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Abstract. Observed changes in the surface elevation of the

Greenland Ice Sheet are caused by ice dynamics, basal ele-

vation change, basal melt, surface mass balance (SMB) vari-

ability, and by compaction of the overlying firn. The last

two contributions are quantified here using a firn model that

includes compaction, meltwater percolation, and refreezing.

The model is forced with surface mass fluxes and tempera-

ture from a regional climate model for the period 1960–2014.

The model results agree with observations of surface den-

sity, density profiles from 62 firn cores, and altimetric ob-

servations from regions where ice-dynamical surface height

changes are likely small. In areas with strong surface melt,

the firn model overestimates density. We find that the firn

layer in the high interior is generally thickening slowly (1–

5 cm yr−1). In the percolation and ablation areas, firn and

SMB processes account for a surface elevation lowering of

up to 20–50 cm yr−1. Most of this firn-induced marginal thin-

ning is caused by an increase in melt since the mid-1990s

and partly compensated by an increase in the accumulation

of fresh snow around most of the ice sheet. The total firn

and ice volume change between 1980 and 2014 is estimated

at −3295± 1030 km3 due to firn and SMB changes, corre-

sponding to an ice-sheet average thinning of 1.96± 0.61 m.

Most of this volume decrease occurred after 1995. The com-

puted changes in surface elevation can be used to partition

altimetrically observed volume change into surface mass bal-

ance and ice-dynamically related mass changes.

1 Introduction

The mass balance of the Greenland Ice Sheet has been nega-

tive over the last few decades (e.g. Zwally et al., 2011; Shep-

herd et al., 2012; Hurkmans et al., 2014). A common method

to assess ice-sheet imbalance is altimetry, by which elevation

changes are monitored by repeated scanning of the ice-sheet

surface by active laser or radar instruments onboard airplanes

or satellites. A crucial step in translating the observed volume

change to a mass change is to determine the density associ-

ated with the volume change.

The simplest assumption is that below the equilibrium

line altitude (ELA), all mass change is caused either by

ice-dynamical thinning or thickening, or by melting of ice.

There, the ice density is used to convert from volume to

mass change. Above the ELA, it was assumed in earlier stud-

ies that ice-dynamical elevation changes are negligible and
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that volume changes are caused solely by changes in the firn

layer. A fixed density was adopted to convert from volume

to mass, for example a fresh-snow density, or a representa-

tive density for the entire firn layer (e.g. Davis et al. (2005)

and Wingham et al. (2006) for Antarctica, and Thomas et al.

(2006) for Greenland). This assumption is still commonly

made over smaller ice caps and glaciers (e.g. Gardelle et al.,

2012; Moholdt et al., 2012; Gardner et al., 2013), where the

error associated with this approach is generally assumed to

be small. For the Greenland Ice Sheet, such an approach can

compromise the accuracy of the retrieved mass changes, as

the current mass loss is divided between surface mass bal-

ance (SMB) and ice-dynamical changes. Moreover, the den-

sity of the Greenland firn layer is susceptible to change, in-

validating the choice for a constant density. In fact, eleva-

tions change in the ice-sheet interior is primarily attributed to

variability in snow accumulation (McConnell et al., 2000a).

Therefore, more recent altimetry-based mass balance esti-

mates of (parts of) the Greenland Ice Sheet (e.g. Sørensen

et al., 2011; Zwally et al., 2011; Khan et al., 2014; Hurkmans

et al., 2014; Csatho et al., 2014; Kjeldsen et al., 2014) make

use of firn models that take into account firn compaction and

accumulation variability. More specifically, the empirical firn

models used by Sørensen et al. (2011), Khan et al. (2014) and

Hurkmans et al. (2014) take into account firn compaction, as

well as the formation of ice lenses due to melt and refreez-

ing in annual layers (Reeh et al., 2005; Reeh, 2008). The

firn model used by Zwally et al. (2011) was developed by

Zwally and Li (2002) and Li and Zwally (2011). It is driven

by satellite-observed surface temperature and a fixed, firn-

core derived relation between temperature and accumulation

change. Not directly applied to altimetry-based assessments

of mass loss but nonetheless very similar to our firn model,

a firn model was compared by Simonsen et al. (2013) to Ku-

band radar observations of annual layering of the Greenland

firn.

Here, we present a time series of elevation changes over

the Greenland Ice Sheet due to changes in depth and mass

of the firn layer, i.e. variability and change in the surface

mass balance and associated firn processes like compaction,

percolation, and refreezing. These time series extend from

1960 up to and including 2014, at a horizontal resolution

of 11km× 11km. The results are obtained using a semi-

empirical firn compaction model (Ligtenberg et al., 2011)

that is forced with surface mass fluxes and temperature from

the polar-adapted regional climate model RACMO2.3 (Noël

et al., 2015). Combining the time series of firn depth and

mass from this firn model allows one to convert satellite

altimetry observations of volume change to mass change,

and to partition this mass change into an ice-dynamical and

a firn/SMB component. As an added advantage, the firn

model explicitly calculates all firn and SMB processes that

modify the surface elevation, allowing the analysis of the

individual components of the surface elevation change in

greater detail.

2 Model, data, and methods

Elevation change of the Greenland Ice Sheet surface is sim-

ulated with a model of the firn (Sect. 2.1), which is forced at

its upper boundary by temperature and surface mass fluxes

from the regional climate model RACMO, version 2.3 (see

Sect. 2.2 and Noël et al., 2015). In Sect. 3, we evaluate the

firn model results against 62 shallow and medium-depth firn

cores (details in Sect. 2.4), and against airborne laser al-

timetry collected in areas of limited ice-dynamical activity

(Sect. 2.5).

2.1 The firn model

The firn model (IMAU-FDM v1.0; Ligtenberg et al., 2011)

describes the temporal evolution of firn compaction, meltwa-

ter percolation and refreezing, and temperature in a vertical,

1-D column of firn and ice. The top of the uppermost model

layer represents the surface of the ice sheet (h), which moves

up and down in time. The vertical velocity of the ice-sheet

surface due to firn and SMB processes ḣf is given by

ḣf = vacc+ vsnd+ ver+ vme+ vice+ vfc, (1)

where we neglect vertical displacement of the surface by hor-

izontal velocity divergence or horizontal advection of mass in

the snow and firn column. The velocity components v repre-

sent solid precipitation (vacc), surface sublimation (included

in vacc), snowdrift sublimation (vsnd), snowdrift erosion (ver),

snowmelt (vme), and firn compaction (vfc). The solid precip-

itation vacc represents solid precipitation minus surface sub-

limation, and thus it is not the accumulation rate as it is usu-

ally understood. Snowdrift sublimation vsnd differs from sur-

face sublimation in the sense that it represents sublimation

of drifting snow that is whirled up from the surface by sur-

face winds (Lenaerts et al., 2010). Snowdrift erosion repre-

sents the horizontal redistribution of surface snow by surface

winds, and it can be positive (deposition) or negative (ero-

sion).

In a steady-state firn layer, the long-term average verti-

cal mass flux through the lower boundary of the firn column

equals the mass flux through the upper boundary. This is rep-

resented in the firn model as a constant vertical velocity vice

that equals the mean SMB (vacc+ vsnd+ ver+ vme) but is of

opposite sign, over a reference period for which steady-state

is assumed. The choice of this reference period is discussed

in Sect. 2.3. This model setup is similar to earlier process-

based models like Zwally and Li (2002).

An important upper-boundary condition is the density of

fresh snow, ρ0. While valuable observations of density in

the percolation area of the Greenland Ice Sheet are avail-

able (Braithwaite et al., 1994; Brown et al., 2012), we choose

to construct a parameterization of ρ0 based on observations

from the dry-snow zone only. The observations from Braith-

waite et al. (1994) are averages of density over the upper-

most 1 m of the snow/firn layer, which includes the effect
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of percolation and refreezing on the vertical density profiles.

It is impossible to isolate the initial density of snow that is

truly fresh. We use two main sources for ρ0 data from the

dry-snow zone: observations from north and central Green-

land from Benson (1962), and from the EGIG line (Expédi-

tion Glaciologique Internationale au Groenland; Morris and

Wingham, 2011) in central Greenland. We find the follow-

ing correlation (r2
= 0.52) between observed ρ0 and annual

mean surface temperature Ts (in degrees Celsius) simulated

by RACMO2.3 (see Sect. 2.2):

ρ0 = 481.0+ 4.834Ts. (2)

After deposition, the fresh snow starts to become denser.

The effect of dry-firn compaction is represented by vfc in

Eq. (1). Compaction is an increase of firn density ρ in time

(t), expressed by Eq. (4) in Arthern et al. (2010) as

dρ

dt
= C ḃg (ρi− ρ) exp

(
−Ec

RT
+
Eg

RT

)
. (3)

Here, C, Ec, and Eg are constants; ḃ is the mean annual ac-

cumulation over a reference period (Sect. 2.3); g is the grav-

itational acceleration; ρi is the ice density of 917 kgm−3;

and R is the gas constant. T is the firn temperature, which

varies with depth. The rate constant C has a value of 0.07 for

ρ ≤ 550 kgm−3 and a value of 0.03 above that density. This

captures the higher densification rate near the surface due to

sliding of snow grains relative to each other at low densities

(Arthern et al., 2010).

To evaluate Eq. (3), we compare modelled depths of the

550 and 830 kgm−3 density layers (z550 and z830, respec-

tively) to observations at 62 firn core locations around the

Greenland Ice Sheet (see Sect. 2.4). As we find a system-

atic departure of the modelled values, we introduce a cor-

rection term MO, defined as the ratio of modelled and ob-

served values of z550 and z∗830 (Ligtenberg et al., 2011),

where z∗830 = z830−z550. Figure 1 shows MO as a function of

ḃ. As the MO values need to represent dry compaction, we

selected 22 firn cores with little surface melt. Linear least-

squares fitting then yields the following MO relations for

Greenland:

MO550 = 1.042− 0.0916ln(ḃ) for ρ ≤ 550kg m−3, (4)

MO830 = 1.734− 0.2039ln(ḃ) for ρ > 550kg m−3. (5)

The coefficients in these two equations are different from a

previous application in Antarctica (Ligtenberg et al., 2011).

We use these updated coefficients to improve the fit with ob-

served density profiles. There is no physical interpretation for

these coefficients to be different. The different set of coeffi-

cients for Greenland and Antarctica could point to a process

not presently captured in the model (that happens to corre-

late with accumulation rate). Alternatively, the coefficients

could be different because the range of accumulation rates

on which the Antarctic parameterization (Ligtenberg et al.,

0

0.2

0.4

0.6

0.8

1

100 1000

M
O

 (-
)

Mean accumulation (mm y-1)

MO830
n=8
r2=0.96 

MO550
n=24
r2=0.35

Figure 1. Ratio of modelled vs. observed z550 and z∗
830

(MO550

(red circles and fit line) and MO830 (blue squares and fit line),

respectively) for 24 dry firn cores (8 of which are deep enough

to include z∗
830

), as a function of mean annual accumulation (in

mmyr−1).

2011) is based is biased to lower accumulation rates than

those found in Greenland.

Equation (3) is multiplied with the correction factors MO

in Eqs. (4) and (5), which are not allowed to be smaller than

0.25 (Ligtenberg et al., 2011). The accurate performance of

these densification expressions is further demonstrated by

fully independent comparisons against in situ (Larson et al.,

2015) and remotely sensed (Ligtenberg et al., 2015) den-

sification rates. However, the use of a mean value of ḃ in

these equations has an important limitation: in reality, com-

paction is determined by the overburden pressure of the over-

lying snow. By using a constant mean ḃ rather than the in-

stantaneous overburden pressure, the firn compaction vari-

ability is dampened significantly. Following an accumula-

tion event, the model only takes into account the increase in

compactable material, not the effect of increased overburden

pressure on the underlying firn.

Rain is added to the surface snowmelt flux. This liquid wa-

ter is allowed to percolate into the firn. Each layer has a max-

imum irreducible water contentWc, depending on the density

(Coléou and Lesaffre, 1998). Meltwater will refreeze as soon

as it encounters a layer that can accommodate both the space

of the refreezing water and the latent heat that is released

upon refreezing. For details see Ligtenberg et al. (2011) and

Kuipers Munneke et al. (2015).

Suppose a firn column with total depth zi and an observed

or modelled density profile ρ(z), consisting of a mixture of

air (with density ρa), water (with density ρw), and ice (den-

www.the-cryosphere.net/9/2009/2015/ The Cryosphere, 9, 2009–2025, 2015
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sity ρi). Using Wc from Coléou and Lesaffre (1998) (which

can vary with depth z), it can be shown that the firn air con-

tent F (in m) is given as

F =

zi∫
0

ρi− ρ(z)

ρi/(1−Wc(z))− ρwWc(z)/(1−Wc(z))− ρa

dz.

(6)

Here, we will approximate this general expression by assum-

ing that ρa� ρi and that Wc(z)= 0, yielding

F =

zi∫
0

ρi− ρ(z)

ρi

dz. (7)

As an extreme example, a uniform value of Wc = 0.10 (i.e.

10 % of pore space filled with water throughout the firn col-

umn) yields a 10 % overestimation of F .

The firn model is also used to simulate surface eleva-

tion changes ḣf in the ablation area. Here, the prescribed

RACMO2.3 mass fluxes determine the ice ablation rate as-

suming the ice density ρi. Section 2.3 describes the method

to derive the SMB-induced surface elevation change ḣf in the

ablation area.

2.2 Model forcing from RACMO2.3

At the upper boundary of the 1-D firn column, the firn model

is forced with surface temperature and mass fluxes from

RACMO2.3 (Noël et al., 2015), a regional climate model that

is adapted to simulate climatic conditions over ice sheets.

The horizontal spatial resolution of RACMO2.3 is 11 km.

Forcing data are available for the period 1 January 1960–

31 December 2014, in time steps of 6 h.

RACMO2.3 supersedes RACMO2.1 (Ettema et al., 2010;

van Angelen et al., 2012). In the new version, the cloud mi-

crophysics, surface and boundary layer turbulence, and radi-

ation transport have been updated (van Wessem et al., 2014).

The most pronounced effect of these updates on the SMB

is an increase in summer snowfall events, decreasing the

amount of snow and ice melt in the percolation and ablation

area (Noël et al., 2015). The agreement between RACMO2.3

SMB and mass balance stakes in these areas is improved.

The ELA is lower and in better agreement with observations.

This is expected to improve the description of firn processes

in the percolation area of the ice sheet.

2.3 Modelling strategy

While RACMO2.3 itself contains a multi-layer snowpack

with the same compaction and meltwater routines as the firn

model, the rationale for using an offline firn model is the abil-

ity to spin up the firn layer with a reference climate until it is

in equilibrium with that reference climate. This circumvents

the difficult task of assuming an initial condition of the firn

layer at the start of the RACMO2.3 simulation that is suf-

ficiently accurate for correctly determining ḣf. Furthermore,

because of its computational demands, RACMO2.3 cannot

be used for sensitivity tests, in contrast to an offline firn

model. Finally, the vertical resolution is higher in the offline

model.

Still, the spin-up procedure requires that we define a ref-

erence climate, i.e. a period of time in which the properties

of neither the firn nor the reference climate forcing exhibit

significant trends. Recent modelling and observations reveal

that the Greenland Ice Sheet SMB has decreased since the

beginning of the 1990s (e.g. Shepherd et al., 2012; Ender-

lyn et al., 2014). As a result, thinning has increased sharply

since the mid-1990s (Csatho et al., 2014) along the margins

of the ice sheet. Clearly, the reference period should not in-

clude this period and should end preferably some years be-

fore its onset. Therefore, our modelling strategy is that we

choose the first 20 years of RACMO2.3 forcing data (1 Jan-

uary 1960–31 December 1979) and spin up the firn column

at each location with a loop over this 20-year period until

the properties of the firn layer have converged to an equi-

librium. By doing so, we assume that the pre-1960 climate

(i.e. the reference climate) can be represented by a sequence

of 20-year periods. In practice, equilibrium is reached when

all the mass in the firn layer is refreshed once following the

start of the spin-up. The duration of the spin-up is therefore

computed as the thickness of the firn layer (from the surface

to the depth at which the ice density is reached) divided by

the mean annual accumulation rate. A major uncertainty in

the calculated firn depth changes in this study stems from

this assumption of reference climate. We will quantify this

uncertainty in Sect. 4.4.

As a second important assumption, we set the surface el-

evation change ḣf over the reference period to zero. After

all, the modelled firn layer at the end of the reference period

(31 December 1979) is the result of the spin-up procedure

that uses multiple loops over the reference period to reach an

equilibrium state, plus 20 years of model integration using

the same data as in the spin-up procedure. For the accumula-

tion area, it means that the amount of mass leaving the bot-

tom of the firn layer (with a velocity vice) is assumed equal

to the total mass added to and retained in the firn column by

snowfall and refreezing, minus run-off.

For the ablation area, the assumption of ḣf = 0 during the

reference period implies that the downward velocity from

a negative SMB (ablation) is balanced by an upward and

equal flux of emergent ice. The emergent ice flux is repre-

sented by the term vice. In Eq. (1), we set vice equal to the

opposite sign of the sum of all other velocity components for

the reference period. Thereafter, vice retains the same value,

but the other parameters are free to evolve. In this framework,

ḣf (as presented in Fig. 7) in the ablation area represents the

surface elevation change due to the anomaly of surface melt

with respect to the reference period. To clarify, the change

in surface elevation itself does not have to be zero over the

The Cryosphere, 9, 2009–2025, 2015 www.the-cryosphere.net/9/2009/2015/
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reference period: it can change due to ice-dynamical thin-

ning or thickening. Only the ablation-driven surface eleva-

tion change ḣf is assumed to be zero.

Note that our choice of the period 1960–1979 for a rep-

resentative reference climate implies that modelled surface

elevation after 1980 is allowed to evolve freely due to SMB

and firn processes. It is not bounded by the requirement that

ḣf should be zero over the entire simulation period, like in

studies addressing the Antarctic Ice Sheet (Ligtenberg et al.,

2011; Pritchard et al., 2012). As the firn layer starts to evolve

freely from 1980 onwards, we present time series starting in

1980, although the complete time series of elevation change

start in 1960.

2.4 Firn cores

To evaluate the firn model, we collected vertical profiles of

firn density from 62 shallow cores from widely varying loca-

tions across the Greenland Ice Sheet (see the map in Fig. 2),

drilled between 1995 and 2012. Among the cores are those

drilled for PARCA (Program for Arctic Regional Climate

Assessment; McConnell et al., 2000b; Mosley-Thompson

et al., 2001; Hanna et al., 2006; Banta and McConnell, 2007);

cores from the Arctic Circle Traverses (ACT; Box et al.,

2013); cores from the lower part of the EGIG line (Harper

et al., 2012); and Das 1 and Das 2 (e.g. Hanna et al., 2006).

Vertical profiles of density from firn cores are usually

based on the mean density of 0.5–2 m long sections. Some

researchers log the midpoint of each section as the depth of

the section; others use the top or the bottom of the section.

Here, all 62 profiles have been interpolated to give the mean

density at the midpoints of each core section. For each core,

the collection date is known, and vertical profiles of modelled

firn density are extracted from the model at the time closest

to the collection date, and from the nearest model grid cell.

2.5 Laser altimetry

Since 1992, NASA’s Airborne Topographic Mapper (ATM)

has carried out laser surveys of the Greenland Ice Sheet sur-

face. If sufficient repeat observations are available, a time se-

ries of observed surface elevation change can be constructed,

spanning the period 1992–2013.

To do so, we use the Level 2 “Qfit” product, which pro-

vides the waveform-fitted elevations for the centroid of each

laser return. In order to derive elevation changes, we inter-

polated the Qfit point cloud for each campaign to a refer-

ence grid with 30 m spacing. We then selected reference grid

points with at least one observation in each of five epochs:

1993–1996, 1997–2000, 2001–2005, 2006–2009, and 2010–

2013. Of these points, we selected 15 within the central and

northern interior of the ice sheet, where a relatively small

contribution of ice dynamics is expected. Based on differ-

ences in elevation obtained from crossovers within a few

weeks, we estimate 1σ errors in the elevation observations

Figure 2. Map of Greenland showing the 62 firn cores used for

validation of the firn model. Solid circles represent firn cores longer

than 30 m; open circles are firn cores shorter than 30 m. The inset

in the lower right shows cores from Harper et al. (2012) in the west

Greenland percolation area around 69◦42′ N. Dashed contours are

surface elevation isolines with a spacing of 500 m, the uppermost

being 3000 m.

to be ±10 cm, which includes interpolation error. Results of

the comparison between the firn model and the ATM data are

found in Table 1 and Fig. 5.

3 Model evaluation

3.1 Vertical profiles of density

We use vertical profiles of density from 62 firn cores to assess

the performance of the firn model. This evaluation is not in-

dependent, as we used the depths of the 550 and 830 kgm−3

www.the-cryosphere.net/9/2009/2015/ The Cryosphere, 9, 2009–2025, 2015



2014 P. Kuipers Munneke et al.: The Greenland firn layer

Table 1. Coordinates of analysed elevation change points labelled

in Fig. 5 with the number of repeat observations N , observed sur-

face elevation trend from the laser altimetry, the best-fit trend in the

residuals between the observations and the firn model heights, and

the root mean square of the residuals between the observations and

fitted model (in cm). Trends in bold are significantly different than

zero at 95 % confidence.

No. Lat Lon Elev. N Obs. Resid. rms

trend trend fit
◦ N ◦W m cmyr−1 cmyr−1 cm

1 69.90 32.4 2749 6 2.6 −0.2 16.7

2 71.22 35.7 3139 8 3.7 1.4 8.7

3 70.81 41.3 2935 7 5.1 6.9 38.5

4 74.36 35.5 2933 6 4.3 6.3 49.4

5 75.23 40.4 2910 6 3.5 1.0 7.7

6 75.91 45.2 2827 8 2.0 −1.0 6.1

7 76.53 51.1 2458 8 1.6 −0.8 17.3

8 75.90 54.2 1971 8 −3.1 −5.3 13.5

9 76.32 55.3 1923 10 −2.0 −0.5 22.9

10 76.92 56.2 2019 8 −5.8 −6.6 18.5

11 77.89 56.5 2191 7 0.4 −1.4 11.1

12 78.42 52.2 2239 7 1.6 0.5 9.1

13 78.04 43.7 2564 6 0.5 −0.5 13.7

14 79.07 44.3 2370 6 0.9 1.5 6.6

15 79.36 48.5 2170 7 3.6 2.6 21.6

density levels from these cores to tune the densification pa-

rameterization in Eqs. (4) and (5). Still, we can compare the

shape of the profiles beyond these two levels, and we can as-

sess the impact of melt and refreezing on the vertical density

profile.

Figure 3 shows the observed and modelled density profiles

for all core locations. Each panel includes the mean accu-

mulation and melt from RACMO2.3 (in mmyr−1) for 1960–

2014, and the ratio Rma of these melt and accumulation av-

erages.

The vertical resolution of the firn core data is typically

0.5–2.0 m, thereby smoothing out the effect of ice lenses and

higher-density layers. The model data in Fig. 3 are shown

at full resolution, i.e. with layers of 5–10 cm thickness. The

high-density layers usually represent thick layers of refrozen

meltwater with a density close to that of solid ice.

Up to an Rma value of 0.3–0.4, the agreement between the

firn model and the observations is good. But for higher Rma,

the firn model starts to overestimate the density throughout

the firn column. Figure 4 compares the observed and mod-

elled firn air content F , showing Rma in colour. The model

bias clearly increases for higher Rma. This means that there

are three possible causes for the misfit, which are not mutu-

ally exclusive: (1) RACMO2.3 simulates too much melt in

the percolation areas, causing the firn to fill up quickly with

too much refrozen meltwater; (2) RACMO2.3 simulates too

little accumulation, providing insufficient pore space to store

meltwater; and (3) the firn model should allow for more and

more rapid downward percolation of meltwater without let-

ting it refreeze.

Regarding a possible overestimation of melt in

RACMO2.3, there is limited evidence that the amount

of melt observed by an automatic weather station at location

S10 (67◦00′ N 47◦01′W, 1850 ma.s.l.) is indeed about 20 %

smaller than simulated by RACMO2.3 (Noël et al., 2015).

Further north, Harper et al. (2012) find the equilibrium line

around the EGIG line at about 1100–1200 ma.s.l., while the

equilibrium line altitude in RACMO2.3 is at ∼ 1650 ma.s.l.,

about 45 km further inland. For firn cores H1-1 down to

H5-1 (Fig. 2), it is clear that under RACMO2.3 forcing

(with melt larger than accumulation) a firn layer cannot be

sustained, whereas in reality there is a shallow firnpack with

infiltration ice layers. There is very limited reliable infor-

mation about melt fluxes from other parts of the percolation

area around the ice sheet, so we cannot conclude whether

the overestimation of modelled melt flux is structural.

The other possible source for the misfit is the percola-

tion scheme in the firn model itself. The firn model adopts

a so-called “tipping bucket” approach, where meltwater is

allowed to move downward from one discrete layer to the

next whenever the first layer is saturated. In practice, the per-

colation is more complex, and vertical meltwater transport

through confined channels (pipes) is known to occur (Marsh

and Woo, 1984; Humphrey et al., 2012). Piping of meltwater

is a way to evacuate more meltwater towards the bottom of

the firn layer, reducing the amount of refreezing in the firn

itself. Alternatively, intermediate-thick ice layers may serve

as an impermeable surface along which the water can run off.

Both processes increase the run-off and decrease refreezing

and density. At present, we cannot assess the performance of

the firn model in more detail, since we cannot easily isolate

it from errors in the model forcing from RACMO2.3.

It is unclear what exactly the model bias in the percola-

tion zone implies for the modelled rates of surface elevation

change. We speculate that, if too much refreezing is the cause

for the density overestimation, then a prescribed increase in

surface melt would underestimate the rate of surface lower-

ing.

3.2 Altimetry from the high-elevation interior

In the high interior of the Greenland Ice Sheet, horizontal

surface ice velocities are low (generally less than 10 myr−1;

Joughin et al., 2010), and elevation changes resulting from

ice-dynamical effects are expected to be small. Figure 5

shows time series of observed surface elevation change from

the ATM lidar, along with the surface elevation change pre-

dicted by the firn model.

Surface elevation change rates at the 15 test sites range

from −6.6 to 5.1 cmyr−1 over the altimetry record (map in

Fig. 5, Table 1). The sites in the central east (site 1, 2 and

3) had the highest rates of surface rise, with rates increasing

inland. Sites 8, 9 and 10 near the northwest margin uniquely
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Figure 3. Observed (black) and modelled (red) firn density profiles for 24 of the 62 firn cores on the Greenland Ice Sheet. The four lines of

text in each panel show (1) the core name, (2) mean annual accumulation and (3) melt (in mm w.e. yr−1) from RACMO2.3, and (4) the ratio

of these fluxes (Rma, dimensionless). Remaining profiles are shown in Appendix A as Figs. A1 and A2.

Figure 4. Modelled vs. observed firn air content F (in m) for 59

of the 62 firn cores (cores H2-1, H3-1, and H4-1 are not shown).

The colour scale to the right indicates the ratio of modelled mean

melt and accumulation fluxes Rma, and the colour of each dot in

the scatter plot corresponds to the value of Rma for that firn core

location.

show decreasing elevations. The time series of observed sur-

face elevation change (panels in Fig. 5) show the substantial

variability between nearby locations in both time and space.

The firn model provides the change in surface elevation

due to only variations in snow accumulation and firn den-

sity, assuming constant vertical ice motion. Therefore, the

difference between the observed change and the modelled

elevation change represents the elevation change due to ver-

tical ice motion (ice dynamics) and error. We assume that, in

the ice-sheet interior, variations in ice dynamics occur over

timescales that are long (centuries) relative to the observa-

tional record and can therefore be approximated by a linear

trend. Under this assumption, the residual between the ob-

served and modelled surface elevations will decrease or in-

crease at a rate equal to the difference between the reference

and actual submergence rates. The trend in residuals is there-

fore the anomaly in the submergence rate from the reference,

which is assumed to approximate steady state and provides

an estimates of the contribution of ice-dynamical change to

surface elevation. These trends in residuals are given in Ta-

ble 1. In most cases, these trends are not statistically signif-

icant, indicating a submergence velocity close to the refer-

ence state. At site 3, the trend in residuals is nearly 7 cmyr−1,

which accounts for more than the 6 cmyr−1 of observed in-

creases, indicating thickening. At site 6, a negative trend in
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Figure 5. Upper left panel: map of elevation change points observed by the airborne laser altimeter ATM, with colour scale giving the 20-year

trend in elevation (myr−1). The 15 panels (numbers in the upper left corner of each panel correspond to the numbered locations on the map)

show surface elevation change from (black dots with 1σ error bars) ATM lidar and (blue curves) firn thickness model. Green curves are the

firn model results adjusted to the trend in residuals between the model and the observations.

residuals of 1 cmyr−1 opposes the 2 cmyr−1 of observed sur-

face raising, suggesting opposing contributions from dynam-

ics and accumulation. At sites 8 and 10, the strongly negative

trend in residuals is larger than the observed surface lower-

ing, indicating that increased accumulation is partially off-

setting relatively rapid dynamic thinning.

If the trend in residuals between the observed and mod-

elled surface elevations provides the linear contribution in

ice dynamics plus the error, the error is then assessed by the

root mean square (rms) of the detrended residuals (Table 1).

This is equivalent to adjusting the firn model time series to

the ice-dynamical trend (shown as green curves in the pan-

els of Fig. 5) and computing the difference from the obser-

vations. The mean rms error is 17.4 cm, which is close to

the lidar observational uncertainty (∼ 10 cm). Sites 3 and 4

have the largest errors, reaching 1.7 and 2.6 standard devi-

ations, respectively. These sites are located at similar eleva-

tions (2930 m) on the central eastern portion of the ice sheet,

where altimetry shows steadily increasing elevations while

the firn model predicts an initial increase in firn thickness

until about 2005 and then a decrease thereafter.

4 Elevation change due to firn and SMB

4.1 Firn air content

Figure 6 shows the modelled firn air content F on 1 Septem-

ber 2014. As noted in Sect. 3, these values are probably real-

istic in the dry interior and the upper part of the percolation

area. In the lower percolation area, where the annual melt

flux exceeds ∼ 30 % of the annual accumulation rate, the

modelled firn air content is likely underestimated. Around

the central dome, we find the highest values of F of about

25 m. There is a remarkable contrast between the firn in the

NW and the NE, with the NW having higher F . This can be

explained by more snowfall in the NW and higher sublima-

tion in the NE due to a lower relative humidity.

4.2 Trends

By adding up all the velocity components in Eq. (1), we

find ḣf, the firn thickness change per unit of time due to

all firn and SMB processes. We can accumulate the thick-

ness changes over longer periods to get multi-year maps over

the ice sheet. Figure 7 shows ḣf (in cmyr−1) for the periods

1980–2014, 1980–1995, and 1995–2014. This surface ele-

vation change is with respect to the reference period 1960–

1979, during which zero surface elevation change (due to
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Figure 6. Modelled firn air content F on 1 September 2014 (in m).

Dashed contour lines at 500 m height intervals.

firn and SMB processes) is assumed. Again, there is a pro-

nounced pattern of modest thickening of the firn layer in

the interior (most notably towards the east) and moderate to

strong thinning of the firn layer around the margins. The inte-

rior thickening is of the order of 1–5 cmyr−1, or 34–170 cm,

over the entire 34-year period. The marginal thinning rates

are much larger; they can be up to 20–50 cmyr−1, or 6–18 m,

over the entire period, with the highest values in the south-

east. In contrast to the Summit dome firn layer, that of the

southern dome of the Greenland Ice Sheet is thinning.

It is clear that the patterns have changed over this period.

The surface elevation change map over 1980–1995 (Fig. 7b)

shows thinning along the southeast, south, west, and north-

west coasts. Thickening is occurring in the interior (mainly

east of the divide) and along the north and northeast coasts.

Since 1995, thinning has intensified and spread over the en-

tire coastal margin. The thickening moved to the west of the

interior. The aggregate picture for the period 1980–2014 then

shows moderate thickening up to 5 cmyr−1 in the eastern

and northern interior. Thinning occurs all around the mar-

gins, with the smallest rates (0–15 cmyr−1) in the north-

ern and eastern coastal regions. The largest rates (exceeding

40 cmyr−1) occur in the southeast and in the western ablation

area.

Figure 7. Modelled average firn thickness change ḣ (in cmyr−1) for

three periods: (a) 1980–2014, (b) 1980–1995 and (c) 1995–2014.

The equilibrium line (according to the RACMO2.3 SMB) is shown

as a thick black line in (a). Note that the colour scale is asymmetric

around 0. In the ablation area, where no firn layer is present, ice

thickness change by surface processes is presented.

4.3 Decomposing the trends

The firn model allows for a decomposition of the ḣf signal

into its velocity components (Eq. 1). The upper panels in

Fig. 8 show this decomposition for the period 1980–2014.

The thickening in the eastern interior (Fig. 7a) can be almost

fully ascribed to a positive accumulation anomaly (Fig. 8a),

offset by a small increase in firn compaction due to this extra

firn (Fig. 8g). In the lower accumulation area, the positive ac-

cumulation anomaly is offset by a significant increase in sur-

face melt, giving zero or slightly negative ḣf in the western

percolation area. In the south, increased surface melt dom-

inates the thinning signal, whereas accumulation, firn com-

paction, and snowdrift anomalies play a minor role. In the

southeast, melt has increased and accumulation decreased

significantly. As the absolute values of both accumulation

and melt are large in this region, we find here the largest rates

of firn-driven surface lowering seen in Greenland.

For the period 1980–1995, the accumulation anomaly dif-

fered from the 1995–2014 period, as shown in panels b and

c of Fig. 8. A negative accumulation anomaly (partly offset

by a positive firn compaction anomaly, panel h) explains the

firn-driven surface lowering in the northwest. In the absence
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Figure 8. Anomaly of vertical velocity components with respect to the reference period 1960–1979 (in cmyr−1). (a–c) Accumulation velocity

vacc; (d–f) melt velocity vme; (g–i) firn compaction velocity vfc; (j–l) snowdrift sublimation, erosion and deposition velocities (vsnd+ ver).

Note that the colour scales for vme is strongly asymmetric around 0.

of significant melt anomalies (panel e), the thickening in the

eastern and northeastern interior can be almost fully ascribed

to a positive accumulation anomaly (panel b). This is mir-

rored in a small negative firn compaction anomaly (panel h).

Over almost the entire ice sheet, with the exception of the

southeast, the period 1995–2013 shows a positive accumula-

tion anomaly (panel c). At lower elevations however, the firn

thickness change is dominated by the strong melt anomaly

over this period (panel f).

The velocity components that always lead to a decrease of

ḣf, melt and firn compaction, are negative by definition. To

complement this, we can add up the snowdrift and surface

sublimation velocities whenever they lead to a surface lower-

ing. The partitioning of the surface lowering into these com-

ponents of negative velocities is shown in Fig. 9. The lower-

ing is dominated by firn compaction (panel b) in the interior

and more and more by melt around the margins. There, the

firn layer is thinner, which reduces the compaction potential.

In the dry northeast, there is a relatively large contribution

from sublimation (up to 30 %, panel d). This is caused by

a combination of strong winds and a relatively low humidity,

promoting snowdrift sublimation. For another part, the rel-

ative contribution increases as the firn compaction is small

due to lower firn temperatures, and due to the relatively small

thickness of the firn layer.

4.4 Error estimate

An important source of uncertainty in ḣf is the steady state

assumed for the spin-up of the firn model. As explained

in Sect. 2.3, the present model setup assumes that the cli-

mate under which the firn was formed can be represented

by a loop over the forcing data from 1960 to 1979. A re-

construction based on firn cores and a previous version of

RACMO2 found large interdecadal accumulation variabil-

ity over the past 400 years, and an accumulation increase by

12 % over the period 1600–2009 (Box et al., 2013). The mean

reconstructed, ice-sheet-wide accumulation over this period

is 782 Gtyr−1. For 1960–1979, it is 786 Gtyr−1, i.e. 0.5 %
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Figure 9. Fraction of surface lowering (negative velocities only) during 1980–2014 caused by (a) melt; (b) firn compaction; (c) snowdrift

processes; and (d) sublimation. Up to a fraction of 0.15, the colour scale is divided in steps of 0.025. Above 0.15, the step size is 0.05.

larger than the long-term average. Other reconstructions

show the 1960–1979 solid precipitation flux to be 0–10 %

different from the period between∼ 1850 and the present day

(Wake et al., 2009; Hanna et al., 2011). For the error analy-

sis, we therefore assume that the 1960–1979 accumulation

fluxes (precipitation minus evaporation/sublimation) can dif-

fer by up to 15 % from the long-term accumulation history.

We denote this accumulation uncertainty by σḃ (in mmyr−1).

For snowmelt, we also assume a maximum deviation of

15 % of the 1960–1979 melt flux compared to the long-term

history. There is limited evidence for this, but according to

reconstructions from Hanna et al. (2011) the run-off flux for

1960–1979 differs about 5–10 % from the 1870–2010 mean.

This uncertainty is given as σṁ (mmyr−1).

For the suite of 62 firn core locations, we perform four

sensitivity tests, in which we increase and decrease melt or

accumulation by 15 % after completion of the spin-up. The

resulting drift in ḣf for 1960–2014 gives an error in the firn

thickness change. The error in surface elevation change due

to σḃ is written as σḣ,ḃ. Analogously, the error in surface el-

evation change due to σṁ is given as σḣ,ṁ. By relating σḣ,ḃ
and σḣ,ṁ empirically to accumulation and melt at the core

locations, we can expand the error product over the entire ice

sheet. These relations are

σḣ,ḃ = σḃ(0.107+ 3.609× 104 ḃ), (8)

σḣ,ṁ = σṁ(0.225+ 1.064× 103 ṁ), (9)

with ḃ and ṁ in millimetres per year.

The uncertainties σḃ and σṁ cannot be regarded as inde-

pendent. The SMB module in RACMO2.3 contains interac-

tions between accumulation and melt. We identify the melt-

albedo feedback as the most important interaction. As an

example, a negative bias in summer snowfall could lead to

an excess of summer melt because albedo will be underesti-

mated. To capture this dependence in the error analysis, we

assume the errors in surface elevation change due to uncer-

Figure 10. Estimate of errors in firn thickness change (cmyr−1).

(a) Error σḣ,ḃ due to accumulation uncertainty σḃ; (b) error σḣ,ṁ
due to melt uncertainty σṁ; and (c) total error σḣ. Note the non-

linear colour scale.

tainties in the melt and accumulation fluxes to be dependent,

and we add them up linearly (σḣ = σḣ,ḃ+ σḣ,ṁ).

The resulting total error and its components are shown

in Fig. 10. In the interior, the total error (panel c) is under-

standably dominated by the accumulation uncertainty (panel

a). Towards the ice-sheet edge, the melt uncertainty (panel

b) starts to dominate the total uncertainty. The total uncer-

tainty increases from 0.2–1.0 cmyr−1 in the interior to 10–

20 cmyr−1 in the lower percolation area. The largest total

error (more than 40 cmyr−1) is found in the southeast, where

high snowfall rates coincide with large amounts of melt.

For low and medium values of ḃ, the term between brack-

ets in Eq. (8) is smaller than 1. It means that an uncertainty

in the accumulation rate leads to a smaller uncertainty in the

elevation change. The explanation for this behaviour is sim-

ple: the densification rate in Eq. (3) linearly depends on the

mean accumulation rate, so that an elevation increase due
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to more snowfall is partially offset by a more rapid densi-

fication. For ḃ > 2427 mmyr−1, the term between brackets

in Eq. (8) becomes larger than unity. There is no physical

explanation for this behaviour: it is caused by the empiri-

cal nature of Eq. (8). However, we decided not to cap the

uncertainty, for the following reason: the densification rate

in Eq. (3) depends on a 20-year mean accumulation rate,

whereas true densification at a particular depth in the firn de-

pends on the immediate overburden pressure from overlying

firn, which can be more variable than the long-term mean.

This was already shown to dampen the modelled variability

in densification rate compared to observations (Ligtenberg

et al., 2015). Therefore, the observed, short-term firn thick-

ness change variability could be of the same order of magni-

tude as the accumulation rate variability for large accumula-

tion rates.

4.5 Integrated volume change

Figure 11 shows the cumulative volume change of the Green-

land Ice Sheet as a consequence of changes in firn and SMB

processes. Until the late 1990s, the total volume change was

small. Since 2000, the total volume has decreased by about

3295± 1030 km3 due to firn and SMB processes alone. Av-

eraged over the ice sheet, this is a mean surface lowering of

1.96±0.61 m. Almost all of this total volume loss took place

in the part of the Greenland Ice Sheet where the surface is

under 2000 ma.s.l.

Panels b and c of Fig. 11 show the partitioning of the vol-

ume change for the entire ice sheet and the part elevated

above 2000 ma.s.l., respectively. Over 1980–2014, the vol-

ume loss through melt was slightly over 4700 km3. This loss

was partly compensated for by an increase in snow accumu-

lation of about 1500 km3. On most of the ice sheet, firn com-

paction has accelerated (become more negative) due to an

increase in accumulation. Above 2000 m, the effect is clearly

visible (Fig. 11c). Integrated over the ice sheet however, we

see a small slowdown in firn compaction, corresponding to

about 500 km3 (Fig. 11b). The firn compaction anomaly is

dominated by the southeastern part of the ice sheet, where

snowfall has decreased strongly in an absolute sense (less

so in a relative sense) and firn compaction has slowed down

(Fig. 8h and i).

Up to about 2005, firn volume change above 2000 ma.s.l.

was dominated by accumulation variability (consistent with

e.g. McConnell et al., 2000a), and below 2000 ma.s.l. the

volume change was mainly melt-driven. This is consistent

with the original speculation in early reports of what would

happen to the Greenland Ice Sheet in response to global

warming. After 2005 however, the total firn volume above

2000 ma.s.l. has started to decrease, mainly because surface

melt has migrated inland (e.g. Fettweis et al., 2011), but

also because the accumulation increase, clearly visible be-

tween 1980 and 2000, stagnated in the 2000s. It remains to

be seen if the paradigm of interior thickening under atmo-

Figure 11. (a) Ice-sheet-integrated volume change for 1980–2014

(in km3) due to firn and SMB processes. The thin red line is the vol-

ume change based on weekly output from the firn model; the thick

red line is a 1-year running average; and the pink shaded area shows

the uncertainty estimate. The blue line shows the volume change for

the part of the ice-sheet surface elevated more than 2000 ma.s.l.

(b) Partitioning of the total volume change into the three main

components: accumulation vacc, melt vme, and firn compaction vfc.

(c) Like (b) but for the ice sheet higher than 2000 ma.s.l.

spheric warming can stand up against the inland migration of

the area of surface melt.

The extreme melt season of 2012 (Nghiem et al., 2012;

Tedesco et al., 2013) is clearly visible in the results of the

firn model. A large drop in total volume of 1386 km3 is seen

in the summer of 2012, of which 1150 km3 is contributed

to melt. Melt in the part of the ice sheet above 2000 m con-

tributed almost one third (371 km3) to this volume anomaly.

For perspective, the volume loss above 2000 ma.s.l. in the

summer of 2012 is equal to the volume gained by snowfall in

the interior in the 16 years between 1980 and 1996.
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4.6 Altimetry correction and mean density of

firn-related mass loss

The present data set of firn thickness and mass change

is primarily aimed at the correction of altimetry prod-

ucts, allowing for the extraction of an ice-dynamical thin-

ning/thickening signal. The procedure for doing so is as fol-

lows: suppose that an altimetry sensor measures a surface el-

evation change ḣ(t0, t1)≡ (h(t1)−h(t0))/(t1− t0) between

initial time t0 and time t1 > t0. The firn model computes

a surface elevation change due to firn and SMB processes

ḣf(t0, t1)≡ hf(t1)−hf(t0). The supposed ice-dynamical con-

tribution (neglecting vertical bed movement, but this could

be included; Sørensen et al., 2011) is then ḣd = ḣ− ḣf. The

associated mass change ṁd is simply computed as

ṁd = ρiḣd. (10)

The mass change ṁd is caused by horizontal convergence or

divergence of ice flux, arising from, e.g., ice-flow accelera-

tion propagating from the margin, long-term changes in the

ice-sheet viscosity (Colgan et al., 2015), and transient varia-

tions in ice flow due to long-term changes in accumulation.

The mass change due to the SMB, ṁf, is computed directly

from the RACMO2.3 forcing, using SMB anomalies with re-

spect to the appropriate reference period (1960–1979). This

is by far the simplest approach and completely consistent

with the firn model that uses the same forcing and the same

reference period. The total mass change at the given location

ṁ is then computed as

ṁ= ṁd+ ṁf. (11)

5 Conclusions

In this study, we used a time-dependent, semi-empirical

model for firn compaction, meltwater percolation, and re-

freezing. We forced the model with surface mass fluxes and

temperature from the regional climate model RACMO2.3 for

the period 1960–2014. By forcing the model with all mass

fluxes, including melt, the result is a data series of surface

elevation change over the entire ice sheet, due not only to

firn processes but also to anomalies in the SMB. We defined

a reference period from 1960 up to and including 1979, in

which we assumed the surface elevation change to be zero

due to firn and SMB processes. In the ablation zone, the

computed surface elevation change represents the ablation

anomaly with respect to the 1960–1979 mean ablation.

The firn model was calibrated against vertical profiles of

firn density from more than 60 shallow and deep firn cores

collected around Greenland in the past 2 decades. This en-

sured a very good agreement between observed and mod-

elled vertical density profiles, especially in regions where

the annual surface melt flux is small (less than about 20 %)

compared to the mean annual accumulation. In regions with

higher melt, the firn model overestimates the density be-

low the surface. Potentially, this underestimates the presented

rates of surface lowering in the percolation area.

The computed surface elevation change was compared

against lidar observations of surface elevation change at loca-

tions where we expect the ice-dynamical changes to be small

or gradual in time. At most locations, we find a good fit of

the modelled elevation change rates to the observed ones.

Between 1980 and 2014, we see a pronounced pattern of

small thickening of the firn layer in the high interior, of 1

to 5 cmyr−1, caused predominantly by an accumulation in-

crease over this period. Around the margins of the ice sheet,

in the percolation and ablation areas, the surface is lowering,

at rates of up to 20–50 cmyr−1. This is mostly caused by an

increase in surface melt, augmented in the southeast by a de-

crease in accumulation of snow. The thinning signal in the

margins of the ice sheet has accelerated between 1980 and

2014, in line with observations of increased surface melt.

During the period 1980–2014, the surface elevation in-

crease in the interior shifted from the east and northeast to-

wards the centre of the ice sheet and stagnated towards the

end of the time series. The contribution from surface melt

to interior surface lowering has increased markedly in this

period, with the largest firn volume decrease due to surface

melting in the extreme melt summer of 2012.

The time series of surface elevation change due to SMB

and firn processes (ḣf) is suitable to isolate ice-dynamical

thinning from altimetry-based observations of surface eleva-

tion. Combining it with the next generation of altimetry prod-

ucts, e.g. from Cryosat-2, allows for further improved assess-

ment of the current imbalance of the Greenland Ice Sheet.
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Appendix A: Remaining vertical profiles of firn density

Here, we present the remaining 33 vertical profiles of firn

density, in addition to the 24 firn cores shown in Fig. 3. They

are shown in Figs. A1 and A2.

Figure A1. Observed (black) and modelled (red) firn density profiles for 24 of the 62 firn cores on the Greenland Ice Sheet. The four lines of

text in each panel show (1) the core name, (2) mean annual accumulation and (3) melt (in mm w.e. yr−1) from RACMO2.3, and (4) the ratio

of these fluxes (Rma, dimensionless). The other vertical profiles are shown in Figs. 3 and A2.

Figure A2. Observed (black) and modelled (red) firn density profiles for 9 of the 62 firn cores on the Greenland Ice Sheet. The four lines of

text in each panel shows (1) the core name, (2) mean annual accumulation and (3) melt (in mm w.e. yr−1) from RACMO2.3, and (4) the ratio

of these fluxes (Rma, dimensionless). The other vertical profiles are shown in Figs. 3 and A1.
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