 3). (b) Change in response to

thermodynamic forcing only. (c) Change in response to mechanical forcing only. (d) Change in response to wave forcing only. Solid black

contours in (b–d) show the initial floe size and thickness distribution, and contour intervals are powers of 10. The color bar on the right

corresponds to the change in the FSTD in units of fractional area per time step (1 s−1). Warm colors indicate an increase in fractional area,

cool colors indicate a decrease in fractional area.
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Figure 4. Results of two simulations of the floe size and thickness distribution forced with fixed ice-flow strain rates and only mechanical in-

teractions. (a) Ice concentration, mean thickness, and ice volume for 1 month of fixed shear, with no convergence. Time series are normalized

by their initial values. (b) The base 10 logarithm of the FSTD at days 0, 15, and 30 for the run with only shear. The color bar corresponds to

the base 10 logarithm of the FSTD, contour intervals are powers of 10. (c, d) Same as (a, b) for 1 week of fixed convergence with no shear.

simulates shear of fixed magnitude (εI = 0,εII = 10−7) s−1.

When there is no convergence, the rate of open water forma-

tion due to collisions (Eq. 13) is 0.5× 10−7 s−1, equal to the

magnitude of the strain rate tensor divided by 2:

DMc

Dt

∣∣∣∣
shear

=
1

2
(εI− ||E||)=−

1

2
||E||.

When there is no shear, and only convergence, the amount of

open water formation due to collisions is 10−7 s−1, equal to

the magnitude of the strain rate tensor:

DMc

Dt

∣∣∣∣
conv

=
1

2
(εI− ||E||)=−

1

2
(|εI | + |εI |))=−||E||.

In both scenarios the norm of the strain rate tensor is the

same, ||E|| = 10−7 s−1. In the case of only shear (Fig. 4c,d),

ice concentration is diminished by a factor of roughly 18 %,

corresponding to a 22 % increase in mean ice thickness, and

with no change in ice volume. In contrast, in the case of con-

vergence only (Fig. 4a, b), ice concentration is diminished by

36 %, with a corresponding 56 % increase in mean ice thick-

ness, again with no change in ice volume. Thus shear motions

lead to collisions and the combinations of floes with one an-

other, but at a reduced rate when compared to convergence

of ice flow, for the same strain rate tensor norm. In the case

of shear only, the two initial peaks in the FSTD are smeared
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Figure 5. Results of simulations of the FSTD forced with swell

fracture only. (a) The FSD before (black line, left axis) and af-

ter (gray lines, left axis) several days of swell fracture using a

Bretschneider (Michel, 1968, p. 23) wave spectrum (orange line,

right axis). As swell fracture does not affect floe thickness, the dis-

tribution is plotted as a function of floe size only. (b) The mean floe

size and total lateral ice surface area as a fraction of their initial val-

ues over the course of 1 week of ice fracture with the specified wave

spectrum.

out over a range of floe sizes and thicknesses (Fig. 4b), with

the variety of floe sizes and thicknesses increasing in number

over time. Since there is twice as much open water formation

in the case of convergence only, and therefore an increased

number of mechanical interactions, the distribution of floe

sizes and thickness is smeared more rapidly, and over a larger

range (Fig. 4c).

Figure 5 shows the response of the joint floe size and thick-

ness distribution to a single-week experiment that simulates

a 7-day period of ice fracture by surface waves, using a wave

spectrum that leads to ice breaking into a broader range of

floe sizes. The experiment uses the Bretschneider (Michel,

1968, p. 24) surface wave spectrum as a function of period

T , S(T )dT :

S(T )dT =
1H 2

s

4πTz

(
T

Tz

)3

e
−

1
π

(
T
Tz

)4

dT ,

where Hs = 2 m is the significant wave height (the mean

wave height of the 1/3 highest surface waves), and Tz = 6 s

is the mean time interval between zero-crossings of the ob-

served wave record. We use the surface gravity wave dis-

persion relation λ= gT 2 / 2π to write S(T )dT as a wave-

length spectrum S(λ)dλ. The wavelength bins are spaced to

correspond uniquely to floe size bins, and there is a one-to-

one relationship between a wave’s wavelength and the floe

size of new floes formed through fracture of existing floes

by that wave. The peak wavelength of the wave spectrum

is at T ≈ 6.75 s, corresponding to λ≈ 70 m. As before, the

domain width D is set to 10 km. Large floes (size I) are

rapidly fractured, with the fractional area corresponding to

these floes decreasing, and the distribution shifts towards

smaller sizes (Fig. 5a, gray lines). After 1 week, the frac-

tional area belonging to floes in the range from 75 to 125 m

decreases from 37 to 0 %, with mean floe size decreasing by

67 % (Fig. 5b, blue line). As a consequence, the total lateral

surface area rises as floes are broken and their lateral sides

are exposed, increasing by 63 % over the week (Fig. 5b, blue

line).

4 Conclusions

We developed a model that simulates the evolution of the

FSTD, using large-scale oceanic and atmospheric forcing

fields as input, which may be useful as an extension to sea-

ice models presently used in global climate models, in par-

ticular in regions with a continuously varying FSTD, such

as the marginal ice zone. We included representations of the

impact of thermodynamics (melting and freezing), mechani-

cal interactions of rafting and ridging due to floe collisions,

and of floe fracture by ocean surface waves, all processes

that are active in marginal or seasonal sea-ice zones. We

demonstrated the effect of these processes using model runs

forced by external forcing fields including air–sea heat flux,

ice flows leading to mechanical interactions, and specified

surface wave field, and considered the effects of these forc-

ing fields individually and when combined. We demonstrated

the effects of mechanical interactions in the presence of both

shearing and straining ice flows, separately accounting for

ridging and rafting. We studied the effect of surface waves,

first for idealized single-wavelength wave fields, and then ac-

counting for a more realistic surface wave spectrum. We ex-

amined the response to melting and freezing both along ex-

isting floe bases and lateral edges, and in open water, leading

to pancake ice formation.

While the present paper focuses on the development of pa-

rameterizations needed to represent the FSTD dynamics and

to test the model with individual forcing fields, we hope to

next study the consequences of realistic forcing fields on the

FSTD and compare model output to the few available ob-

servations. Another important future direction is the model

development and testing that will allow for implementation

of this model into sea-ice models used in GCMs, allowing for

realistic ice thermodynamics, constitutive stress–strain rela-

tionship, wave model, and ice motions driven by ocean cur-

rents and winds. At the same time, an implementation into

a GCM would require making the model more efficient by

replacing the high resolution we could afford to use here in

floe size and thickness by a simplified approach, possibly as-

suming a functional form of the FSTD and simulating only

its moments as is often done in atmospheric models of the

particle size distribution.

The study of FSTD dynamics, and the development of a

prognostic FSTD model, are made difficult by the scarcity

of observations of the floe size distribution and its seasonal

and long-term evolution. Such observations are required to

constrain uncertain parameters used in the model developed

here, and to help determine the dominant processes which

need to be included in FSTD models to be incorporated in

global climate models.
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Appendix A: Comparison of rate constants in Eq. (14)

to those in Thorndike et al. (1975)

Thorndike et al. (1975) employed the following parameter-

ization of the function ψ (Eq. 1), which represents the rate

of change of area belonging to ice of thickness h due to me-

chanical interactions:

ψ =
(
ε2

I + ε
2
II

)1/2

(α0δ(h)+αrwr(h)) , (A1)

where
∞∫
0

wr(h)=−1, and the coefficients α0 and αc are

α0 =
1

2
(1+ cos(θ)) , (A2)

αc =
1

2
(1− cos(θ)) , (A3)

where θ = arctan(εII /εI ). Using the trigonometric identity,

cos(arctan(εII /εI ))=
εI

||E||
,

with ||E|| ≡

√
ε2

I + ε
2
II, ψ may be rewritten as

ψ =
1

2
||E||

(
δ(h)
||E|| + εI

||E||
+
||E|| − εI

||E||
wr

)
, (A4)

=
1

2
(δ(h)(||E|| + εI)+wr(||E|| − εI)) , (A5)

= δ(h)εI+
1

2
(||E|| − εI)(δ(h)+wr) . (A6)

Identifying wr =−
∫
h

Lc(r)dh and 1
2
(||E|| − εI)=

DMc
Dt

re-

covers the floe-size-integrated form of Eq. (14).
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