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Abstract. The influence of subglacial water on the dynam-

ics of ice flow has been the object of increasing interest in

the past decade. In this study we focus on large-scale, long-

term changes in surface elevation over Northeast Greenland

and the corresponding changes in subglacial water route-

ways. Our results show that over timescales ranging from

decades to millennia the area may experience redistribution

of and fluctuation in subglacial water outflux under the main

glacier outlets. The fluctuations in subglacial water rout-

ing occur even in the absence of external forcing. Based on

these results we conclude that changes in the subglacial wa-

ter routeways are an intrinsic part of the drainage basin dy-

namics, where the subglacial system is likely always in a

transient state. The results also imply that fluctuations at the

margins observed at present might originate from changes

several hundred kilometres upstream. Since surface eleva-

tion changes may propagate upstream over timescales much

longer than the observational period, the cause of the fluctu-

ations may not be present in current observational records.

1 Introduction

The loss of mass from the Greenland Ice Sheet (GrIS) and its

corresponding contribution to sea-level rise is by now well

documented (e.g. Vaughan et al., 2013; Hanna et al., 2013).

Hence, recent years have seen an increasing interest in the

response of different regions of the GrIS to climatic forcings

(e.g. van den Broeke et al., 2009; Bolch et al., 2013). While

the outlet glaciers in southern Greenland have been speeding

up during the past decade (Bevan et al., 2012), the glaciers in

the northeast have until recently been considered relatively

stable, partly due to the presence of sea ice and/or small ice

shelves (Joughin et al., 2010).

In the northeastern drainage basin, the Northeast Green-

land Ice Stream (NEGIS) dominates the transport of ice to

the sea. NEGIS was discovered only a few decades ago

when SAR (synthetic aperture radar) imagery revealed the

presence of a fast-flow feature on the surface of the GrIS

(Fahnestock et al., 1993). In comparison to other Green-

landic ice streams NEGIS is very long (more than 600 km),

and it reaches velocities of 20 m yr−1 less than 150 km from

the ice divide (Joughin et al., 2010). At the margin, NEGIS

splits into three outlets (Fig. 1): Nioghalvfjerdsbræ (also at

times referred to as 79 N Glacier), Zachariae Isstrøm and

Storstrømmen. A study by Joughin et al. (2010) reported that,

while Zachariae Isstrøm is speeding up, Nioghalvfjerdsbræ

shows only a small speed-up and Storstrømmen is slowing

down slightly. Khan et al. (2014) also found that NEGIS

was stable in the past, but they report that the sector expe-

rienced rapid dynamic thinning at some point between 2003

and 2006. The authors link this speed-up to increasing sum-

mer temperatures and decreasing sea-ice concentration.

The three main outlets of NEGIS drain more than 20 %

of the GrIS (by area; Rignot and Kanagaratnam, 2006); it is

therefore of considerable interest to understand the processes

governing its ice flow. Generally, ice streams are triggered

and modulated by a range of different processes that oper-

ate on varying temporal and spatial timescales (Winsborrow

et al., 2010). NEGIS, for example, is thought to be initiated

by an anomalously high geothermal heat flux close to the

ice divide (Fahnestock et al., 1993). Studies indicate that the

flow of the ice stream is “streaming” with very low basal

shear stresses (Joughin et al., 2001). Thus, most of the ice

flow in the main part of NEGIS is thought to be due to sliding
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over the subglacial topography facilitated by subglacial water

rather than internal deformation (Joughin et al., 2001). This

has also been confirmed by analyses of radio-echo sound-

ing data retrieved from the central ice-stream trunk (Keis-

ling et al., 2014). It is well known that liquid water at the

ice bed has the potential to modify and even control the ice-

flow dynamics; this happens both directly by decreasing the

friction between the ice and the bed, and by modifying the

subglacial sediment (e.g. Alley et al., 1986; Zwally et al.,

2002; Clarke, 2005). Studies of subglacial processes confirm

the importance of liquid water for ice-stream behaviour (e.g.

Anandakrishnan and Alley, 1997; Fahnestock et al., 2001),

and recent modelling efforts have begun to address this (e.g.

Bougamont et al., 2011; de Fleurian et al., 2014). The cou-

pling between ice flow and subglacial processes is, however,

complicated and not easily incorporated into ice-sheet mod-

els. This is partly because the subglacial system may exhibit

different characteristics, ranging from networks of cavities

and efficient tunnel-like systems to inefficient conduits, thin

water films and water flow in sediments (e.g. Gulley et al.,

2009; Schoof, 2010; Iverson and Petersen, 2011).

One process that may alter ice-stream behaviour over short

timescales (centennial timescales or less) is the routing of

subglacial meltwater caused by variations in the subglacial

hydrological system. Variations such as these are thought to

have triggered significant changes in the slowing-down or

speeding-up of Antarctic ice streams such as the Siple Coast

ice streams (Anandakrishnan and Alley, 1997) and the Rut-

ford Ice Stream (Vaughan et al., 2008). In fact, a study by

Wright et al. (2008) found that the subglacial system in a

large part of East Antarctica is potentially sensitive to even

small changes in ice-sheet elevation.

In contrast, changes in ice flow directly related to the sub-

glacial system have not yet been documented for Green-

land. This is in spite of an active ice-stream drainage sys-

tem (Joughin et al., 2010) and few topographic constraints

on most of the ice streams (Bamber et al., 2013a). This is

even more surprising since it is well known that liquid water

is widespread under large parts of the Greenland Ice Sheet;

this has been testified by observations of subglacial water at

ice core drill sites (Dahl-Jensen et al., 2003) and from radio-

echo sounding surveys (Gogineni et al., 2001; Oswald and

Gogineni, 2008), and it is supported by results from large-

scale ice-sheet modelling (Greve and Hutter, 1995; Seroussi

et al., 2013).

Recent geophysical surveys on NEGIS have found evi-

dence of basal water along the shear margin, and the study

concludes that NEGIS is controlled by subglacial water rout-

ing rather than bed topography and that rapid shifts in ice

dynamics are possible (Christianson et al., 2014). Here, we

demonstrate that changes in surface elevation of the North-

east Greenland basin over centuries or less may change the

subglacial water routeways and potentially influence the ice

flow of the area. We use a simple model approach and are

therefore not aiming to, or indeed capable of, capturing the

present-day variations and dynamics of the region, since this

variability is coupled to several complex processes not in-

cluded in our model (cf. Larour et al., 2014). Rather, we fo-

cus on the sensitivity of the drainage basin to realistic fluc-

tuations in surface elevation over timescales of decades to

millennia and the corresponding change in hydropotential. In

this case, the use of a simple model is justified because it can

be run over millennial timescales and still provide a realistic

estimate of the ice-flow behaviour.

2 Methods

We use a simple two-dimensional (2-D) map-plane ice-flow

model to model the change in surface elevation over time in

response to incremental increases in basal sliding. The re-

sulting time-dependent surface elevation is used to calculate

the hydropotential, in order to investigate the changes in out-

flux of subglacial water at the margin over time. We force

the model with a mass balance field and prescribed calving

rates. Data input into the model are surface and bed elevation

from Bamber et al. (2013a) regridded to 5 km (northeastern

drainage basin) and 10 km (GrIS, used in the spin-up run),

and present-day modelled mass balance from Ettema et al.

(2009).

2.1 Ice-flow model

The ice-flow model is a 2-D-plane model that calculates the

changes in ice surface elevation in response to gravity and

mass balance. It is vertically integrated and based on the

shallow-ice approximation using a number of simplifying as-

sumptions. Firstly, we assume that the basal shear stress τb is

equal to the driving stress τd:

τb = τd = ρgH∇s, (1)

whereH is ice thickness, s is surface elevation, g is the gravi-

tational constant and ρ is the density. This assumption entails

that stress components are neglected that may be important

for an ice stream such as NEGIS. We return to this assump-

tion and the impact it may have on our results in the Dis-

cussion section. We then relate the stress to the strain rate

using Glen’s law, ε̇ij = Aτ
n
ij , and set the flow law exponent

n equal to 3. The creep parameter A depends exponentially

on the temperature of the ice, as well as on water content, the

hydrostatic pressure, impurity content and the ice rheology

(Cuffey and Paterson, 2010).

Secondly, we assume that the (vertically averaged) hori-

zontal velocity vector ū is composed of two parts: a term

caused by the internal deformation of the ice, ūd, and a term

derived from sliding over the bed, us; thus ū= ūd+us. The de-

formational velocity takes the well-known form ūd =kdHτ
n
b ,

where kd is related to the creep parameterA and thus also de-

pends on temperature, water content etc. The sliding velocity

us is approximated using a non-linear, “Weertman-type” slid-
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Figure 1. Surface (a) and bed elevation (b) (Bamber et al., 2013a) in grey contours. N stands for Nioghalvfjerdsbræ, Z for Zachariae Isstrøm

and S for Storstrømmen. The 5 km model domain for the Northeast Greenland drainage basin is shown in colours, and the contour for the

50 m yr−1 surface velocity (from Joughin et al., 2010) is indicated with thick, black lines.

ing law (Weertman, 1957): us ∝
τnb

ρgH−P
; in the following we

assume that the basal water pressure P is a constant fraction

of the ice load and thus

us = ks

τnb

H
. (2)

Combining the equations above leads to an expression for the

surface velocity of the form (Budd et al., 1979; Oerlemans,

2001)

ū = kdHτ
n
b + ks

τnb

H
. (3)

We use the relation above to solve for the ice thickness as a

function of time by considering ice flow as a diffusion equa-

tion,

∂H

∂t
=∇(ūH)+ ḃi = ∇(D∇s)+ ḃi, (4)

where ḃi is the mass balance. Combining Eq. (1) with

Eqs. (3–4) shows that D is related to the deformation and

sliding mechanisms (e.g. Oerlemans, 2001):

D = (ρg)nH n(∇s)n−1
(
kdH

2
+ ks

)
= Dd+Ds. (5)

Finally, we assume that the bedrock is unchanged in time

and thus that any changes in surface elevation directly reflect

changes in ice thickness, ∂H/∂t =∂s/∂t , further ignoring

firn densification processes. Equation (4) is solved on a stag-

gered grid using a Crank–Nicholson, second-order, finite-

difference scheme that is centralised except at the margins

where upstream differencing is applied. We further note that

the solution on a staggered grid introduces a smoothing that

means that the model is not inherently mass-conserving.

2.1.1 Margin control

On the spatial and temporal scales of our ice-flow model,

margin dynamics cannot be expected to be accurately cap-

tured. We therefore introduce a discharge scheme to prevent

unphysical build-up of mass at the margins by removing ice

at every time step. We adopt the following parameterisation

from Calov et al. (2015):

d = c0

H0

l3
, (6)

where d is the discharge,H0 is the ice thickness at the start of

the model run (present-day ice thickness) and l is the distance

to the nearest ocean grid cell. We apply this discharge correc-

tion to all cells that are within 10 km of the ice sheet margin.

The constant c0 is then scaled such that the total discharge

out of the drainage basin is twice the size of the ablation.

Especially at the start of the model runs, the upstream differ-

encing means that there is an unphysical build-up of mass at

the margin. To check this, we calculate the balance velocity

at each time step and remove grid cells where the change in

ice thickness exceeds the balance influx by more than 500 %.

The grid cells are then replaced by the average ice thickness

of the neighbouring cells.

2.1.2 Basal sliding

The basal conditions of the system are determined by the

value of the sliding coefficient ks. We estimate the sliding

coefficient ks and the deformational coefficient kd using a

simple inverse approach. First, the model domain is divided
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into three areas based on observed surface velocities (from

Joughin et al., 2010): (1) areas where the velocity is less than

5 m yr−1, (2) areas with velocities between 5 and 100 m yr−1

and (3) areas where the velocities exceed 100 m yr−1. The di-

vision is based on the assumption that ice flowing at less than

5 m yr−1 is moving primarily by deformation, while ice flow-

ing above 100 m yr−1 is mainly due to plug flow (cf. Joughin

et al., 2001). This division is used as a weighting scheme

for calculating the misfits between observed velocities vobs

and calculated velocities. The inversions are performed on

the 1 km resolution topography data and subsequently regrid-

ded.

The deformational coefficient kd is assumed to be constant

in the entire model domain and is calculated by minimising

the misfit between observed and calculated deformational ve-

locity ūd, while neglecting the misfits in area 3, where ice

flow is dominated by sliding. The same approach is then ap-

plied in order to obtain a value for ks, but now it is the misfit

between vobs and ū= ūd+ us that is assessed, while ks is

allowed to vary in each grid cell. The weighting scheme is

reversed such that the fast-flow areas (area 3) are weighted

more than the intermediate-flow areas (area 2), while slow-

flow areas are disregarded. For more information on the in-

verse method see the appendix.

2.2 Subglacial water routeways

The changes in the large-scale subglacial drainage pattern are

assessed by considering the changes in the hydropotential.

On large spatial scales (i.e. kilometre scale) water under ice

sheets can be assumed to follow the gradient of the hydro-

logical pressure potential 8 defined as (Shreve, 1972)

8 = ρwgzb+ ρig(zs− zb), (7)

where ρw and ρi are water and ice densities, respectively; g

is the gravitational constant; and zs,zb are the elevations of

ice surface and bed. The steepest down-slope gradient of the

potential indicates the routeway of the water assuming that

the subglacial water pressure is equal to the ice overburden

pressure. Here we disregard smaller-scale features such as

the formation of channels and conduits.

From Eq. (7) it can be seen that the surface slope is ap-

proximately 10 times more important than the slope of the

bed topography, implying that, unless the relief of the sub-

glacial topography is steep, the surface slope controls the wa-

ter routeways. Thus, to a first order the changes in subglacial

drainage pattern is controlled by changes in surface slope.

We calculate the outflux of subglacial water at the fjord

outlets using the simple, central difference flux calculation

by Budd and Warner (1996), modified to follow the hydropo-

tential instead of surface elevation. This scheme has been

shown to be the most suitable for calculating fluxes across

profiles since it is consistent for different orientations and

resolutions, which is not always a given for routing schemes

(Le Brocq et al., 2006). We use the routing scheme to cal-

culate the distribution of subglacial water (for a given basal

melt configuration, see below) every 100 model years. This

allows us to calculate the outflux of subglacial water at the

margins of the model domain over time and thereby investi-

gate the changes in outflux.

2.3 Model runs

The model run consists of three parts: 20 kyr of initialisa-

tion, 20 kyr with increasing basal sliding and a final 10 kyr

of no forcing. The initialisation is performed in order to ob-

tain an ice sheet configuration consistent with our numerical

scheme. Since we wish to obtain realistic changes in ice sur-

face elevation for changing basal sliding values, we want to

start with an initial state dominated primarily by deforma-

tion. Once this initial state is obtained, we force the model

with stepwise increasing basal sliding values over 20 kyr us-

ing the results from the basal sliding inversion scheme. Fi-

nally, we let the model run for another 10 kyr without any

change in forcing.

The results from the inversion are used to force the model

in the second stage of our run not to initialise the model.

In this section we elaborate on why we adopted this ap-

proach: the sliding coefficient values obtained from the in-

verse scheme are based on the present-day observed topog-

raphy. Thus, if the inversion scheme perfectly represents the

basal sliding coefficient, we could use the results to initialise

the model and obtain a surface topography similar to present

day. This surface topography would be in agreement with

our numerical scheme without the need for a relaxation time.

However, our inversion was performed on a different resolu-

tion grid and subsequently regridded. Furthermore, both the

ice-flow model and the inversion scheme are approximate so-

lutions to the full stress equations. It is therefore unlikely that

the inversion scheme perfectly captures the basal sliding in

the entire basin, and the ice-flow model will consequently

need a relaxation time in order for the numerical scheme to

reflect the surface topography. During this relaxation phase,

any change in surface topography could be due to the relax-

ation and not the response of the ice surface to changes in

basal conditions. Thus, it would not be possible to attribute

the changes in ice sheet elevation directly to the imposed

change in basal condition. This would directly impede our

aim of obtaining realistic changes in ice surface elevation for

changing basal sliding values.

Accordingly, our model run is as follows: using the

present-day surface topography, we do a spin-up run over

20 kyr where the sliding coefficient (cf. Fig. 2) is set to 10−11

Pa−3 m 2 yr−1 or less. During the spin-up the ice-flow model

is run on two grids; a 10 km grid for the entire GrIS and a

5 km grid for the model domain encompassing the Northeast

Greenland basin (shown in colours in Fig. 1). At every model

year the grid cells along the drainage basin boundary are up-

dated with the result from the 10 km model downscaled to the

5 km grid by linear interpolation. The drainage basin bound-
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aries are assumed to not shift position over time. In this way,

we obtain a simulated steady-state ice sheet whose shape is

in agreement with the numerical scheme of our model and

not substantially influenced by basal sliding.

We then perform our simulation of changing basal con-

ditions starting from the steady-state ice-sheet configuration

obtained from the spin-up. We decouple the nested regional

5 km model from the 10 km resolution ice-sheet model, and

the surface elevation is now kept constant along the basin

boundary. The maximum allowed sliding coefficient value

ks is now increased in small steps every 1000 model years

for 20 kyr. For the first 1000 model years after the spin-up,

all basal sliding coefficient values that exceed 1.25× 10−11

Pa−3 m 2 yr−1 are set to 1.25× 10−11 Pa−3 m 2 yr−1; af-

ter another 1000 years, all values that exceed 1.5× 10−11

Pa−3 m 2 yr−1 are set to 1.5× 10−11 Pa−3 m 2 yr−1 and so

forth. When the basal sliding is increased in the subse-

quent model run, we can then assume that the corresponding

changes in surface elevation directly reflect the response of

the model domain to the changes in basal conditions. Finally,

after 20 kyr the sliding coefficient is kept constant, and the

model is run for another 10 kyr. This last stage of the model

simulation is what we refer to when we use the term “no ex-

ternal forcing” because no further changes are imposed on

the basal conditions, although margin loss and mass balance

field are still applied.

3 Results

3.1 Sliding coefficient

Using a simple inversion technique described in Appendix A,

we obtain an estimate of the coefficients kd and ks.

The result of the inversion gives a value of kd = 2.3×

10−17 yr−1 Pa−3. For comparison, empirical studies by Budd

et al. (1979) reported a value of kd = 6.0× 10−17 yr−1 Pa−3.

This corresponds to creep parameter values of A= 1.82×

10−24 s−1 Pa−3 and A= 4.75× 10−24 s−1 Pa−3, respectively.

Considering that our estimate applies to the entire drainage

basin and that the creep parameterA varies by orders of mag-

nitude depending on ice temperature (Cuffey and Paterson,

2010), we consider this discrepancy to be within the expected

uncertainty of our method. Further, we note that the creep pa-

rameter values correspond to ice temperatures between −2

and 0◦C (Cuffey and Paterson, 2010).

The results from inverting for the sliding coefficient ks

are shown in Fig. 2. Note that the solution has been re-

gridded to 5 km from the original 1 km solution (see also

above) and smoothed with a running mean to impose a de-

gree of smoothness. Our values are within the range of val-

ues typically found in models of subglacial settings and also

comparable to laboratory experiments that suggest a value

of ks = 1.8× 10−12 Pa−3 m 2 yr−1 (Budd et al., 1979). This

experimental value has been found to agree well with ob-

Figure 2. The result of the inversion for the sliding coefficient ks on

a logarithmic scale. The contour for the 50 m yr−1 surface velocity

(from Joughin et al., 2010) is indicated with thick, black lines.

servations from real glaciers (Bindschadler, 1983), although

the value is likely very variable for different glacier settings.

Even so, our results indicate a high degree of basal sliding.

In this experiment the coefficient has been allowed to vary

spatially in the model domain to produce the best fit between

observed and modelled velocities. It is clear that large parts

of the basin have a very high sliding coefficient, notably the

fast-flowing areas of NEGIS, indicating high basal velocities.

North of NEGIS a large area obtains a low sliding coefficient,

indicating that ice deformation is likely more important here

than in the ice stream. This pattern is similar to that recovered

by previous studies (e.g. Joughin et al., 2001; Schlegel et al.,

2013). The area along the ice divide with high basal sliding

coefficients is caused by the low surface gradient (leading to

an underestimation of modelled velocities) rather than actual

large sliding velocities.

3.2 Changes in ice volume and surface elevation

In the spin-up run the ice-flow model is initiated with a low

value of ks (ks = 1×10−11 m2 yr−1 Pa−3), and we thus obtain

a state where the ice flow in the model domain is not materi-

ally influenced by basal sliding. When the model is initiated,

there is a drop in ice volume (Fig. 3) as the ice withdraws

from the poorly resolved outlets along the margin. The dis-

charge scheme is probably also overestimating the mass loss
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Figure 3. Change in ice volume (blue) of the NE Greenland model domain caused by the change in sliding coefficient (black) for the entire

model run.

for some of the margin cells, which further adds to the retreat

at the margins. After approximately 17 kyr the ice volume

stabilises and after 20 kyr the change in volume is negligi-

ble (cf. Fig. 3, blue line). Due to the low sliding coefficient

there is a build-up of ice volume in areas where the ice-flow

velocities are lower than present day.

The surface elevation along the basin boundaries decreases

slightly over the entirety of the spin-up run. This is because

the 10 km model predicts lower elevation along the basin

boundaries, leading to a lowering of the grid cells that are

interpolated from the 10 km model onto to the nested 5 km

model. The build-up of ice volume in the central part of the

NEGIS naturally corresponds to an increase in surface eleva-

tion (cf. Fig. 4). As the maximum allowed sliding coefficient

values are increased, the surface elevation decreases and the

ice volume decreases correspondingly.

The resulting difference in elevation between present-day

topography and the surface elevation after the 20 kyr spin-

up run and the 30 kyr run is shown in Fig. 4. The number

of grid cells with a surface elevation difference larger than

200 m is less than 7 %, and 40 % are within ±100 m of the

present-day elevation. Finally, it should be noted that it was

not possible to match the high velocities of the central part of

the NEGIS, regardless of the sliding coefficient values. This

is probably due to the combined effects from the simplifica-

tions in the ice-flow model and the fact that the deformational

coefficient is too high in the fast-flow areas, where the ice is

likely softer. Thus, our model will always underestimate the

ice-flow velocities in the central part of the ice stream.

To test the impact of the margin control algorithm we did

an additional model run where the margins were kept con-

stant after the spin-up, and we will refer to this run as the

“constant margin run”. During the first 20 thousand model

years the ice surface is lowering as the basal sliding coeffi-

cient is increased. Since the ice margin now is kept at con-

stant thickness this means that the margin is thicker in the

constant margin run compared to the initial model run. This

thickness difference propagates hundreds of kilometres up-

stream over time-scales of 103 yr. When the basal sliding co-

efficient is no longer increased, the difference between the

two model runs decrease as the margins thicken in the initial

run. Throughout, the differences between the two modelled

surfaces are of the order of 101 m and rarely exceed 20 m.

Thus, while it is possible for changes at the margin to prop-

agate upstream in our model, the changes are smaller than

those observed for the changes in basal sliding. This implies

that our margin control scheme is less important compared

to the induced changes in basal sliding.

3.3 Subglacial water outflux

The drainage pattern (Fig. 5b) and resulting outflux of sub-

glacial water (Fig. 6) have been calculated using two scenar-

ios: (1) assuming that the entire bed is at pressure melting

point (blue lines in Figs. 5 and 6), as suggested by modelling

studies (e.g. Greve, 2005; Seroussi et al., 2013), or (2) as-

suming that melting only occurs in localised areas (magenta

lines in Figs. 5 and 6) as indicated by radio-echo sounding

data (Oswald and Gogineni, 2012). In both cases we assume

a melt rate of 5 mm yr−1 from each melting grid cell. This

is based on values of basal melt rates of 5 mm yr−1 at the

North Greenland Ice Core Drilling site (Buchardt and Dahl-

Jensen, 2007), although studies have found evidence of melt

rates up to 150 mm yr−1 at the onset of NEGIS (Fahnestock

et al., 2001). We consider our assumed melt rate to represent

the lower end of the possible melt rates. This assumption

is based on a rough estimate of energy available for melt-

ing the basal ice; we use the sliding coefficient found in the

section above to calculate the basal velocity ub = us and the

frictional heat E =ubτb. Assuming that the ice is at pressure

melting point and that all energy generated by the friction

between ice and bed is used to melt ice (i.e. we disregard

dissipation of heat), we get an upper value of possible melt

rates. This returns melt rates of between 0 and 0.1 m yr−1

in areas of intermediate flow (20–100 m yr−1) and upwards

of 1 m yr−1 in the fastest-flowing areas. Figure 5a shows the

flux of subglacial water using this upper limit estimate. Note

how the subglacial water is routed along the shear margins
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Figure 4. (a) Difference in surface elevation between the ice-sheet at the end of the spin-up run and present-day topography. (b) Difference

in surface elevation between the ice-sheet at the end of the model run and present-day topography. The contour for the observed 50 m yr−1

surface velocity (from Joughin et al., 2010) is indicated with thick, black lines; magenta lines indicate the 50 m yr−1 balance velocity contour.

Figure 5. (a) Subglacial water flux for upper values of basal melt rates. (b) Water routeways for the present-day topography; the background

colours indicate which outlet the subglacial water is draining into. The magenta contours indicate the areas of localised basal melt from the

study by Oswald and Gogineni (2008). The contour for the 50 m yr−1 surface velocity (from Joughin et al., 2010) is indicated with thick,

black lines.
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Figure 6. Change in subglacial water outflux at the three main outlets of NEGIS during the 30 kyr model run. The blue lines indicate the

changes if the entire basin is at melting point and contributing to the outflux, while the magenta lines are the outflux if only certain local

areas are melting.

in agreement with observations from the field (Christianson

et al., 2014).

Figure 5 shows the routeways that the subglacial water

follows based on present-day surface topography (Bamber

et al., 2013a). It is evident that some parts of the basin have

a drainage pattern resembling a “parallel” drainage system

(e.g. the northern margin of NEGIS) where the water follows

almost straight lines, indicating steep gradients in the hy-

dropotential. In contrast, other parts of the basin have a more

dendritic structure with multiple tributaries. Here the hy-

dropotential has less steep slopes and the resulting drainage

pattern is therefore less constrained. From the figure it can

also be seen that presently a large part of the subglacial wa-

ter is exiting at Zachariae Ice Stream (dark grey), while less

water feeds into Nioghalvfjerdsbrae (light grey). Further, if

only localised areas are contributing with subglacial water

(as identified by radio-echo sounding Oswald and Gogineni,

2008), very little water is presently exiting into Nioghalvf-

jerdsfjord.

Figure 6 shows the change in outflux over time for the

three major glacier outlets of NEGIS, calculated using a rout-

ing scheme (as described above). Please note that in the fol-

lowing discussion of variations in the flux over time the con-

stant basal melt rate of 5 mm yr−1 was used. We set up three

flux gates at the glacier outlets close to the margin such that

all subglacial water that passes through the flux gates con-

tinues towards the margin. The figure shows the total vol-

ume of water that passes through a given flux gate. We have

further assumed that changes in water transport are instanta-

neous compared to the timescale of ice flow.

Overall, the water outflow shows large variations on

timescales ranging from decades to millennia. This is in

agreement with previous studies, which have also found a

potential for changes in drainage pattern (Livingstone et al.,

2013; Christianson et al., 2014).

As the basal sliding increases with time, the outflux of sub-

glacial water increases at the margins. This happens both in

the scenario where the entire basin is assumed to be melt-

ing and in the scenario where only the localised melt areas in

the interior are supplying basal meltwater. At the end of the

spin-up run most of the subglacial water generated along the

ice divide flows towards the west. This is a consequence of

the 10 km resolution model generally predicting lower sur-

face elevation than present day, leading to a surface sloping

towards the west. This implies that at the end of the spin-up

run the basin boundary has migrated inwards and part of the

ice is now flowing out of the model domain towards the west.

As the sliding coefficient is increased, the ice stream forms

and the surface slope now allows more water to flow east-

wards, thus increasing the outflux of subglacial water at the

margins.
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Figure 7. The error associated with the bedrock topography from Bamber et al. (2013a) is in grey. (a) coloured dots indicate grid cells where

the subglacial water routeways change between two (blue dots) or three (red dots) outlets. The contour for the 50 m yr−1 surface velocity

(from Joughin et al., 2010) is indicated with thick, black lines. (b) magenta dots indicate grid cells where the bed slope is equally important

to or more important than the surface slope in determining the direction of the subglacial water.

After 20 kyr the basal conditions are kept constant and the

ice flow is allowed to adjust without forcings, and after a few

thousand years the ice-flow model shows surface elevation

changes of the order of 10−1 m yr−1 or less. We interpret this

as a sign that the model is approaching steady state. However,

even after several thousands of years with no external forc-

ing the subglacial water outflux continues to fluctuate. This

highlights the sensitivity of the subglacial system to small

changes in surface slope. We emphasise that, while our sim-

ple ice-flow model does not capture the complicated ice-flow

dynamics of the present day, the subglacial water fluctuations

are a result of the drainage basin topography.

We now investigate whether the subglacial water from dif-

ferent grid cells is likely to exit at different glacier outlets.

Using time slices of 100 yr over the 30 kyr run, we calcu-

late which fjord the subglacial water from each grid cell exits

into. Figure 7a shows the grid cells where there is a change in

outlet destination. For 18 % of grid cells (Fig. 7a, blue dots)

the majority of the produced subglacial water fluctuates be-

tween two outlets. The dots clearly delineate the subglacial

“watersheds” between the different outlets. 2 % of grid cells

(Fig. 7a, red dots) fluctuate between three different outlets.

Notably, many of the cells that change their final destination

are relatively close to the ice divide, upstream of NEGIS.

This is also in close proximity to the area of high geothermal

heat flux identified by Fahnestock et al. (2001), where basal

melting is known to take place.

In the previous section (cf. Eq. 7) we asserted that the sur-

face slope is approximately 10 times more important than

the bed slope when determining the water routeways. How-

ever, in some areas the bed slope is so steep that the bed to-

pography eventually becomes equally important to or more

important than the surface topography. Closer inspection of

the topography of the model domain reveals that this is in-

deed the case in some areas. Magenta dots in Fig. 7b indi-

cate the location of the critical grid cells where the bed slope

is equally important to or more important than the surface

slope, i.e. where
(ρw−ρi )∇zb

ρi∇zs
≈ 1. A large number of these

critical points are located in the southern part of the model

domain, although some are also located in the main part of

the ice stream. Figure 7 also shows the error associated with

the bed topography data set from Bamber et al. (2013a). This

error is due to the fact that for some of the bed topography

measurements the surface elevation is not well known (Bam-

ber et al., 2013a). When comparing the bedrock error with

the grid cells where the subglacial water is likely to change

its final destination, it is clear that very few of these grid cells

coincide with areas of large bedrock error, implying that the

calculated subglacial water routeways in this region are par-

ticularly uncertain. In contrast, a large number of the grid

cells that are sensitive to the bedrock slope coincide with ar-

eas where the bed topography is associated with large errors,
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implying that the calculated subglacial water routeways in

this region are particularly uncertain.

4 Discussion

Our simple model experiment highlights some interesting

characteristics of the large-scale subglacial drainage pattern

of Northeast Greenland. Our results indicate that the out-

flux of subglacial water may fluctuate for several thousand

years even after external forcings have ceased. We also ob-

serve that the subglacial water from multiple grid cells exits

at different glacier outlets (Fig. 7a) during our 30 kyr model

run. Interestingly, we find that the grid cells that are most

likely to fluctuate between three different outlets are located

close to the ice divide. The water routeways at these cells are

primarily controlled by surface slope, implying that changes

in surface slope are the determining factor for the direction

of the subglacial water. As mentioned in a previous section,

the ice geometry at the end of the spin-up run has a basin

boundary inward of the area covered by the model domain.

This new boundary, however, does not extend as far as the

area marked with red points in Fig. 7a. Thus, the points clos-

est to the ice divide change outlets because of this boundary

migration, i.e. due to the spin-up surface geometry, but the

remaining points change outlet due to the internal dynamics

in the model domain. This indicates the possibility for far-

field controls on the subglacial water system of NEGIS, and

that variations in subglacial water outflux at the outlets of

Nioghalvfjerdsbræ, Zachariae Isbræ and Storstrømmen may

be caused by changes in surface elevation several hundred

kilometres upstream. Thus, observed changes at the margins

in, for example, water outflux or ice-flow velocity are not

necessarily caused by processes that can be observed within

the same spatial and temporal scale as the changes.

In our model run, an increase in basal sliding generally

leads to a lowering of the ice surface. We hypothesise that

the formation of the ice stream could have happened as a

positive feedback effect, where the introduction of subglacial

water at the bed (i.e. increase in basal sliding) led to a low-

ering of surface elevation, leading to more subglacial water

being rerouted into the system. This in turn might lead to a

further lowering of the surface and thereby more subglacial

water. However, since our model does not include feedbacks

between the subglacial system and ice flow, we cannot truly

determine the formation mechanism. It is worth noting that

we do not observe “water piracy” in the sense described by

Anandakrishnan and Alley (1997), where neighbouring ice

streams slow down or speed up when they exchange sub-

glacial water. We also investigated our results for evidence

of “ice piracy”, where the increase in ice flux for one ice

stream happens at the expense of a neighbouring ice stream

(e.g. Pattyn et al., 2005). However, the three glacier out-

lets all showed increasing ice fluxes, as the ice stream be-

came more pronounced with increased basal sliding. There

might be a potential for ice piracy between NEGIS and Ha-

gen Bræ/Academy Glacier in the northern part of the basin,

but this outlet glacier is not well resolved at 5 km grid reso-

lution, and we do not observe evidence of ice piracy in our

model results. We would like to stress that the channelling of

subglacial water includes processes that are still poorly un-

derstood but which may strongly influence the timescales of

the changes in ice-flow dynamics. Our model most likely un-

derestimates the timescales over which these processes are

taking place since it does not include feedback between the

ice-flow dynamics and the subglacial system.

In the ice-flow model the driving stress is assumed equal to

the basal shear stress in the direction of flow. Ice streams are

commonly modelled using a shallow-shelf approach where

the basal shear stress is assumed to be negligible (e.g.

MacAyeal, 1989) and sliding is dominating. However, stud-

ies have found that in large parts of the NEGIS the basal

shear stress is balanced by the driving stress (Joughin et al.,

2001). Our assumption is thus applicable for a large part of

our model domain, with two notable exceptions. The first ex-

ception is the upper part of NEGIS close to the initiation of

the ice stream, where side drag from the margins cannot be

neglected. Here, the bed most likely only support 60 % of the

driving stress. This exception is probably an important con-

tributing factor in explaining why our model does not display

a distinct onset of the ice stream. The missing ice-stream on-

set means that our modelled surface topography is smoother

than it would be if the onset existed. The second exception

is the “ice plain” (located downstream of the place where

part of NEGIS branches out and forms Storstrømmen). In

this area, the stresses are dominated by significant side drag

(Joughin et al., 2001). This explains why we see a build-up

of mass in the central part of the ice stream (Fig. 4b): in-

clusion of additional stresses probably would lead to more

efficient transport of ice across the ice plain. For the ice plain

our model assumptions mean an underestimation of ice-flow

velocities and the associated timescales over which changes

in ice thickness are happening. To summarise, a higher-order

ice-flow model would most likely display a faster formation

of the NEGIS, as well as steeper gradients in the hydropoten-

tial in the region where our modelled surface topography is

too smooth. This could impact the modelled change in sub-

glacial water routeways of the grid cells identified in Fig. 7a.

It is possible that some of the grid cells located close to the

onset of the ice stream are less sensitive to changes in sur-

face slope than predicted in our model. This is because a

more pronounced ice-stream topography would cause steeper

gradients in the hydropotential and a more constrained sub-

glacial drainage pattern. However, we note that water route-

ways north of the onset do not currently drain into NEGIS,

in spite of the prominent imprint the ice stream makes on

the surface (cf. Fig. 5b). This makes us confident that our as-

sessment of the sensitivity of the grid cells north of the onset

of NEGIS is correct, i.e. that even for present-day topogra-

phy with steeper gradients in the hydropotential they can still
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be sensitive to changes in surface slope. The subglacial wa-

ter routeways originating at the grid cells along the margin

of NEGIS are probably less sensitive to changes in surface

slope.

In our study, we have assumed that the subglacial wa-

ter is transported to the glacier margin and does not form

subglacial lakes. Pattyn (2008) suggested that steep surface

slopes in combination with warmer, thinner ice in the inte-

rior of GrIS (compared to Antarctica) inhibit the formation of

subglacial lakes. Indeed, at present only one study has found

direct evidence of subglacial lakes in Greenland (Palmer

et al., 2013). In our calculations of present-day Greenland

water routeways (Fig. 5b) the water routeways can be seen to

pool together in the southeastern part of the drainage basin,

indicating the possibility of subglacial lakes. Their positions

correspond largely to areas identified by Livingstone et al.

(2013) as potential lake locations. However, the areas likely

to contain subglacial lakes in our study coincide not only

with areas where the bed slope is equally or more important

than the surface slope, but also with areas where the error

in bed rock topography is upwards of 300 m (Fig. 7b). Thus,

these subglacial lake locations are at best uncertain consider-

ing the large bedrock error in the region. However, the areas

likely to contain subglacial lakes in our study coincide not

only with areas where the bed slope is equally important to

or more important than the surface slope, but also with areas

where the error in bedrock topography is upwards of 300 m

(Fig. 7b). Thus, these subglacial lake locations are at best

uncertain considering the large bedrock error in the region.

Previous studies have found that NEGIS has the potential

to experience rapid shifts in ice dynamics (Christianson et al.,

2014). While the step-wise change in sliding coefficient that

we apply to induce surface elevation changes is an unlikely

scenario, a change in surface elevation could be triggered

by a number of processes. For example, studies by Alley

and Whillans (1984) and Williams et al. (2012) have found

that processes happening over centuries to millennia at the

front of ice streams may trigger changes in slope and thick-

ness hundreds of kilometres inland from the margin. Thus,

a steady increase in calving rate over the past few hundred

years caused by, for example, warming sea surface temper-

atures will propagate upstream and could eventually lead to

a rerouting of the subglacial water, without any observable

catastrophic or sudden change in forcing. This implies that

if a retreat/advance happened slowly enough for the pertur-

bation to propagate far upstream, we could still be observing

the response of the subglacial system to the changes in sur-

face elevation.

It is very plausible that retreats and advances have oc-

curred in the past along the margin of Northeast Greenland.

For example, geological evidence suggests that 7.7 kyr be-

fore present the margin of Nioghalvfjerdsbræen was 80 km

upstream from its present location (Bennike and Björck,

2002). It is also known that glaciers in other parts of Green-

land (e.g. Bjørk et al., 2012) advanced during the Little Ice

Age. These changes must have influenced ice thicknesses in

the drainage basin, but the extent of the impact is unknown.

Furthermore, the duration of the margin changes are also un-

known, and therefore how far the surface fluctuations prop-

agated upstream cannot be easily assessed. However, events

such as these could have led to a change in surface slope and,

based on our results, caused a corresponding change in sub-

glacial water routeways. This could ultimately have caused

a change in ice-flow velocities and ice-stream configuration.

Since these events may take centuries to millennia to prop-

agate upstream, it also seems likely that the surface slope

is constantly modified by fluctuations from processes at the

margin. It is therefore likely that the subglacial system is con-

stantly changing in response to these fluctuations and likely

never in a steady state. It further indicates that changes in

the subglacial water routeways are an intrinsic part of the

drainage basin dynamics, where the subglacial system is con-

stantly transitioning between different configurations of the

subglacial water network. Thus, current observations of in-

crease/decrease in velocity could be a delayed effect from

changes taking place before the observational period, work-

ing their influence on critical points upstream of the glacier

front.

The latest bed topography data show that some ice streams

in Greenland are constrained by deep troughs (e.g. Jakob-

shavn Isbræ; Gogineni et al., 2014), while other Greenlandic

ice streams are not strongly controlled by bed topography

(Bamber et al., 2013a). We therefore hypothesise that other

drainage basins in Greenland also might experience sub-

glacial rerouting of water and corresponding fluctuations in

ice-flow velocities. The model presented here is a tool that

could be applied to other parts of GrIS, and thus the sensi-

tivity of the subglacial drainage pattern in different drainage

basins could be assessed. Places of interest include the basin

containing the Petermann and Humboldt glaciers, and the

glaciers on the northwest coast. Both of these areas could

have potential for subglacial water rerouting. For example,

studies have found that in Northern Greenland changes in

the subglacial waterways are likely to have taken place dur-

ing the last glacial maximum (cf. Bamber et al., 2013b).

The method outlined in this paper could be used to inves-

tigate the change in subglacial drainage patterns as the ice

sheet retreated and thinned after the last glacial maximum

to its present-day state. Alternatively, the model could be

applied to the whole of the ice sheet; during glacial times,

GrIS most likely extended out onto the continental shelf and

formed an ice bridge with the Laurentide Ice Sheet (e.g.

Dyke, 2004). The break up of this bridge most likely im-

pacted the surface topography of the ice sheet and therefore

also the subglacial water routeways. Finally, the applicabil-

ity of the model might be improved with the addition of a

shallow-shelf mode (e.g. MacAyeal et al., 1996) in order to

better capture the ice-stream dynamics.
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5 Conclusions

The dynamics of the Northeast Greenland drainage basin

have received increased attention in recent years. Here, we

investigate the response of the subglacial drainage pattern to

changes in surface elevation for Northeast Greenland using a

simple 2-D map-plane ice-flow model. We use observed sur-

face velocities to invert for the basal sliding coefficient ks and

then run the ice-flow model forward in time with incremen-

tal increases in the basal sliding. We find that the subglacial

water routeways readily change in response to fluctuations in

surface slope. The fluctuations continue for millennia after

the forcing of the basal conditions has stopped. The results

further show that areas close to the ice divide, upstream of the

fast-flowing NEGIS, may fluctuate between several glacier

outlets, indicating the potential for far-field controls on wa-

ter outflux at the margins. Since changes at the margin may

propagate upstream and modify surface slopes on multiple

timescales, our study highlights how fluctuations of the sub-

glacial system are an intrinsic part of the ice-flow dynamics

of Northeast Greenland due to the sensitivity to changes in

surface slope. Thus, changes presently observed at the mar-

gin could be a response to upstream changes induced by pro-

cesses that occurred centuries to millennia ago. We strongly

encourage future work to include these processes to obtain

better controls on the timescales of the system.
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Appendix A: Inverting for the deformation and sliding

coefficients

We obtain our estimates of the deformational coefficient kd

and the sliding coefficient ks with a simple inverse method

using a Monte Carlo scheme (e.g. Tarantola, 2005). In the

model we have an observed data set dobs, consisting of the

velocity field from Joughin et al. (2010), and a modelled data

set d(m), with the velocities calculated using model param-

eters m. The misfit between the observed and the calculated

data set is assessed via the misfit function:

S(m) =
1

2

∑
i

(
dobs
i − di

)2
s2
i

, (A1)

where i runs over all the grid cells in the model domain. The

model explores the parameter space (the likely range of m)

with a random walk. Each result from the random walk is

either accepted or rejected according to the Metropolis crite-

rion:

P =min

(
1,
L(mcur)

L(mtest)

)
, (A2)

where mcur is the most recently accepted model, mtest is the

model being tested and L is the likelihood function given as

L(m)= c exp(−S(m)). (A3)

Here c is a normalisation constant that we set equal to 1.

In our study we first find the deformational coefficient kd

using a pre-defined likely range of kd values. The coefficient

is assumed to be constant for the entire basin, and it is used

as input to calculate ūd. The misfit between the observed

and calculated velocities is assessed using the misfit function

described above. Furthermore, a weighting mask is applied

such that the misfit in low-velocity areas is 4 times more

important for the sum of the misfits than the intermediate-

velocity areas, while high-velocity areas are disregarded in

the fitting analysis. Once the misfits reach a steady value, the

algorithm is halted and the resulting value of kd is accepted.

Next, we use the kd value to run our simple model of calcu-

lated velocities ū= ūd+ us, where our model parameter now

is ks. Again, using a pre-defined likely range of ks values,

but this time allowing ks to vary for each grid cell. Now

the weighting scheme is reversed and the fast-flow areas be-

come 4 times more important than the intermediate-velocity

areas, while the misfit in the slow-flow areas is disregarded.

Again, the resulting value of ks is accepted when the misfits

no longer improve.
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