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Abstract. The Karakoram range of the Hindu-Kush Hi-

malaya is characterized by both extensive glaciation and

a widespread prevalence of surficial debris cover on the

glaciers. Surface debris exerts a strong control on glacier

surface-energy and mass fluxes and, by modifying surface

boundary conditions, has the potential to alter atmosphere–

glacier feedbacks. To date, the influence of debris on Karako-

ram glaciers has only been directly assessed by a small num-

ber of glaciological measurements over short periods. Here,

we include supraglacial debris in a high-resolution, interac-

tively coupled atmosphere–glacier modeling system. To in-

vestigate glaciological and meteorological changes that arise

due to the presence of debris, we perform two simulations

using the coupled model from 1 May to 1 October 2004: one

that treats all glacier surfaces as debris-free and one that in-

troduces a simplified specification for the debris thickness.

The basin-averaged impact of debris is a reduction in ab-

lation of ∼ 14 %, although the difference exceeds 5 mw.e.

on the lowest-altitude glacier tongues. The relatively mod-

est reduction in basin-mean mass loss results in part from

non-negligible sub-debris melt rates under thicker covers

and from compensating increases in melt under thinner de-

bris, and may help to explain the lack of distinct differ-

ences in recent elevation changes between clean and debris-

covered ice. The presence of debris also strongly alters the

surface boundary condition and thus heat exchanges with

the atmosphere; near-surface meteorological fields at lower

elevations and their vertical gradients; and the atmospheric

boundary layer development. These findings are relevant for

glacio-hydrological studies on debris-covered glaciers and

contribute towards an improved understanding of glacier be-

havior in the Karakoram.

1 Introduction

The Karakoram region of the greater Himalaya (∼ 74–

77◦ E,34–37◦ N; Fig. 1) is extensively glacierized, with

an ice-covered area of ∼ 18 000 km2 (Bolch et al., 2012).

Supraglacial debris is widespread, and covers an estimated

∼ 18–22 % of the glacierized area (Scherler et al., 2011; He-

witt, 2011), a fraction that is approximately twice as large

as the Himalayan average of ∼ 10 % (Bolch et al., 2012).

The region has received a great deal of public and scien-

tific attention in recent years due to evidence of stable or

even slightly positive mass balances in the 2000s (Hewitt,

2005; Scherler et al., 2011; Gardelle et al., 2012, 2013; Kääb

et al., 2012) that are in contrast with predominantly nega-

tive balances of glaciers in the rest of the Hindu-Kush Hi-

malaya (HKH; Cogley, 2011) Knowledge of the hydrolog-

ical response of Karakoram glaciers to climate change is

critical, since their meltwater contributes to freshwater re-

sources in this highly populated region of South Asia (Kaser

et al., 2010; Lutz et al., 2014). However, due to logisti-

cal constraints and political instability, field observations of

glaciological and meteorological conditions in the Karako-

ram are sparse in space and time, in particular at high al-

titudes (Mihalcea et al., 2006, 2008a; Mayer et al., 2014).
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Figure 1. Topographic height shaded in units of km for (a) all three model domains in WRF-CMB, which are centered over the Karakoram

and configured with grid spacings of 30, 10 and 2 km, and (b) a zoom-in of the finest resolution domain, WRF D3.

Although observational records have been supplemented in

recent decades by remote-sensing data (e.g., Gardelle et al.,

2012, 2013; Kääb et al., 2012), large gaps remain in our

understanding of the important drivers of glacier change in

this region, including regional atmospheric conditions, lo-

cal topography and glacier debris cover, as well as interac-

tions between them. Physically based numerical modeling

has the potential to supplement observations and provide ad-

ditional insight into contemporary glacier dynamics as well

as to provide a methodology for predictions of future glacier

response.

The prevalence of debris cover has a strong potential in-

fluence on glacier behavior in the Karakoram, as field stud-

ies have shown that debris cover can significantly alter the

ice ablation rate compared to that of clean ice (e.g., Østrem,

1959; Fujii, 1977; Inoue and Yoshida, 1980). Ice melt is

enhanced beneath debris cover less than a few centimeters

thick, due to increased absorption of solar radiation. Con-

versely, ice ablation decreases exponentially as the thick-

nesses increases above this depth, due to insulation of the

ice from atmospheric energy sources. Surficial debris also

drastically alters glacier surface conditions, by permitting

the surface temperature to exceed the melting point and by

modifying the surface roughness and saturation conditions,

which impacts the surface-energy fluxes (Inoue and Yoshida,

1980; Takeuchi et al., 2001; Brock et al., 2010) and the at-

mospheric boundary layer (Granger et al., 2002). Therefore,

there is a strong potential for debris-covered ice to affect

atmosphere–glacier feedbacks in this region.

Two main issues arise in attempting to include the influ-

ence of debris cover in simulations of Karakoram glaciers.

First, the debris thickness, extent and thermal properties are

largely unknown and their specification is highly uncertain.

Second, the spatial distribution of meteorological forcing

data is complicated by highly heterogeneous surface condi-

tions in the ablation zone (e.g., Nicholson and Benn, 2012)

and the complex topography, with current approaches that

use elevation-based extrapolation appearing to be inadequate

(Reid et al., 2012). Here, we investigate the influence of de-

bris cover on Karakoram glacier surface-energy and mass

exchanges and feedbacks with the atmosphere over an ab-

lation season, using an interactively coupled atmosphere and

glacier climatic mass balance (CMB) model that includes de-

bris cover. By comparing a debris-free simulation to a simu-

lation where we include debris cover with a simple specifica-

tion of thickness, we first quantify differences in the surface

energy balance and mass fluxes. We then assess feedbacks

between the atmosphere and glacier surfaces using the cou-

pled model and differences in boundary layer development.

2 Methods

The modeling tool employed in this study is the interac-

tively coupled high-resolution atmosphere and glacier cli-

matic mass balance model WRF-CMB, which explicitly

resolves the surface-energy and CMB processes of alpine

glaciers at the regional scale (Collier et al., 2013). The cou-

pled model has been previously applied to the study region

neglecting debris cover and was capable of reproducing the

magnitudes of the few available observations of glacier CMB

in this region. The changes introduced to the atmospheric and

glacier-CMB model components for this study are described

in Sect. 2.1 and 2.2, respectively. We compare two WRF-

CMB simulations for the period of 1 May to 1 October 2004:

the first treated all glacier surfaces as debris-free (CLN) and

the second introduced a simplified debris thickness specifi-

cation (DEB), which is described in Sect. 2.3.
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Table 1. WRF configuration.

Model configuration

Horizontal grid spacing 30, 10, 2 km (domains 1–3)

Min/max time step 30/200, 10/60, 2/13 s

Vertical levels 40

Model top pressure 50 hPa

Model physics

Radiation CAM (Collins et al., 2004)

Microphysics Thompson (Thompson et al., 2008)

Cumulus Kain–Fritsch (none in D3) (Kain, 2004)

Atmospheric boundary layer Yonsei University (Hong et al., 2006)

Surface layer Monin–Obukhov (revised MM5) (Jiménez et al., 2012)

Land surface Noah-MP (Niu et al., 2011)

Dynamics

Top boundary condition Rayleigh damping

Horizontal diffusion Computed in physical space

Lateral boundaries

Forcing ERA-Interim, T255 spectral resolution (Dee et al., 2011)

updated 6 hourly

2.1 Regional atmospheric model

The atmospheric component of WRF-CMB is the Advanced

Research version of the Weather Research and Forecasting

(WRF) model version 3.6.1 (Skamarock and Klemp, 2008).

In this study, WRF was configured with three nested do-

mains, of 30, 10 and 2 km resolution, which were centered

over the Karakoram region (Fig. 1). The domains had 40 ver-

tical levels, with the model top located at 50 hPa. For these

simulations, debris cover is introduced in the 2 km domain

only, since it provides the best representation of both the

complex topography and glacier extents.

The model configuration was based on the previous appli-

cation of WRF-CMB over this region (Collier et al., 2013,

Table 1). However, for this study, the land surface model was

updated to the Noah-MP (multiparameterization) scheme

(Niu et al., 2011), which provides an improved treatment of

snow physics in non-glacierized grid cells compared with the

Noah scheme (Chen and Dudhia, 2001) that was previously

used, by prognosing the energy balance and skin temperature

of the vegetation canopy and snowpack separately, introduc-

ing multiple layers in the snowpack, and providing an im-

proved treatment of frozen soils. Note that the prognosis of

surface and subsurface conditions for glacierized grid cells

is performed by the CMB model, which is discussed in the

next section. The adaptive time stepping scheme was used,

which greatly increased the execution speed of the simula-

tions. Horizontal diffusion was also changed to be computed

in physical space rather than along model levels, whereby

diffusion acts on horizontal gradients computed using a verti-

cal correction term rather than on the gradients on coordinate

surfaces. We adopt this approach because it may be more ac-

curate in complex terrain where the vertical levels are signifi-

cantly sloped and because it provided a clear improvement in

simulated precipitation in recent applications of WRF-CMB.

Finally, for the finest-resolution domain (hereafter WRF D3),

slope effects on radiation and topographic shading were ac-

counted for and a cumulus parameterization was neglected,

since at 2 km resolution, it is assumed to be convection-

permitting (e.g., Weisman et al., 1997).

The USGS land-cover data used by WRF were updated

to incorporate more recent glacier inventories. Over the Hi-

malayan region, we used the glacier outlines from the Ran-

dolph Glacier Inventory v. 3.2 (RGI; Pfeffer et al., 2014). For

the Karakoram itself, we used the inventory of Rankl et al.

(2014), which was obtained by updating the RGI manually

on the basis of Landsat scenes. To determine which grid cells

in each WRF domain were glacierized, the outlines were ras-

terized on a grid with a resolution that was 50 times higher

than the original grid spacing of the domain. The fractional

glacier coverage of grid cells was calculated on this finer

grid, and a threshold of 40 % coverage was used to classify

a grid cell as “glacier”. The soil categories and vegetation pa-

rameters were also updated to be consistent with the glacier

outlines.

The atmospheric model was forced at the boundaries of the

coarse-resolution domain with the ERA-Interim reanalysis

from the European Centre for Medium-Range Weather Fore-

casts (ECMWF; Dee et al., 2011). The spatial and temporal

resolution of the ERA-Interim data are approximately 80 km
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(T255 spectral resolution) and 6 hourly, respectively. Snow

depths in ERA-Interim over the Karakoram are unrealistic

(more than 20 m; Collier et al., 2013), therefore an alternative

initial snow condition was provided by the Global EASE-

Grid 8 day blended SSM/I and MODIS snow cover data set

for snow water equivalent (Brodzik et al., 2007), by assum-

ing a snow density of 300 kgm−3 and specifying a depth of

0.5 m for areas with missing data, such as over large glaciers.

This assumption affected 0.7, 5 and 40 % of grid points in

D1–D3, respectively. We note that analysis of summer (June–

July–August–September) mean fields over the Karakoram in

ERA-Interim indicate that near-surface air temperatures were

close to the 1979–2014 mean in 2004, while precipitation

was significantly below average.

2.2 Glacier CMB model with debris treatment

The original basis of the glacier CMB model is the process-

based model of (Mölg et al., 2008, 2009). The model solves

the full energy balance equation to determine the energy for

snow and ice ablation. The computation of the specific col-

umn mass balance accounts for: surface and subsurface melt,

refreezing and changes in liquid water storage in the snow-

pack, surface vapor fluxes and solid precipitation. The CMB

model was adapted for interactive coupling with WRF by

Collier et al. (2013) and modified to include supraglacial de-

bris by Collier et al. (2014). For the version employed in

this study, a time-varying snowpack is introduced on top of

a static debris layer, both of which overly a column of ice

resolved down to a depth of 7.0 m. The vertical levels in the

subsurface used for these simulations are presented in Ta-

ble 2.

A full description of the debris modifications is given by

Collier et al. (2014), however we provide a brief summary

here. The debris layer is resolved into 1 cm layers and has an

assumed porosity function that decreases linearly with depth.

The properties of each layer in the debris are computed as

weighted functions of whole-rock values and the contents of

the pore space (air, water or ice) using values presented in

Table 3. For the whole-rock values, the albedo was based on

50 spot measurements on a debris-covered glacier in Nepal

(Nicholson and Benn, 2012); the density and thermal con-

ductivity were selected as representative values spanning ma-

jor rock types taken from Daly et al. (1966); Clark (1966),

respectively; and, the specific heat capacity was taken from

Conway and Rasmussen (2000). Moisture in the debris and

its phase are modeled using a simple reservoir parameteriza-

tion. When debris is exposed at the surface, the surface vapor

pressure is parameterized as a linear function of the distance

between the surface and the saturated horizon.

Surface temperature is predicted using an iterative ap-

proach to determine the value that yields zero net flux in the

surface energy balance equation. Initial test simulations with

WRF-CMB over the Karakoram gave unrealistically low sur-

face temperatures as a result of excessive nighttime damp-

Table 2. Subsurface layer depths.

Snow variable

Debris every 0.01 m

Ice 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5,

2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 7.0 m

ing of the turbulent fluxes, in particular the sensible heat flux

(QS) over debris-free glacier surfaces at high elevations. The

stability corrections are based on the bulk Richardson num-

ber (specifically, those provided in Braithwaite, 1995) and

have been used previously in glacier CMB modeling (e.g.,

Mölg et al., 2008, 2009; Reid et al., 2012). In the most sta-

ble conditions, the turbulent fluxes are fully damped, which

resulted in decoupling of the surface and the atmosphere and

excessive radiative cooling. Even in less stable conditions,

the damping of modeled turbulent fluxes has been found to

be excessive compared with eddy covariance measurements

over glaciers (Conway and Cullen , 2013). Congruent with

previous modeling studies of glacier surface-energy fluxes,

we therefore limit the maximum amount of damping in sta-

ble conditions to 30 % (Martin and Lejeune, 1998; Giesen

et al., 2009). In addition, we adopt a minimum wind speed

of 1 ms−1 to be consistent with neighboring non-glacierized

grid cells simulated by the Noah-MP LSM (land surface

model; Niu et al., 2011). However, test simulations in early

April indicate that the second correction has a minimal im-

pact on wind speeds and turbulent fluxes in glacier grid cells

and, thus, may be unnecessary.

To prevent errors arising from blended snow and debris

layers, such as constraints on possible temperature solutions

or excess melting, an adaptive vertical grid in the snowpack

was introduced. For snow depths of up to 1 m, the nearest in-

teger number of 10 cm layers are assigned, while areas of the

snowpack that exceed one meter are resolved into the nearest

integer number of 50 cm layers. Snow depths between 1 and

10 cm are assigned a single computational layer, and depths

less than 1 cm are not treated with a unique layer. Normal-

ized linear interpolation is performed to calculate tempera-

ture changes over regions of the snowpack where the layer

depths have changed. This procedure conserves the bulk heat

content of the snowpack, except when the depth crosses the

minimum threshold of 1 cm. In both simulations, timestep

changes in the bulk heat content of the snowpack in WRF

D3 were small (less than 0.01 K). The CMB model is not

designed for detailed snowpack studies and therefore only

prognoses a bulk snow density. Since the total snow depth

is not modified by the interpolation scheme, snow mass is

conserved.

The debris-free version of the CMB model normally has

levels located at fixed depths in the subsurface, with the

thermal and physical properties of each layer computed as

a weighted average of the snow and ice content. However,

to isolate the influence of debris on glacier energy and mass

The Cryosphere, 9, 1617–1632, 2015 www.the-cryosphere.net/9/1617/2015/
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Table 3. Physical properties in the CMB model.

Density (kgm−3)

ice 915 –

whole rock 2700 (Daly et al., 1966)

water 1000 –

Specific heat capacity (Jkg−1 K−1)

air 1005 –

ice 2106 –

whole rock 750 (Clark, 1966)

water 4181 –

Thermal conductivity (Wm−1 K−1)

air 0.024 –

ice 2.51 –

whole rock 2.50 (Conway and Rasmussen, 2000)

water 0.58 –

Surface roughness length (m)

ice 0.001 (Reid and Brock, 2010)

debris 0.016 (Brock et al., 2010)

Albedo

ice 0.30 (Collier et al., 2013)

firn 0.55 (Collier et al., 2013)

fresh snow 0.85 (Collier et al., 2013)

debris 0.20 (Nicholson and Benn, 2012)

Emissivity

ice/snow 0.98 –

debris 0.94 (Brock et al., 2010)

fluxes, the CLN simulation also employs the adaptive ver-

tical grid in the snowpack in this study. A test simulation

from 1 April to 1 May 2004 was performed to compare

the two adaptive and non-adaptive grids, with reasonable

agreement in daily mean simulated snow depth (R2= 0.99;

mean deviation, MD=−1.9 cm) and snow melt (R2= 0.87;

MD= 6.8× 10−4 kgm−2).

2.3 Specification of debris extent and thickness in

WRF D3

The RGI and the inventory of Rankl et al. (2014) pro-

vide glacier outlines that include debris-covered glacier areas

when detected, but they do not delineate these areas. To de-

fine debris-covered areas in WRF D3, the clean ice/firn/snow

mask of Kääb et al. (2012) was rasterized on the same high-

resolution (40 m) grid used to compute glacierized grid cells

(cf. Sect. 2.1) For each WRF pixel in D3, the percent cover-

age of debris was determined and the same threshold of 40 %

was used to classify a glacier pixel as debris-covered. Fig-

ure 2a provides an example of the delineation for the Baltoro

glacier 76◦ 26′ E, 35◦ 45′ N). We note that any debris-covered

glacier areas that are not detected during the generation of the

glacier outlines are missed.

Specifying the debris thickness was more complex, since

this field varies strongly over small spatial scales. For exam-

ple, Nicholson and Benn (2012) reported very heterogeneous

debris thicknesses on the Ngozumpa glacier, Nepal, varying

between 0.5 and 2.0 m over distances of less than 100 m. Spa-

tial variability arises from many factors, including hillslope

fluxes to the glacier; surface and subsurface transport and,

the presence of ice cliffs, melt ponds and crevasses (e.g.,

Brock et al., 2010; Zhang et al., 2011). The few available

field measurements do not support a relationship between de-

bris thickness and elevation (e.g., Mihalcea et al., 2006; Reid

et al., 2012). However, measurements on the Tibetan Plateau

(Zhang et al., 2011) in Nepal (Nicholson and Benn, 2012),

and in the Karakoram (Mihalcea et al., 2008a) indicate that

thicker values are more prevalent near glacier termini, while

thinner ones are more ubiquitous up-glacier.

In this study, we adopt a simple linear approach that

was informed by this observed relationship to specify debris

thickness over the areas identified as debris-covered in WRF

D3. For this method, the distance down-glacier was com-
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Figure 2. (a) Debris-covered (gray) and debris-free (blue) glacier areas, calculated on a 40 m grid for the Baltoro glacier and surrounding

areas. The distance down-glacier over debris-covered areas, which is multiplied by a fixed gradient to map debris, is shown for (b) the

Baltoro glacier and (d) the entire WRF-D3 region. In (d), the black contour delineates the region where centerline information was available

from (Rankl et al., 2014). Outside of this region, distance down-glacier was not computed and debris-covered areas are shaded in gray to

indicate these data are missing. (c) A box plot of debris thickness values, assuming a fixed gradient of 0.75 cmkm−1 and averaging in 250 m

elevation bins over WRF D3. The thick blue and thin black lines indicate the mean and median thicknesses in each bin. The total number of

debris-covered pixels is given as a text string at the upper end of the range.

puted, starting from the top of the debris-covered area of each

glacier and moving along its centerline (Fig. 2b, d). Center-

line data were provided by Rankl et al. (2014) for both main

glacier trunks and their tributaries. We then assumed a fixed

gradient to distribute debris over areas identified as being

debris-covered as a function of distance down-glacier, with

a single thickness specified in each 2 km grid cell. We tested

two gradients, 1.0 and 0.75 cmkm−1, which gave thicknesses

exceeding 40 and 30 cm, respectively, at the termini of the

longest glaciers in the Karakoram (thicknesses derived us-

ing the 0.75 cmkm−1 gradient are summarized in Fig. 2c).

Where centerline information was unavailable (i.e., outside

of the black contour in Fig. 2d), a constant thickness of 10 cm

was assigned to each debris-covered pixel. For clarity, these

data are not included in Fig. 2c.

Both gradients are consistent with the ASTER-derived

debris-thickness data for the Baltoro glacier of Mihalcea

et al. (2008a) after averaging the data onto the WRF-D3

grid. However, these data show a nonlinear increase near

the terminus, and indicate that the 1 cmkm−1 gradient dis-

tributes too much debris in the middle ablation zone, while

the 0.75 cmkm−1 value distributes too little near the termi-

nus. Here, we focus our discussion on the 0.75 cmkm−1 gra-

dient simulation and suggest that our analysis thus represents

a conservative estimate of the impact of debris. However,

since the nonlinear increase is located close to the terminus,

we assume the lower gradient is most valid at the regional

scale. For comparison, the 1 cmkm−1 gradient decreases the

basin-mean mass loss between 1 July and 1 October by a fur-

ther ∼ 4 % compared with the lower value.

This approach underestimates peak thicknesses at the ter-

mini of the Baltoro, which exceed 1 m (e.g., Mihalcea et al.,

2008a). However, it is well established that ablation de-

creases exponentially with debris thicknesses above a few

centimeters (e.g., Østrem, 1959; Loomis, 1970; Mattson

et al., 1993). As the debris layer is resolved into 1 cm layers,

including debris depths of up to 1 m would therefore greatly

increase the computational expense of the CMB model, with

likely only a small change to the amount of sub-debris ice

melt. In addition, features such as meltwater ponds and ice

cliffs in the ablation zone absorb significantly more energy

than adjacent debris-covered surfaces. These features may

give compensatory high melt rates (e.g., Inoue and Yoshida,

1980; Sakai et al., 1998, 2000; Pellicciotti et al., 2014; Im-

merzeel et al., 2014a) that support using a thinner average or

The Cryosphere, 9, 1617–1632, 2015 www.the-cryosphere.net/9/1617/2015/
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Figure 3. (a) Mean elevational profiles of daytime land surface temperature (LST) from DEB, CLN and composite MODIS Terra

MOD11A1/Aqua MYD11A1 data sets, averaged from 1 June to 1 September 2004 and in 250 m elevation bins over glacierized pixels

in WRF. (b) A sample time slice of MODIS Terra LST from 5 August 2004 on its native grid, overlaid on the Baltoro glacier outline and

debris-covered area. (c) Time series of LST from 1 July to 1 September 2004 from the same data sets as in panel (a), taken from a pixel on

the Baltoro tongue, which is denoted by a black circle in panel (b). The unit for all plots is ◦C.

“effective” debris thickness when assigning an average value

to each 2 km grid cell in WRF D3.

After applying this method, WRF D3 contains a total of

5273 glacierized grid cells, 821 of which are debris-covered

glacier cells, which gives a proportion of debris-covered

glacier area in WRF D3 of ∼ 16 %.

In the following section, we evaluate and compare the

DEB and CLN simulations, often focusing on altitudinal pro-

files where variables are averaged in 250 m elevational bins.

Note that for these profiles, there are only 3 (9) glacierized

grid cells present below 3250 ma.s.l. (above 7000 m), com-

pared with at least 17 and up to 1100 grid cells in between

these altitudes. In addition, when computing basin-averaged

quantities, we excluded the bordering 10 grid points in WRF

D3 (5 of which are specified at the boundaries).

3 Results

3.1 Land surface temperature

For model evaluation, we compared simulated daytime land

surface temperature (LST) with daily fields from the MODIS

Terra MOD11A1 and Aqua MYD11A1 data sets, which have

spatial resolutions of 1 km. Only MODIS data with the high-

est quality flag were used for the comparison and WRF-CMB

data were taken from the closest available time step in lo-

cal solar time. We focussed on daytime LST, because this

field had a higher number of valid pixels at lower elevations

over the simulation period than nighttime LST. Figure 3a

shows mean elevational profiles of LST over glacierized pix-

els for composite MODIS data and for the CLN and DEB

simulations. Although both modeled profiles are lower than

in MODIS, the simulated profile in DEB is in much closer

agreement than CLN, as mean LST exceeds the melting point

below ∼ 5100 ma.s.l.

Examination of the MODIS LST data suggests that they

may contain a positive bias, as a result of blending of dif-

ferent glacier surface types as well as glacierized and non-

glacierized areas on the 1 km resolution grid. For example,

Figure 3b shows an example of MODIS Terra LST on 5 Au-

gust 2004 around the Baltoro glacier, a time slice that was

selected for the low number of missing values in this region.

MODIS exceeds the melting point over most of the glacier,

including over smaller, largely debris-free tributary glaciers,

due to blending with valley rock walls. The data are also

higher over glacier areas with debris-covered fractions that

fall below the threshold of 40 % used to define a WRF pixel

as a debris-covered (cf. Fig. 2b). Therefore, the binary defini-

tion of debris-free and debris-covered glacier surface types,

as well as inaccuracies in the glacier mask, also likely con-

tribute to lower LST in WRF-CMB.

www.the-cryosphere.net/9/1617/2015/ The Cryosphere, 9, 1617–1632, 2015
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To examine temporal variations, Fig. 3c shows a time se-

ries of LST for July and August 2004 from all three data sets

at a pixel on the Baltoro glacier tongue, which is denoted by

a black circle in Fig. 3b. This pixel was selected since it falls

within the glacier outline on the MODIS grid and because

the debris coverage in 2004 appears to be 100 % (cf. Fig.2 in

Mihalcea et al., 2008a). The variability in LST at this point is

well captured in DEB, including days with maxima exceed-

ing ∼ 30 ◦C and higher or lower periods, while as expected,

CLN greatly underpredicts LST and its variability.

3.2 Glacier surface energy and climatic-mass-balance

dynamics

The basin-mean cumulative glacier CMB for both simula-

tions is shown in Figure 4a. The month of May is character-

ized by basin-mean accumulation (Fig. 4b), consistent with

the findings of Maussion et al. (2014) of the importance of

spring precipitation in this region. On average, the melt sea-

son lasts from approximately mid-June until mid-September,

over which period more than∼ 90 % of grid cells categorized

as debris-covered are exposed. As a result, there is a signifi-

cant decrease in net ablation, as is discussed at the end of this

section. Note that the basin-averaged CMB during summer is

less negative than in a previous debris-free model run (Collier

et al., 2013), which is primarily due to increased precipitation

as a result of changing the atmospheric diffusion scheme (Ta-

ble 1) through the albedo effect. The decrease in ablation is

likely an improvement, since the previous estimate showed a

negative bias in comparison with in situ glaciological mea-

surements. To isolate the impacts of debris, we focus our

analysis on the period of 1 July to 15 September 2004, when

more than 35 % of debris pixels are exposed on average over

the Karakoram.

The basin-mean vertical balance profile indicates that be-

tween 1 July and 15 September 2004, the zero-balance alti-

tude is located at ∼ 5700 ma.s.l. (Fig. 5). For comparison,

annual equilibrium line altitudes (ELAs) in the Karakoram

are estimated to range from 4200 to 4800 m (Young and

Hewitt, 1993). We note that the absence of avalanche ac-

cumulation in our simulations may contribute to an over-

estimate of the zero-balance altitude, as this process is re-

gionally important and produces ELAs that are often located

hundreds of meters below the climatic snowline (e.g., Benn

and Lehmkuhl, 2000; Hewitt, 2005, 2011). Below∼ 5700 m,

there is a ∼ 18 % reduction in total ablation in DEB com-

pared with CLN (of 5.3 mw.e.), which we anticipate repre-

sents an underestimate due to the nonlinear debris thickness

observed near the Baltoro terminus.

The presence of surface debris has a noticeable impact

on basin-mean surface-energy fluxes between 1 July and 15

September 2004 (Table 4). Elevational profiles reveal even

stronger impacts in the ablation areas, as the number of grid

cells with exposed debris increases towards lower elevations

(Fig. 6a,b; cf. Fig 2c). Net shortwave radiation (SWnet) in-

DEB
CLN

Figure 4. Time series of (a) basin-mean cumulative glacier CMB in

kgm−2 and (b) the daily maximum percentage of debris pixels that

are exposed in DEB, for DEB (black curve) and CLN (gray) over

the whole simulation period of 1 May to 1 October 2004.

creases due to the lower surface albedo, while net longwave

radiation (LWnet) becomes more negative due to stronger

emission by warmer debris surfaces. The turbulent flux of

sensible heat becomes a smaller energy source or even sink,

while that of latent heat (QL) becomes slightly more nega-

tive. The conductive heat flux (QC) transitions from a small

energy gain in CLN to a strong sink in DEB, due to solar

heating of the debris, and extracts nearly twice as much en-

ergy from the surface as LWnet at the lowest glacierized ele-

vations. Finally, both penetrating shortwave radiation (QPS)

and the energy available for surface melt (the residual of the

surface-energy budget; QM) decrease strongly towards lower

elevations in DEB, as the overlying snow cover goes to zero,

while in CLN theses fluxes provide strong energy sinks.

As a result of these changes to the surface-energy dynam-

ics, total-column melt decreases by ∼ 18 % below 5000 m

(Fig. 6c), with the small difference above this elevation re-

flecting overlying snow cover and some compensating in-

creases in melt under thinner debris, which are prevalent (cf.

Fig. 2c). The other mass fluxes are not strongly affected (Ta-

ble 4; Fig. 6c). While surface vapor fluxes are small when

spatially and temporally averaged, they represent a non-

negligible mass flux in total, with∼ 1.8×105 kg of sublima-

tion and 2.0× 104 kg of deposition at snow and ice surfaces.
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0 cm
< 1 cm
1-5 cm
5-10 cm
> 10 cm

DEB

CLN

Figure 5. The cumulative vertical balance profile, averaged in

250 m elevation bins between 3000 and 7500 ma.s.l., over all

glacier pixels and from 1 July to 15 September 2004. Solid gray

circle markers denote results from the CLN simulation, while those

from DEB are plotted with black markers. The shape of the black

marker indicates the range of the mean debris thickness in that ele-

vational band.

Vapor exchange between the debris and the atmosphere also

totals −1.0× 104 kg over the simulation period.

Simulated daily mean ablation (corresponding to sub-

debris-ice and total-column values in DEB and CLN, re-

spectively) shows a general decrease with both topographic

height and increase in debris thickness (Fig. 7). Although

melt rates below 3500 m have been estimated to be small due

to insulation by thick debris cover (Hewitt, 2005), our results

suggest that appreciable rates, of up to ∼ 2 cmw.e.day−1

occur under the thickest layers at lower elevations. For the

thinnest debris layers (of a few centimeters), ablation is

enhanced in DEB compared with CLN. Simulated values

are consistent with the few available field measurements of

glacier ablation in this region. For example, Mayer et al.

(2010) reported rates of∼ 2 to 14 cmw.e.day−1 under debris

covers of ∼ 1 to 38 cm on the Hinarche glacier (74◦ 43′ E,

36◦ 5′ N) in 2008. Mihalcea et al. (2006) reported rates of 1–

6 cmw.e.d−1 on the Baltoro glacier in 2004 over elevations

of ∼ 4000–4700 m and thicknesses of 0 to 18 cm, and the

modeled melt rates over a similar period compare well with

their Østrem curve (cf. their Fig. 7).

A spatial plot of the total cumulative mass balance in

DEB delineates regions of glacier mass gain and loss in the

Karakoram (Fig. 8a). Accumulation is higher in the west-

ern part of the domain, where more precipitation falls over

the simulation period (not shown). Differences between DEB

and CLN are small over most of the domain, with the excep-

tion of lower-altitude glacier tongues where differences ex-

ceed 2.5 mw.e. (Fig. 8b). The strong decrease in mass loss

Table 4. Mean glacier surface-energy and climatic-mass fluxes.

Surface energy fluxes (Wm−2) DEB CLN

net shortwave (SWnet) 153.2 149.9

net longwave (LWnet) −85.6 −83.1

sensible heat (QS) 4.3 8.3

latent heat (QL) −13.6 −13.8

conduction (QC) 3.0 20.7

penetrating SW (QPS) −21.4 −28.5

precipitation (QPRC) ∼ 0 ∼ 0

residual energy (QM) 38.9 53.6

Mass fluxes (kgm−2) DEB CLN

total-column melt −0.67 −0.71

snow refreeze 0.11 0.11

sublimation −0.02 −0.02

deposition ∼ 0 ∼ 0

evaporation ∼ 0 –

condensation ∼ 0 –

surface accumulation 0.07 0.07

in these areas changes the cumulative basin-mean mass bal-

ance on 15 September from −919 kgm−2 in CLN to −831

in DEB. Considering the whole simulation period, the basin-

mean values are −856 kgm−2 in CLN and −737 in DEB (a

reduction of ∼ 14 %) on 1 October 2004, with differences

exceeding 5 mw.e. on the lowest debris-covered tongues.

3.3 Atmosphere–glacier feedbacks

The total number of hours for which the surface temperature

reaches or exceeds the melting point ranges from more than

1500 at low-altitude glacier termini to less than 50 above ∼

6400 m (Fig. 9a). The presence of debris results in up to 700

additional hours with surface temperatures above 273.15 K in

DEB compared with CLN (Fig. 9b), which provide a strong

heat flux to the atmosphere. Considering all hours between

1 July and 15 September, an extra 3.5× 107 W of energy is

transferred to the atmosphere in DEB by the sensible heat

flux.

The change in surface boundary conditions produces

higher basin-mean near-surface air temperatures, of up to 2–

3 K at the lowest glacierized elevations (Fig. 10a), consis-

tent with observations of higher air temperatures over debris-

covered glacier areas during the ablation season (Takeuchi

et al., 2000, 2001; Reid et al., 2012). The vertical gradient in

2 m air temperature below 5000 m is more than one degree

higher in DEB than CLN (−0.0074 compared with −0.0062

Km−1; ∼−0.0073 for both simulations above this eleva-

tion). Basin-mean accumulated precipitation ranges from 50

to 175 mmw.e. below 5000 m and increases approximately

linearly with elevation above this level. The area-averaged

differences between CLN and DEB are very small, with a

slight decrease (increase) at the lowest (highest) elevations in
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Figure 6. (a) The percentage of debris-covered pixels in each 250 m elevation bin that are exposed on average between 1 July and 15

September 2004. Minimum and maximum values over the same period are indicated by gray shading. Elevational profiles of mean glacier

(b) surface-energy and (c) mass fluxes, in units of Wm−2 and kgm−2 respectively, with the solid (dashed) lines denoting data from DEB

(CLN). For (c), evaporation and condensation in DEB are not shown as their profiles are approximately zero (less than 0.02 kgm−2 for

all elevational bands). Note that these profiles correspond to an amalgamation of all glacierized grid cells, rather than the mean elevational

profile along glacier.

5000 - 5500 m
4500 - 5000 m
4000 - 4500 m
3500 - 4000 m
< 3500 m

C
LN

Figure 7. Daily mean ablation rate versus debris thickness for DEB

(circle markers) and CLN (horizontal line markers), with the range

of topographic height value of each data point indicated by the color

of the marker. Here, “ablation” refers to sub-debris ice melt in DEB

(i.e., only snow-free pixels are selected) and total column melt (sur-

face and englacial) in CLN for the same pixels and time periods.

The concentration of data points at 10 cm thickness results from the

specification of debris where centerline information was unavail-

able (cf. Sect. 2.3)

DEB, consistent with warmer and thus less humid conditions

that contribute to slower cooling and saturation of air moving

upslope and a shift of surface precipitation up-glacier. The

simulated frozen fraction increases approximately linearly

from 0 % below 3250 m to more than 90 % above ∼ 5500 m

(not shown). These results are consistent with estimates of

annual precipitation, which indicate that valleys are drier

and precipitation increases up towards accumulation areas,

and with previously reported frozen fractions (Winiger et al.,

2005; Hewitt, 2005). Finally, higher surface roughness val-

ues over debris result in a decrease of near-surface horizon-

tal wind speeds at lower elevations (Fig. 10c). It is notewor-

thy that changes in atmosphere–glacier feedbacks due to the

presence of surface debris also help to drive the differences

in observed ablation (cf. Figs. 6, 7).

Figure 11 illustrates alterations to the diurnal cycles of the

turbulent flux of sensible heat (QS), the planetary boundary

layer (PBL) depth, and the along-glacier component of the

near-surface winds over exposed debris pixels in DEB and

their equivalents in CLN. Solar heating of the debris surface

drives a strongly negative daytime QS in DEB (Fig. 11a)

which reduces the stability of the glacier surface layer and

enhances turbulent mixing. Peak negative QS values in DEB

exceed −200 Wm−2, consistent with eddy covariance mea-

surements of this flux over supraglacial debris (Collier et al.,

2014). In comparison, QS in CLN is approximately 1 order

since of magnitude smaller and positive. As a result of en-

ergy transfer by QS, a deep convective mixed layer develops

in DEB, with the mean PBL height reaching nearly 1.5 km in

the afternoon compared with only a couple of hundred me-

ters in CLN (Fig. 11b). Finally, near-surface along-glacier

winds in DEB are primarily anabatic during the day (di-

rected up-glacier, which is defined here as positive) and kata-

batic during the evening and early morning (down-glacier

and negative; Fig. 11c), compared with sustained katabatic

flows (glacier winds) in CLN, resulting from cooling of the

air near the ice surface, which is constrained at the melting

point (e.g., van den Broeke, 1996). The absence of daytime
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[kg m-2]

DEB

DEB-CLN

Figure 8. Cumulative CMB in [kgm−2] between 1 July and 15

September 2004 for (a) the DEB simulation and (b) the difference

between DEB and CLN. The black contour delineates the region

where centerline information was available from Rankl et al. (2014).

katabatic flows over debris-covered areas is consistent with

the findings of Brock et al. (2010).

4 Discussion and conclusions

In this study, surficial debris was introduced to the cou-

pled atmosphere–glacier modeling system, WRF-CMB. The

model provides a unique tool for investigating the influence

of debris cover on both Karakoram glaciers and atmosphere–

glacier interactions in an explicitly resolved framework. The

first-order impact of debris was estimated, with thickness de-

termined using a fixed gradient of 0.75 cmkm−1 with dis-

tance down-glacier in debris-covered areas, focusing on the

period of 1 July to 15 September 2004 when more than 35 %

of debris-covered pixels were exposed. The findings pre-

sented in this study have important implications for glacio-

hydrological studies in the Karakoram, as they confirm that

neglecting supraglacial debris will result in an overestimation

[hours]

DEB

DEB-CLN

Figure 9. The number of hours where the surface temperatures

reaches or exceeds the melting point between 1 July and 15 Septem-

ber for (a) the DEB simulation and (b) the difference between CLN

and DEB. The black contour delineates the region where centerline

information was available from Rankl et al. (2014).

of glacier mass loss during the ablation season, of ∼ 14 %

over the region and exceeding 5 mw.e. at the lowest eleva-

tions. In addition, exposed debris alters near-surface mete-

orological fields and their elevational gradients, which are

often key modeling parameters used to extrapolate forcing

data from a point location (e.g., an automatic weather sta-

tion) over the rest of the glacier surface (e.g., Marshall et al.,

2007; Gardner et al., 2009; Reid et al., 2012). The lapse rate

in air temperature at lower elevations is more than one de-

gree steeper in DEB, as a result of surface temperatures ex-

ceeding the melting point and a higher net turbulent trans-

fer of sensible heat to the atmosphere that produces higher

near-surface air temperatures, and is higher than values re-

ported for smaller debris-covered glaciers (Reid et al., 2012)

and in the eastern Himalaya, where the monsoon circula-

tion is more dominant (Immerzeel et al., 2014b). Finally,

we showed that debris induces significant alterations to the
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DEB
CLN

Figure 10. Elevational profiles of near-surface (a) air tempera-

ture [K] and (b) accumulated precipitation [mmw.e.], and (c) wind

speed at a height of 10 m [ms−1], from the DEB (black circle mark-

ers) and CLN (gray squares) simulations between 1 July and 15

September 2004.

atmospheric boundary layer development and along-glacier

winds, through changes in the turbulent heat flux.

Simulated ice-ablation rates in DEB under thicker debris

∼ (O(10 cm)) at lower elevations are consistent with the find-

ings of Mihalcea et al. (2006) of non-negligible melt energy

under debris covers exceeding 1 m using a degree-day mod-

k

Figure 11. A comparison of the simulated diurnal cycle of (a) the

turbulent flux of sensible heat, QS [Wm−2]; (b) the planetary

boundary layer (PBL) height [km]; and, (c) the along-glacier wind

speed [from the lowest model level; ms−1], which is positive for

up-glacier flow. The data are averaged over exposed debris in DEB

(black curve) and the corresponding grid cells in CLN (gray curve).

eling approach on the Baltoro glacier, and with the measured

rates reported by Mayer et al. (2010). The authors of the lat-

ter study suggest the mechanism is more efficient heat trans-

fer in the debris in the presence of moisture during the ab-

lation season despite its thickness. In this study, mean ice-

melt rates for pixels with debris thickness exceeding 20 cm

show some correlation with the debris moisture content (wa-

ter: R2 = 0.3; ice: R2 =−0.69). However, our results suggest

near-surface air temperature (R2 = 0.91) is a stronger driver

on average of the melt rates simulated below thick debris.

The interactive nature of the simulation may permit a posi-

tive feedback mechanism, in which higher surface tempera-

tures over thicker debris transfer energy to the atmosphere,

in turn promoting higher air temperatures and further melt.

Even when the air temperature is below 0 ◦C, energy conduc-

tion when the debris surface temperature exceeds this thresh-

old likely also contributes to sub-debris ice melt, which is
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supported by our simulations. In combination with surface

heterogeneity in the ablation zone (e.g., the presence of melt-

water ponds and ice cliffs) and recent changes in ice-flow ve-

locities (Quincey et al., 2009; Scherler and Strecker , 2012),

both the simulated melt rates under thicker debris and en-

hanced melt under thinner debris help to explain the lack

of significant differences in recent elevation changes be-

tween debris-free and debris-covered glacier surfaces in the

Karakoram (Gardelle et al., 2013).

In surface energy balance studies of supraglacial debris,

the latent heat flux is often neglected where measurements

of surface humidity are unavailable, due to the complexity of

treating the moist physics of debris. In the DEB simulation,

the latent heat flus over exposed debris was non-negligible

and primarily negative; furthermore, it contributed to a vapor

loss that comprised 5.5 % of the total considering all glacier-

ized pixels. Thus, our study suggests that neglecting QL and

surface vapor exchange may be inappropriate assumptions,

even for basin-scale studies. We further note that the sim-

ple parameterization developed for QL tended to underesti-

mate the vapor-pressure gradient in the surface layer (Collier

et al., 2014), suggesting that the importance of QL is under-

estimated in this study. However, the treatments of QL and

the debris moisture content represent key sources of uncer-

tainty in our simulations, since (i) they were developed in a

different region and (ii) these fields impact sub-debris ice-

melt rates (Collier et al., 2014) but are not well measured or

studied.

The alterations to the glacier energy and mass fluxes and

to atmosphere–glacier interactions presented in this study

are based on the ablation season of 2004 only and are sen-

sitive to the debris thickness field, with small adjustments

to the thickness gradient, resulting in significant changes in

basin-mean glacier CMB. The gradient was consistent with

ASTER-derived thickness data on the Baltoro glacier (Mihal-

cea et al., 2008a) except close to the terminus. However, our

approach results in peak thicknesses of less than ∼ 15 cm on

glaciers less than 20 km in length, while other studies in the

Himalaya and elsewhere have reported much higher depths

on glaciers of similar lengths (e.g., Mihalcea et al., 2008b;

Rounce and McKinney, 2014). Thus, the impact on glacier

ablation that we reported likely represents an underestimate,

due to nonlinear effects near termini and the likely presence

of steeper thickness gradients on shorter glaciers. Additional

sources of uncertainty in our results include (i) the temporal

discrepancy between our study period and the clean snow/ice

mask of Kääb et al. (2012) used to delineate debris-covered

areas, which was generated using Landsat data from the year

2000; and, (ii) our binary assignment of surface types as

“debris-covered” or “debris-free” using a 40 % threshold.

There have been numerous recent efforts to more precisely

determine debris thickness fields using satellite-derived sur-

face temperature fields (e.g., Suzuki et al., 2007; Mihalcea

et al., 2008a; Foster et al., 2012; Brenning et al., 2012),

which is an appealing solution due to the wide spatial and

temporal coverage of remote-sensing data. However, none

of these studies have successfully reproduced field measure-

ments without using empirically determined relationships

or calibration factors (Mihalcea et al., 2008a; Foster et al.,

2012). These methods are therefore best suited for debris-

covered glaciers for which the necessary measurements to

compute the relationships or factors are available, and their

applicability for regional-scale studies such as this one is un-

certain. Thus, important future steps for glacier CMB studies

in the Karakoram include increasing the accuracy and spatial

detail of the debris thickness field and its physical properties;

improving our understanding of moisture fluxes between the

debris and the atmosphere and accounting for subgrid-scale

surface heterogeneity (e.g., by introducing a treatment of ice

cliffs; Reid and Brock, 2014). Nonetheless, by providing an

estimate of the controlling influence of debris, these simula-

tions contribute to a greater understanding of glacier behav-

ior in the Karakoram.
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