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Abstract. We present a quantitative network design (QND)

study of the Arctic sea ice–ocean system using a software

tool that can evaluate hypothetical observational networks

in a variational data assimilation system. For a demonstra-

tion, we evaluate two idealised flight transects derived from

NASA’s Operation IceBridge airborne ice surveys in terms

of their potential to improve 10-day to 5-month sea ice

forecasts. As target regions for the forecasts we select the

Chukchi Sea, an area particularly relevant for maritime traf-

fic and offshore resource exploration, as well as two areas

related to the Barnett ice severity index (BSI), a standard

measure of shipping conditions along the Alaskan coast that

is routinely issued by ice services. Our analysis quantifies

the benefits of sampling upstream of the target area and of

reducing the sampling uncertainty. We demonstrate how ob-

servations of sea ice and snow thickness can constrain ice

and snow variables in a target region and quantify the com-

plementarity of combining two flight transects. We further

quantify the benefit of improved atmospheric forecasts and a

well-calibrated model.

1 Introduction

The Arctic climate system is undergoing a rapid transforma-

tion. Such changes, in particular reductions in sea ice ex-

tent, are impacting coastal communities and ecosystems and

are enhancing the potential for resource extraction and ship-

ping. In this context, the ability to anticipate anomalous ice

conditions and in particular sea ice hazards associated with

seasonal-scale and short-term variations in ice cover is es-

sential. For example, in 2012, despite a long-term trend of

greatly reduced ice cover in the Chukchi Sea off Alaska’s

coast, ice incursions and associated hazards led to early ter-

mination of the resource exploration season (Eicken and Ma-

honey, 2015). In this context, high-quality predictions of the

ice conditions are of paramount interest. Such predictions

are typically performed by numerical models of the sea ice–

ocean system. These models are based on fundamental equa-

tions that govern the processes controlling ice conditions.

Uncertainty in model predictions arises from four sources:

first, there is uncertainty in the atmospheric forcing data

(such as wind velocity or temperature) driving the relevant

processes. Second, there is uncertainty regarding the formu-

lation of individual processes and their numerical implemen-

tation (structural uncertainty). Third, there are uncertain con-

stants (process parameters) in the formulation of these pro-

cesses (parametric uncertainty). Fourth, there is uncertainty

about the state of the system at the beginning of the simula-

tion (initial state).

Observational information can be exploited to reduce these

uncertainties. Currently there are several initiatives underway

to extend and consolidate the observational network of the

Arctic climate system, ranging, e.g., from the International

Arctic Systems for Observing the Atmosphere and Surface

(IASOAS) to the Global Terrestrial Network for Permafrost

(GTN-P). Ideally, all observational data streams are inter-

preted simultaneously with the process information provided

Published by Copernicus Publications on behalf of the European Geosciences Union.



1722 T. Kaminski et al.: Evaluating Arctic sea ice thickness sampling strategies

by the model to yield a consistent picture of the state of the

Arctic system that balances all the observational constraints,

taking into account the respective uncertainty ranges. Data

assimilation systems that tie into prognostic models of the

Arctic system are ideal tools for this integration task because

they allow a variety of observations to be combined with the

simulated dynamics of a model.

Quantitative network design (QND) is a technique that

aims to design an observational network with optimal per-

formance. The approach is based on work by Hardt and

Scherbaum (1994), who optimised the station locations for

a seismographic network. It was first applied to the climate

system by Rayner et al. (1996), who optimised the spatial

distribution of atmospheric measurements of carbon diox-

ide. A series of QND studies (Rayner and O’Brien, 2001;

O’Brien and Rayner, 2002; Rayner et al., 2002) demon-

strated the feasibility of the network design approach and de-

lineated the requirements for the implementation of the first

satellite mission designed to observe atmospheric CO2 from

space (the Orbiting Carbon Observatory; Crisp et al., 2004).

Since then, the technique has been routinely applied in the

design of CO2 space missions (Patra et al., 2003; Kadygrov

et al., 2009; Kaminski et al., 2010; Rayner et al., 2014) and

the extension of the in situ sampling network for atmospheric

carbon dioxide. Recent examples focus on in situ networks

over Australia (Ziehn et al., 2014) and South Africa (Nick-

less et al., 2014). The design of a combined atmospheric and

terrestrial network of the European carbon cycle is addressed

by Kaminski et al. (2012).

The present study applies the QND concept to the Arc-

tic sea ice–ocean system. It describes the Arctic Observa-

tional Network Design (AOND) system, a tool that can eval-

uate the performance of observational networks comprising

a range of different data streams. We illustrate the utility of

the tool by evaluating the relative merits of alternate airborne

transects within the context of NASA’s Operation IceBridge

(Richter-Menge and Farrell, 2013; Kurtz et al., 2013a), as-

sessing their potential to improve ice forecasts in the Chukchi

Sea and along the Alaskan coast.

2 Methods

Our AOND system evaluates observational networks in

terms of their impact on target quantities in a data assim-

ilation system. Both the data assimilation system and the

AOND system are built around the same model of the Arc-

tic sea ice–ocean system. Below, we first present the model,

then the assimilation system and finally the QND approach

that operates on top of this model.

2.1 NAOSIM

The model used for the present analysis is the coupled sea

ice–ocean model NAOSIM (North Atlantic/Arctic Ocean

Sea Ice Model; Kauker et al., 2003). NAOSIM is based

on version 2 of the Modular Ocean Model (MOM-2) of

the Geophysical Fluid Dynamics Laboratory. The version of

NAOSIM used here has a horizontal grid spacing of 0.5◦ on

a rotated spherical grid. The rotation maps the 30◦W merid-

ian onto the Equator and the North Pole onto 0◦ E. Hence, the

model’s x and y directions are different from the zonal and

meridional directions, and the grid is almost equidistant. In

the vertical it resolves 20 levels, their spacing increasing with

depth from 20 to 480 m. At the southern boundary (near 50◦

N) an open boundary condition has been implemented fol-

lowing Stevens (1991), allowing the outflow of tracers and

the radiation of waves. The other boundaries are treated as

closed walls. At the open boundary the barotropic transport

is prescribed from a coarser-resolution version of the model

that covers the whole Atlantic northward of 20◦ S (Köberle

and Gerdes, 2003).

A dynamic-thermodynamic sea ice model with a viscous-

plastic rheology (Hibler, 1979) is coupled to the ocean

model. The prognostic variables of the sea ice model are

ice thickness, snow depth, and ice concentration. Ice drift is

calculated diagnostically from the momentum balance. Snow

depth and ice thickness are mean quantities over a grid box.

The thermodynamic evolution of the ice is described by an

energy balance of the ocean mixed layer following Parkin-

son and Washington (1979). Freezing and melting are calcu-

lated by solving the energy budget equation for a single ice

layer with a snow layer. When atmospheric temperatures are

below the freezing point, precipitation is added to the snow

mass; otherwise it is added to the ocean. The snow layer is

advected jointly with the ice layer. The surface heat flux is

calculated through a standard bulk formula approach using

prescribed atmospheric data and sea surface temperature pre-

dicted by the ocean model. Owing to its low heat conductiv-

ity, the snow layer has a high impact on the simulated energy

balance (Castro-Morales et al., 2014). The sea ice model is

formulated on the ocean model grid and uses the same time

step. The models are coupled following the procedure de-

vised by Hibler and Bryan (1987).

Atmospheric forcing (10 m wind velocity, 2 m air tempera-

ture, 2 m dew point temperature, total precipitation, and total

cloud cover) is taken from the National Centers for Environ-

mental Prediction/National Center for Atmospheric Research

(NCEP/NCAR) reanalysis (Kalnay et al., 1996). This study is

based on a model integration from 1 April to 31 August 2007.

The initial state of this integration is the final state of a hind-

cast from January 1948 to the end of March 2007, forced

by NCEP/NCAR reanalyses and in turn initialised from Po-

lar Science Center Hydrographic Climatology (PHC) data

(Steele et al., 2001) (ocean temperature and salinity), zero

ocean velocities and zero snow depth, a constant ice thick-

ness of 2 m with 100 % ice cover where the air temperature

is below the freezing temperature of the ocean’s top layer

and zero ice drift. The model’s process formulations depend

on a number of uncertain parameters. Table 1 summarises at-
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Table 1. Control variables. Column 1 lists the quantities in the control vector; column 2 gives the abbreviation for each quantity; column 3

indicates whether the quantity is an atmospheric boundary (forcing, i.e. f) field, an initial field (i), or a process parameter (p); column 4 gives

the name of each quantity; column 5 indicates (the standard deviation of) the prior uncertainty and the corresponding units and provides the

magnitude of the parameter value in parenthesis, where applicable; and column 6 identifies the position of the quantity in the control vector

– for initial and boundary values (which are differentiated by region) this position refers to the first region, while the following components

of the control vector then cover regions 2 to 9.

Index # Name Type Meaning Prior uncertainty (value) Start

1 taux f wind stress model x component 0.02Nm2 1

2 tauy f wind stress model y component 0.02Nm2 10

3 2mT f 2 m air temperature 1.2K 19

4 DewT f dew pointe temperature 1.1K 28

5 cld f cloud cover 0.07 37

6 precip f total precipitation 0.4× 10−8 ms−1 46

7 scalwnd f scalar wind speed 0.6ms−1 55

8 kappam p vertical viscosity coeff. 0.1× 10−3(1.0× 10−3)m2 s−1 64

9 kappah p vertical diffusion coeff. 1.0× 10−5(1.0× 10−5)m2 s−1 65

10 cdbot p bottom drag coeff. 0.5× 10−3 (1.2× 10−3) 66

11 tempi i initial ocean temperature 0.5K (vertically decreasing) 67

12 salinityi i initial salinity 0.5psu (vertically decreasing) 76

13 pstar p ice strength 10 000(15 000)Nm 85

14 cstar p ice strength depend. on ice conc. 5.0(20.0) 86

15 eccen p squared yield curve axis ratio 0.5(2.0) 87

16 gmin p regime plastic-linear viscous 1.0× 10−9(5.0× 10−9) 88

17 h0 p lead closing 1.0(0.5)m 89

18 cdwat p ocean drag coeff. 2.0× 10−3(5.5× 10−3) 90

19 cdwin p atmosphere drag coeff. 1.0× 10−3(2.475× 10−3)

(absorbed in taux/y)

20 angwat p ice turning angle 5.0◦ (25.0◦) 92

21 cdsens p sensible heat flux coeff. 0.5× 10−3(1.75× 10−3) 93

22 cdlat p latent heat flux coeff. 0.5× 10−3(1.75× 10−3) 94

23 albw p open water albedo 0.05(0.1) 95

24 albi p freezing ice albedo 0.1(0.7) 96

25 albm p melting ice albedo 0.1(0.68) 97

26 albsn p freezing snow albedo 0.1(0.8) 98

27 albsnm p melting snow albedo 0.1(0.77) 99

28 hi i initial ice thickness 0.5m 100

29 ai i initial ice concentration 0.1 109

30 hsni i initial snow thickness 0.2m 118

mospheric forcing fields and initial fields, and lists a subset

of the model’s relevant process parameters.

2.2 Assimilation

The variational assimilation system NAOSIMDAS (Kauker

et al., 2009, 2010) operates through minimisation of a cost

function that quantifies the fit to all observations plus the

deviation from prior knowledge on a vector of control vari-

ables x:

J (x)=
1

2

[
(M(x)− d)TC(d)−1(M(x)− d)

+(x− x0)
TC(x0)

−1(x− x0)
]
, (1)

where M denotes the model, considered as a mapping from

the control vector to observations; d the observations with

data uncertainty covariance matrix C(d); x0 the vector of

prior values of the control variables with uncertainty covari-

ance matrix C(x0); and the superscript T is the transpose op-

erator. The control variables are typically a combination of

the initial state, the atmospheric forcing and the process pa-

rameters. The data uncertainty C(d) reflects the combined

effect of observational C(d obs) and model error C(d mod):

C(d)2 = C(d obs)
2
+C(d mod)

2. (2)
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C(d mod) captures all uncertainty in the simulation of the ob-

servations except for the uncertainty in the control vector be-

cause this fraction of the uncertainty is explicitly addressed

by the assimilation procedure through correction of the con-

trol vector.

The control vector x̃ that minimises Eq. (1) achieves a bal-

ance between the observational constraints and the prior in-

formation. The minimum is determined through variation of

the control vector (hence variational assimilation) compris-

ing initial and boundary conditions and process parameters.

In contrast to sequential assimilation approaches, which re-

sult in a sequence of corrections of the state predicted by the

model, the variational approach guarantees full consistency

with the dynamics imposed by the model, as it provides an

entire trajectory through the state space of the model in re-

sponse to the change in the control vector. In the case of our

model this means that we infer a trajectory that assures con-

servation of mass, energy and momentum (except at the lat-

eral domain boundaries). We note that, in this QND study, no

minimisation of Eq. (1) is required.

2.3 QND

We provide a brief description of the methodological back-

ground for QND, which follows Kaminski and Rayner

(2008). The approach is based on propagation of uncertainty

from the data to a target quantity of interest. The target quan-

tity may be any aspect (e.g. a prognostic or diagnostic vari-

able or a process parameter) that can be extracted from a sim-

ulation with the underlying model, for example, the sea ice

concentration integrated over a particular domain and time

period.

QND proceeds in two steps. In the first step, the second

derivative (Hessian) of the cost function (Eq. 1) is used to ap-

proximate the inverse of the covariance matrix C(x) of pos-

terior uncertainty of the control vector, which quantifies the

uncertainty ranges of the control variables that are consistent

with uncertainties in the observations and the model. Denot-

ing the linearisation of the model by M′, we can approximate

this posterior uncertainty by

C(x)−1
=M′

T
C(d)−1M′+C(x0)

−1 . (3)

The first term on the right-hand side quantifies the observa-

tional impact which yields an uncertainty reduction with re-

spect to the prior uncertainty (inverse of the second term).

When the prior uncertainty is already small, the second

term is large, and a large observational impact is required

to achieve a substantial uncertainty reduction. The observa-

tional impact is large when the observations are highly sensi-

tive to changes in the control variables and when the data un-

certainty is small. The first condition describes the relevance

of the observation, and the second condition its quality.

In the second step, the linearisation N′ (Jacobian) of the

model N used as a mapping from the control vector to target

quantities is employed to propagate the uncertainties in the

Figure 1. Target regions: Chukchi (dark blue); north of Barrow

(NOB, light blue) Bering Strait to Prudhoe Bay (BS2PB, red).

Flight transects: Chukchi to Fram (C2F, red); Beaufort to Fram

(B2F, yellow).

control vector forward to the uncertainty in a target quantity

σ(y):

σ(y)2 = N′C(x)N′
T
+ σ(ymod)

2 . (4)

If the model were perfect, σ(ymod) would be zero. In con-

trast, if the control variables were perfectly known, the first

term on the right-hand side would be zero. Equation (4) re-

lates the uncertainty in control space to uncertainty in a target

quantity.

Evaluating Eq. (4) for the prior uncertainty C(x0) instead

of the posterior uncertainty C(x), i.e. for a case without ob-

servational constraint, yields a prior uncertainty for the target

quantity:

σ(y0)
2
= N′C(x0)N

′T
+ σ(ymod)

2 . (5)

We define the term uncertainty reduction relative to σ(y0),

i.e. by

σ(y0)− σ(y)

σ (y0)
= 1−

σ(y)

σ (y0)
. (6)

For example, if σ(y) is 90 % of σ(y0), then the uncertainty

reduction is 10%; i.e. we have increased our knowledge on y

by 10.

To reduce uncertainty for a target quantity, the observa-

tions need to reduce uncertainty in the sub-space of the con-

trol space that (through the matrixN ′) projects onto the target
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Figure 2. Sub-regions defined in the study. 1 (light plum): central

Arctic. 2 (dark blue): North Atlantic; and then counterclockwise to

7 (yellow): Bering Strait/Chukchi Sea; 8 (orange): Beaufort Sea; 9

(red): Baffin Bay.

quantity. In other words, it does not help to constrain parts of

the control space that have no impact on the target quantity

(as quantified by N ′). Specific examples and further discus-

sion of how to interpret the matrix N ′ will be provided in

Sect. 4 below.

We note that (through Eqs. 3 and 4) the posterior target un-

certainty solely depends on the prior and data uncertainties

as well as the linearised model responses of simulated ob-

servation counterparts and of target quantities. The approach

does not require real observations and can thus be employed

to evaluate hypothetical candidate networks. Candidate net-

works are defined by a set of observations characterised by

observational data type, location, time, and data uncertainty.

Hence, the QND approach does not require running the as-

similation system. Here, we define a network as the complete

set of observations, d, used to constrain the model. The term

network is not meant to imply that the observations are of the

same type or that their sampling is coordinated. For example,

a network can combine in situ and satellite observations.

In practice, for pre-defined target quantities and obser-

vations, model responses can be pre-computed and stored.

A network composed of these pre-defined observations can

then be evaluated in terms of the pre-defined target quan-

tities without further model evaluation. Only matrix alge-

bra is required to combine the pre-computed sensitivities

with the data uncertainties. This aspect is exploited in our

AOND system. The linearised response functions were com-

puted by the tangent linear version of NAOSIM generated

from the model’s source code through the automatic dif-

ferentiation tool Transformation of Algorithms in Fortran

(TAF; Giering and Kaminski, 1998).

3 Experimental setup

3.1 Target quantities

The goal of this study is to explore the utility of the AOND

system in guiding observations for short-term to seasonal-

scale sea ice predictions. Ice forecasting at these timescales

has been identified as a high priority in the context of safe

maritime operations (Richter-Menge and Walsh, 2012; Kurtz

et al., 2013a; Eicken, 2013), management of marine living

resources (Robards et al., 2013) and food security for indige-

nous communities (Brubaker et al., 2011). Here, we focus on

the first two issues in the Chukchi and Beaufort seas north

of Alaska (Figs. 1 and 2), which are experiencing some of

the highest reductions in summer ice concentration anywhere

in the Arctic, along with major offshore hydrocarbon explo-

ration and potential impacts on protected species such as wal-

rus (Eicken and Mahoney, 2015). Thus, the selection of tar-

get quantities for the AOND system seeks to evaluate and

improve predictions aimed at the information needs of stake-

holders and resource managers for this region. Of particu-

lar interest is the summer season with its reduced ice cover.

From an observational point of view this period is particu-

larly challenging, as surface melt and its impact on ice di-

electric properties complicate retrievals of variables such as

snow depth and ice thickness through satellite remote sens-

ing. For this study we deliberately selected the year 2007, a

year of particularly low ice extent, which may be regarded as

representative of future ice conditions in a rapidly changing

Arctic. As is detailed in the following, we study both pre-

dictions for selected days and predictions for integrals over

selected time periods.

For all target regions delineated in Fig. 1, we use spatial

averages of the three simulated quantities: ice concentration

(fraction of area covered by ice, regardless of the 15 % floor

used in the definition of ice extent), ice thickness, and snow

thickness. For each of the target regions we look at these

quantities for different days or time periods. For the target re-

gion Chukchi Sea we examine these three quantities for each

of 10 April, 30 June, and 31 August, yielding a total of nine

target quantities. In order to specifically address information

needs with respect to safe shipping between Bering Strait

and the central and eastern Beaufort Sea (including supply of

coastal communities and the oil industry hub at Prudhoe Bay,

offshore resource exploration and transits through the North-

west Passage), we evaluate an additional set of target quan-

tities derived from the Barnett ice severity index (BSI). The

BSI has developed into a standard measure of shipping con-

ditions and potential hazards encountered along the Alaskan

coast and at a critical choke point of the Northwest Passage,
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and it is routinely issued by ice services (Barnett, 1976).

Drobot (2003) has examined the predictive skill of statisti-

cal models in BSI seasonal forecasts. The BSI is a composite

of eight aspects of summer ice conditions (see Table 2), four

related to the distance of the ice pack north of Point Barrow

(NOB) in mid-August and mid-September and four related to

the timing of ice retreat along the sea route from Bering Strait

to Prudhoe Bay during the entire navigation season (BS2PB).

In replicating these variables in a condensed way, we identify

the two target regions as shown in Fig. 1. The target region

NOB covers a corridor of 50 km (one grid cell) width extend-

ing from Point Barrow to 75◦ N on 10 and 31 August. We

use 31 August in contrast to 15 September (which is used in

the definition of the BSI) because from the end of August to

mid-September 2007 the ice edge was located northwards of

75◦ N. For the region BS2PB, in keeping with the BSI we use

the time period from May to August.

3.2 Control variables

In our variational assimilation system the largest possible

control vector is the superset of initial and surface boundary

conditions as well as all parameters in the process formula-

tions. To keep our AOND system numerically efficient, two-

and three-dimensional fields are grouped into regions. We

proceeded by dividing the Arctic domain into nine regions

(Fig. 2). In each of these regions we add a scalar perturba-

tion to each of the forcing fields (indicated in Table 1 by the

type boundary “f”). Likewise we add a scalar perturbation to

five initial fields (indicated in Table 1 by the type initial “i”).

For the ocean temperature and salinity the size of the pertur-

bation is reduced with increasing depth. Finally we have se-

lected 18 process parameters from the sea ice–ocean model.

This procedure resulted in a total of 126 control variables,

a superset of the set of control variables identified by Sumata

et al. (2013) to have the largest impact on the simulation. Un-

like the study by Kauker et al. (2009) the control vector used

here also includes process parameters. We conducted sensi-

tivity experiments in which we remove components from the

control vector. For example, removing the atmospheric forc-

ing explores the (hypothetical) case of a perfect seasonal at-

mospheric forecast, and removing the process parameters the

(hypothetical) case of a perfectly calibrated model.

The prior uncertainty of the control variables, C(x0) (see

Eqs. 1 and 3), is assumed to have diagonal form; i.e. there

are no correlations among the prior uncertainty relating to

different components of the control vector. The diagonal en-

tries are the square of the prior uncertainty (quantified by its

standard deviation, in the following denoted as SD or prior

sigma). For process parameters this SD is estimated from the

range of values typically used within the modelling commu-

nity. The SD for the components of the initial state is based

on a model simulation over the past 20 years and computed

for the 20-member ensemble corresponding to all states on

the same day of the year. Likewise the SD for the surface

boundary conditions is computed for the 20-member ensem-

ble corresponding to all 5-month forecast periods starting on

the same day of the year.

As the QND approach does not require the minimisation

of Eq. (1), the prior uncertainty only serves as a reference

such that the impact of observations is quantified in terms

of a percentage change relative to the prior uncertainty (un-

certainty reduction). If the prior uncertainty were too opti-

mistic, the impact of the observations would be underesti-

mated, and vice versa: if the prior uncertainty were too high,

the impact of the observations would be overestimated. As

we will use the same prior uncertainty as the reference for

all observational configurations, their relative performance is

not affected.

3.3 Observational networks

There are various types of observations sampling the Arctic

sea ice–ocean system, many of which are potentially suit-

able for assimilation into a model like NAOSIMDAS. Our

AOND system focuses on observations of ice concentration

(not used in the present study), snow depth and ice thickness.

It provides response functions for potential observations of

each of these three observables, for each surface grid cell,

and for each day of the simulation period (i.e. about 5 mil-

lion possible observations of which subsets can be selected

for evaluation) with a user-defined data uncertainty. In this

study we demonstrate the application and potential utility of

the system in evaluating the relative merits and quantitative

contribution to improving sea ice forecasts for two alternate

ice thickness airborne survey profiles. This example is based

on the need for objective guidance on flight routing as part of

NASA’s Operation IceBridge, an airborne laser altimeter and

snow radar campaign meant to provide information on the

mass budget of the Arctic ice pack (Richter-Menge and Far-

rell, 2013). Recent work has demonstrated the utility of such

data, collected in spring for initialisation and constraints on

seasonal forecasts of summer ice extent (Lindsay et al., 2012;

Kurtz et al., 2013a). Based on an evaluation of flown and hy-

pothetical IceBridge transects, we evaluate the impact of sim-

ulated measurements along two transects within AOND. The

first is a transect from Bering Strait to Fram Strait, which we

denote by Chukchi to Fram (C2F, Fig. 1, red), and the sec-

ond from the Beaufort Sea to Fram Strait, which we denote

by Beaufort to Fram (B2F, Fig. 1, yellow). Both flights are

assumed to take place on 5 April 2007. The “observations”

consist of model output of ice and snow thickness at each

grid cell that intersects with the transect as indicated in Fig. 1.

The default case specifies a data uncertainty of 30 cm for both

quantities. Sea ice concentration is not observed. To explore

the sensitivity of the results with respect to the data uncer-

tainty, we also test a data uncertainty of 10 cm. While the

former is at the lower end of what is expected for IceBridge

altimeter data (Kurtz et al., 2013b), the latter corresponds to
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Table 2. Aspects entering the definition of the Barnett ice severity index.

Distance from Point Barrow northward to ice edge (10 Aug).

Distance from Point Barrow northward to ice edge (15 Sep).

Distance from Point Barrow northward to boundary of 5/10 ice concentration (10 Aug).

Distance from Point Barrow northward to boundary of 5/10 ice concentration (15 Sep).

Initial date entire sea route to Prudhoe Bay less than/equal to 5/10 ice concentration.

Date that combined ice concentration and thickness dictate end of prudent navigation.

Number of days entire sea route to Prudhoe Bay ice-free.

Number of days entire sea route to Prudhoe Bay less than/equal to 5/10 ice concentration.
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(a) (b)

Figure 3. Uncertainty reduction for the Chukchi target area for flight transect C2F (panel a) and B2F
(panel b) for target quantities mean ice concentration a, mean ice thickness h and mean snow depth
hsn.

27

Figure 3. Uncertainty reduction for the Chukchi target area for flight transect C2F (a) and B2F (b) for target quantities mean ice concentration

a, mean ice thickness h and mean snow depth hsn.

the lower bounds of airborne electromagnetic induction mea-

surements (Haas et al., 2009).

4 Results and discussion

Figure 3 shows the performance of each transect in improv-

ing forecasts over the Chukchi target region. We define the

uncertainty reduction relative to the case without observa-

tional constraints, where the prior uncertainty in the control

vector (see Sect. 3.2) is propagated to the three target quan-

tities. Overall we note a larger impact of C2F on the short-

term forecast (10 days), while for B2F the impact increases

for the mid-term forecast (3 months). For the mid-term fore-

cast C2F surpasses B2F with respect to the impact on pre-

dicted ice concentration and snow thickness, while its impact

is marginally smaller for ice thickness. For the 10 day fore-

cast C2F has a much larger impact on predicted ice and snow

thickness than on ice concentration. This is mostly a result of

the flights observing specifically the former two quantities,

whereas the model dynamics require some time to transfer

any constraints on snow and ice thickness into constraints

on ice concentration. Moreover, ice concentration in this re-

gion is also strongly dependent on factors other than snow

and ice thickness, in particular during spring and early sum-

mer, when the role of wind forcing greatly exceeds that of

the other two variables.

Mathematically, through N ′ in Eq. (4), each target quan-

tity defines a one-dimensional sub-space (target direction;

Kaminski et al., 2012) of the space spanned by the control

vector (control space). All control vectors v perpendicular to

the target direction yield N ′v = 0. Similarly, through M ′ in

Eq. (3) each observation defines a second one-dimensional

sub-space of the control space, the observed direction. The

better the observed direction projects onto the target direc-

tion, the more efficient is the observation in reducing the un-

certainty in the target quantity. According to Eq. (3) the un-

certainty reduction increases with the response of the observ-

able to a change in the control vector (M ′) and decreases with

the data uncertainty. Figure 4 provides a visualisation of the

complete matrix N ′, which shows the response of the three

target quantities to a change in each of the control variables

by 1 SD of the prior probability density function (Table 1).

The position on the x axis corresponds to the number of the

control variable in the last column of Table 1. This provides
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(a) (b)

Figure 4. Sensitivity of target quantities over Chukchi area for 10 day (panel a), and 91 day (panel
b) forecasts to 1 sigma prior uncertainty change in each control variable. Units of target quantities
(and their sensitivities): ice concentration (a) (0–1); ice thickness (h) in m; snow thickness (hsn) in
m.
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Figure 4. Sensitivity of target quantities over Chukchi area for 10-day (a) and 91-day (b) forecasts to 1 prior sigma uncertainty change

in each control variable. Units of target quantities (and their sensitivities): ice concentration (a) (0–1); ice thickness (h) in metres; snow

thickness (hsn) in metres.

Figure 5. Wind stress direction with highest impact of tau com-

ponent in control vector on ice thickness in Chukchi target region

(dark red colour). Colour indicates magnitude.

two pieces of information: first, it shows the target direction;

second, it shows the size of the impact of an uncertainty re-

duction in the target direction. We note that the initial condi-

tions of ice and snow have highest impact for the short-term

forecast. For the mid-term forecast, atmospheric forcing and

model parameters gain in importance. For the interpretation

of the wind stress components taux and tauy recall that the

model operates on a rotated coordinate system. Taking the

rotation into account, for regions 6, 7, and 8 Fig. 5 shows the

direction in which a change of tau yields the largest increase

in ice thickness. Adding a 25◦ Ekman deflection, the change

of ice motion is towards the target region. For the long-term

forecast (153 days), the impacts (not shown) are generally

small because there is little ice left in the target area. The

impact of the B2F transect on the 10-day forecast of ice con-

centration over the (remote) Chukchi target region (Fig. 3b)

is remarkable. It is explained by the relatively high impact of

the lead closing parameter h0 in the formulation of freezing

(control variable #89) on ice concentration (Fig. 4). Since h0

is a global parameter, observations on both transects can help

to reduce uncertainty in this parameter.

Figure 6 shows the performance of each transect for im-

proving forecasts for the target region covering the coastal

ocean from Bering Strait to Prudhoe Bay (BS2PB). They

show similar performance because this target quantity is tem-

porally averaged from May to August. B2F is superior for

snow thickness, and C2F for ice thickness and area. This can

be explained by the sensitivity of these three target quantities

(Fig. 7). Relative to ice thickness and area, snow thickness

has a larger sensitivity to the initial (ice and snow) conditions

(in particular over region 8) than to the surface forcing and

the process parameters. And the initial snow thickness over

region 8 is, of course, better observed by B2F (which crosses

this region) than by C2F. As an additional test case we evalu-

ate the combination of the two transects, which clearly shows

their complementarity.

Figure 7 shows the response of the three target quantities

to a 1 prior sigma change in each of the control variables.

The impact of wind stress dominates. For both region 7 and

8, Fig. 8 shows the direction in which a change of tau yields
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Figure 6. Uncertainty reduction for target area BS2PB for flight

transects C2F, B2F, and both.

Figure 7. Sensitivity of target quantities for BS2PB area to 1 prior

sigma uncertainty change in each control variable. Units of target

quantities (and their sensitivities): ice concentration (a) (0–1); ice

thickness (h) in metres; snow thickness (hsn) in metres.

the largest increase in ice thickness. Adding a 25◦ Ekman de-

flection (to the right) the change of ice motion is towards

the intersection of the respective region’s coastline with the

target area BS2PB. The parameter pstar has a positive im-

pact because it yields more rigid ice. Parameter h0, which

essentially determines the distribution of newly formed ice

in the vertical vs. the horizontal dimension, has a negative

impact: increasing h0 yields thicker newly formed ice and

consequently reduces the ice concentration.

Figure 9 shows the performance of each transect for im-

proving forecasts over the NOB target region. The perfor-

mance of B2F is much better than that of C2F for both fore-

Figure 8. Wind stress direction with highest impact of tau compo-

nent in control vector on ice thickness in BS2PB target region (dark

red colour). Colour indicates magnitude.
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(a) (b)

Figure 9. Uncertainty reduction for target areas NOB for flight transect C2F (panel a) and B2F (panel
b).
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Figure 9. Uncertainty reduction for target areas NOB for flight tran-

sect C2F (panel a) and B2F (panel b).

cast times. This result appears counter-intuitive, because C2F

is much closer than B2F, but can be explained through the

influence of the westward circulation prevailing in the wa-

ters off the Alaskan coast (Eicken and Mahoney, 2015). For

forecast times of 4–5 months, an upstream observation is as-

sociated with much more predictive skill than an observation

directly over the target area. In fact the same mechanism ex-

plains the previously mentioned higher uncertainty reduction

of B2F for the long-term forecast in the Chukchi area. For

the target area BS2PB none of the transects dominate be-

cause the target period is an integral from forecast months 2

to 5.

Figure 10 shows the response of the three target quantities

(on both 10 and 31 August) to a 1 prior sigma change in each

of the control variables. We note the highest impact for tauy

in region 8 (positive impact of southwest increase), leading

to more ice in the target region (see Fig. 11). Furthermore

there is relatively high impact of other atmospheric forcing

variables, as well as of some parameters (the albedo of melt-
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(a) (b)

Figure 10. Sensitivity of target quantity over NOB area for 132 day (panel a), and 153 day (panel b)
forecasts to 1 sigma prior uncertainty change in each control variable. Units of target quantities (and
their sensitivities): ice concentration (a) (0–1); ice thickness (h) in m; snow thickness (hsn) in m.
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Figure 10. Sensitivity of target quantity over NOB area for 132-day (a) and 153-day (b) forecasts to 1 prior sigma uncertainty change in each

control variable. Units of target quantities (and their sensitivities): ice concentration (a) (0–1); ice thickness (h) in metres; snow thickness

(hsn) in metres.

Figure 11. Wind stress direction with highest impact of tau compo-

nent in control vector on ice thickness in NOB target region (dark

red colour). Colour indicates magnitude.

ing ice, albm, and the ice strength parameter, pstar) and the

ice initial conditions.

There is generally little difference in the responses for the

two forecast periods. This is an indication of the robustness

of our linearisation of the coupled sea ice–ocean system and

confirms an analysis of Kauker et al. (2009), who found, for

the same model, moderate differences between the lineari-

sation and finite size perturbations. A consequence of this

robustness is that the specific target days we chose only play

the role of a typical day within a longer time period.

Figure 12 shows the sensitivity of the performance of the

(superior) B2F transect with respect to changes in various

impact factors (relative to the default settings used for Fig. 9)

for the NOB target region. The reduction in data uncertainty

from 0.3 to 0.1 m for both ice and snow thickness yields

a considerable improvement in performance (panel a). The

effect is particularly pronounced for ice area. Reducing the

prior uncertainty for the atmospheric forcing to zero mimics

the availability of a perfect seasonal atmospheric forecast.

Under this assumption, the performance of the B2F transect

is strongly increased (panel b). Likewise a reduction of the

prior uncertainty for all process parameters mimics a per-

fectly calibrated model. Its effect on the performance of the

B2F transect is relatively small (panel c). Interestingly, com-

bining the perfectly calibrated model and the perfect atmo-

spheric forecast assumptions doubles the uncertainty reduc-

tions compared to the perfect atmospheric forecast assump-

tions alone. In this case all the observational constraints can

fully act to reduce uncertainty in the initial conditions.

5 Conclusions

We have presented the AOND system that evaluates hypo-

thetical observational networks of the coupled sea ice–ocean

system in terms of their constraint on target quantities of in-

terest within an assimilation system. We have applied the tool

to evaluate the potential of two flight transects to reduce un-

certainties in ice forecasts over periods from 10 days to 5

months for regions with high offshore resource exploration

(Chukchi Sea) or shipping activity (Northwest Passage). For

our analysis and case study we selected the year 2007, a year

of particularly low ice extent, which may be regarded as rep-
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(a) Reduced Data Uncertainty (b) Perfect Forcing

(c) Perfect Model (d) Perfect Model and Forcing

Figure 12. Uncertainty reduction for target areas NOB for flight transect B2F with data uncertainty
of 0.1 m (panel a), the assumption of perfectly known atmospheric forcing (panel b), the assumption
of a perfectly calibrated model (panel c), the assumption of perfectly known atmospheric forcing and
of a perfectly calibrated model (panel d).
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Figure 12. Uncertainty reduction for target areas NOB for flight transect B2F with data uncertainty of 0.1 m (a), the assumption of perfectly

known atmospheric forcing (b), the assumption of a perfectly calibrated model (c), the assumption of perfectly known atmospheric forcing

and of a perfectly calibrated model (d).

resentative of future ice conditions in a rapidly changing Arc-

tic.

Since our quantitative results are specific to the conditions

in this particular year, we focus on overarching conclusions

that can be drawn from this case study. First, we note that the

network performance depends on the specific question asked,

i.e. on the target quantity. Of equal importance in the highly

advective Arctic sea ice regime is the finding that the longer

the forecast time, the further upstream we have to sample,

well outside of the region of interest. This may result in sig-

nificant interannual variability in the area that needs to be

targeted for measurements relative to the region of interest.

This finding also supports the broader notion of an adaptive

sampling grid that reflects a priori knowledge of the state and

dynamics of the ice cover at the end of the ice growth season.

On another level, we furthermore demonstrated in a quantita-

tive way how the model dynamics transfer the observational

information from one set of variables (snow depth and ice

thickness) to another variable (ice concentration). In this con-

text, we note that in our case study the target quantities and

framework for assessing the QND were based on the specific

objective of predicting summer ice conditions or navigation

along a heavily trafficked route in the Alaskan Arctic at the

seasonal scale. Future work will have to evaluate the degree

of overlap in uncertainty reduction for predictions on sea-

sonal as compared to interannual or multidecadal timescales.

When defining candidate networks to be evaluated, it is

essential to take logistic constraints into account. The se-

lection of alternate flight routes for the C2F and B2F tran-

sects inherently reflects logistic factors. However, the QND

approach lends itself to inclusion of quantitative constraints

on specific regional data acquisition patterns that may re-

quire further work to evaluate. Similarly, an essential input

to the tool is the data uncertainty, which is the combination

of uncertainties in the observations and in modelling their

counterparts (model uncertainty). Hence, the QND approach

can also help in evaluating methodological improvements or

evaluate the costs/benefits of advances in instrumental design

that reduce measurement errors. These findings make it clear

that a QND tool needs to be operated by a team consisting of

observationalists and modellers in order to derive maximum

benefits.

We note that the aforementioned model uncertainty to be

provided to the tool does not necessarily need to refer to the
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specific model that is used. As long as the response func-

tions of our model are approximately correct, we can use

the present system to simulate the observational impact on

an assimilation system around a different model. For QND

results to be valid beyond the model at hand, one has to em-

ploy a well-validated model that includes all relevant pro-

cesses. For example the model should have adequate sensi-

tivity of regionally integrated ice properties with respect to

the initial ice thickness. For the model used here this sen-

sitivity is similar for resolutions from 1/2 to 1/12 of a de-

gree. One would not expect a drastic change of this sensitiv-

ity when moving to even finer (eddy-permitting) scales, but

this requires further investigation. Computationally, the cur-

rent 126-dimension control space requires 127 model sim-

ulations (over 5 months each) for the approximation of the

Jacobian matrices (M ′ of Eq. 3 and N ′ of Eq. 4) quantifying

observational and target sensitivities. This should be feasible

even for high-resolution models.

The current AOND system has the flexibility to also evalu-

ate the potential of space missions or further in situ sampling

strategies. There are a number of obvious ways to refine the

present system. It can be extended to cover climate condi-

tions over longer timescales and further into the future, possi-

bly also representative of the state of the Arctic under climate

change scenario for mid-century and beyond. Moreover, one

could add oceanic observations or further target quantities, or

extend the control vector to gain broader insights into observ-

ing system design in the coupled atmosphere–sea ice–ocean

system. Furthermore, rather than operating Arctic-wide, the

same concept can be applied on a smaller regional scale when

the forecasting period is short enough to ensure that the main

influence factors can be appropriately simulated within the

model domain.
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