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Abstract. Repeated light detection and ranging (lidar) sur-

veys are quickly becoming the de facto method for measuring

spatial variability of montane snowpacks at high resolution.

This study examines the potential of a 750 km2 lidar-derived

data set of snow depths, collected during the 2007 north-

ern Colorado Cold Lands Processes Experiment (CLPX-2),

as a validation source for an operational hydrologic snow

model. The SNOw Data Assimilation System (SNODAS)

model framework, operated by the US National Weather Ser-

vice, combines a physically based energy-and-mass-balance

snow model with satellite, airborne and automated ground-

based observations to provide daily estimates of snowpack

properties at nominally 1 km resolution over the contermi-

nous United States. Independent validation data are scarce

due to the assimilating nature of SNODAS, compelling the

need for an independent validation data set with substantial

geographic coverage.

Within 12 distinctive 500× 500 m study areas located

throughout the survey swath, ground crews performed ap-

proximately 600 manual snow depth measurements during

each of the CLPX-2 lidar acquisitions. This supplied a data

set for constraining the uncertainty of upscaled lidar esti-

mates of snow depth at the 1 km SNODAS resolution, result-

ing in a root-mean-square difference of 13 cm. Upscaled lidar

snow depths were then compared to the SNODAS estimates

over the entire study area for the dates of the lidar flights.

The remotely sensed snow depths provided a more spatially

continuous comparison data set and agreed more closely to

the model estimates than that of the in situ measurements

alone. Finally, the results revealed three distinct areas where

the differences between lidar observations and SNODAS es-

timates were most drastic, providing insight into the causal

influences of natural processes on model uncertainty.

1 Introduction

Meltwater from mountain snowpacks is an important compo-

nent of Earth’s water cycle. However, quantifying the amount

of water stored in a snowpack from year to year remains

a difficult task despite recent scientific advancements. Mil-

lions of people in the western United States rely on water

that descends from the Rocky Mountains, where over 70 %

of the annual water supply is delivered from melting snow

(Carroll et al., 2006). With the worldwide population grow-

ing exponentially, the importance of fine tuning our current

hydrologic models is becoming more of a priority in order to

mitigate flood disasters and water shortages.

The primary goal of most hydrologic snow models is to

provide estimates of snow water equivalent, or SWE, over

large mountain regions, but in addition most models include

routines to estimate secondary snow properties. The methods

used to estimate snowpack characteristics such as depth and

density vary between models; some use empirical methods

from available historical data, while others are more physics-

based. Even so, SWE is but a function of depth and den-

sity, and if validation is achieved for either of these so-called
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secondary model components, then higher confidence can be

placed into corresponding SWE estimates.

Since snow depth varies considerably more than bulk den-

sity over space (Sturm et al., 2010) and is also inherently

easier to measure, this study aims to examine the snow depth

prediction component of a gridded, spatially distributed snow

model. Specifically, we will demonstrate the value of re-

peated large-scale airborne lidar surveys, which have been

subjected to ground validation error analysis, for assessing

the ability of an operational physically based snow model

to estimate snow depths over a large geographic extent. Pin-

pointing physiographic causes of model error requires a top-

down knowledge of each subroutine within a model. How-

ever, in the absence of the complete source code for the

model we will be examining, inferences as to what factors

might be responsible for larger uncertainties will be made

possible using high-resolution lidar snow depth distribution

information.

Due to the resolution capability and gridded nature of most

distributed snow models, many small-scale features that af-

fect spatial variability are either averaged or not considered,

influencing the bulk estimates of total SWE and overall depth

in each grid cell (Marchand and Killingtveit, 2005). Never-

theless, sub-grid spatial properties have been shown to have

a significant effect on the accuracy of spatially distributed

snow models (Luce et al., 1999; Liston, 2004; Skaugen and

Randen, 2013), but the data sets required for parameter es-

timation and optimization are small and spatially sparse in

high-elevation, tundra and shrubland environments (Elder

et al., 1991; Sturm et al., 2001a, b; Hiemstra et al., 2002;

Liston and Sturm, 2002; Schirmer and Lehning, 2011). Con-

siderable variability in the spatial snow distribution can be

introduced through the interaction between wind and snow

with terrain and vegetation (Elder et al., 1991; Blöschl, 1999;

Liston et al., 2007). In fact, wind has been shown to be the

dominant influence on spatial variability of snow in complex

terrain (Pomeroy et al., 1993; Winstral et al., 2002; Sturm and

Wagner, 2010). Without prior knowledge of the spatial snow

distribution in a given area, arbitrary manual snow measure-

ments will not provide accurate estimates of snow depth over

large alpine regions (Elder et al., 1991; Anderton et al., 2004;

Erickson et al., 2005).

Various studies have shown that lidar (light detection and

ranging) surveys can provide spatial information on moun-

tain snow depths at high resolution over large areal extents

that comprise various physiographic regimes (Hopkinson

et al., 2004; Deems et al., 2006; McCreight et al., 2014). The

first Cold Lands Processes Experiment (CLPX-1) of 2002–

2003 in the Colorado Rocky Mountains was the first large-

scale coordinated study to use lidar acquisitions for the as-

sessment of snow properties over a range of areas (Cline

et al., 2009). Since then, numerous campaigns have used li-

dar to quantify spatial variability of snow depths in moun-

tain terrain. Deems et al. (2006) used fractal analysis of the

CLPX-1 lidar snow depths to determine scale breaks, while

Trujillo et al. (2007) found that spatial distributions of snow

depth are strongly controlled by both wind redistribution and

vegetation interception of snow over uneven surface topog-

raphy in five of the CLPX-1 intensive study areas. More re-

cently, lidar has been used with simple statistical models to

determine scale invariance due to vegetation and wind direc-

tion (Trujillo et al., 2009) as well as to verify high-resolution

dynamical snow models (Mott et al., 2011).

As the technology has become more widespread over

the last decade, and as lidar for snow research has be-

come increasingly relevant, more effort has been placed

into increasing the measurement extent of lidar footprints.

The advantages of lidar for spatially characterizing snow

depths over large remote areas are finally being used to as-

sess lower-resolution operational hydro-meteorologic snow

models. Melvold and Skaugen (2013) used six parallel

500 m× 80 km lidar surveys, each separated by 10 km, to in-

vestigate the Norwegian operational temperature index snow

model, seNorge. After upscaling the lidar-derived 2 m resolu-

tion snow depths to the spatial resolution of the 1 km2 grid-

ded model output, the modeled results were found to accu-

rately represent the remote sensing estimates despite the lack

of sub-grid spatial information within the model structure. A

similar approach for lidar upscaling is used in this study.

Even though depths can vary greatly over space in a snow

pack, the overall distribution of snow has been found to ex-

hibit spatial similarities from year to year (Hiemstra et al.,

2006; Sturm and Wagner, 2010; Winstral and Marks, 2014).

Repeated lidar surveys throughout single seasons (Schirmer

and Lehning, 2011; Schirmer et al., 2011) and over mul-

tiple seasons (Deems et al., 2008) have found similar re-

sults through fractal analyses of the snow depth distributions.

By comparing findings from large-scale lidar snow depth

surveys to operational hydrologic models, we can pinpoint

causes of any shortcomings and subsequently refine model

results.

Developed by the National Operational Hydrologic Re-

mote Sensing Center (NOHRSC) and first operationally im-

plemented in 2004, the Snow Data Assimilation System

(SNODAS) estimates various snow properties by merging

satellite, airborne, and ground-based snow data with mod-

eled approximations of snow cover (Barrett, 2003). Histor-

ical model output from SNODAS is stored and archived at

the National Snow and Ice Data Center (NSIDC) in Boulder,

Colorado, for every day that the model has been executed

since its inception. These eight snow properties are the pri-

mary estimates that are made available to the public:

1. snow water equivalent (SWE)

2. snow depth

3. snowmelt runoff from the base of the snowpack

4. sublimation from the snowpack

5. sublimation of blowing snow
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6. solid precipitation

7. liquid precipitation

8. snowpack average temperature.

A large portion of model fidelity is directed towards SWE

prediction rather than any of the other model outputs because

the amount of total water storage within snowpacks is far

more important for water managers. The physically based

energy- and mass-balance NOHRSC Snow Model (NSM),

described by Carroll et al. (2006), is the primary component

of SNODAS, while an assimilation step augments the model

estimates with any available remote sensing or ground-based

measurements. The assimilation is performed by NOHRSC

analysts who decide on a daily basis whether to intervene

and adjust model output in order to correct for mesoscale

discrepancies between measurements and model predictions.

Ultimately, the final model product has a spatial resolution of

approximately 1 km2 over the conterminous United States.

Independent validation data for SNODAS are scarce as

a consequence of the framework’s data assimilating nature

which ensures that all available data at the model scale

(i.e., 1 km2) are used to adjust estimates of the NSM (Bar-

rett, 2003). An alternative validation method has been to per-

form comparisons of SNODAS with other hydrologic mod-

els and satellite remote sensing products. Rutter et al. (2008)

compared various NSM properties with two energy-balance

snow models, but found difficulty in constraining model un-

certainties due primarily to the high sub-grid spatial vari-

ability exhibited in mountain snowpacks. Other studies have

used SNODAS as the validation source for large-scale hy-

drologic models such as the Noah land surface model (Bar-

lage et al., 2010), and SWE retrieval using satellite-based mi-

crowave radar remote-sensing platforms (Azar et al., 2008).

To our knowledge, only two validation studies of

SNODAS’ performance have been conducted using indepen-

dent data sets and each of those studies relied on extensive in

situ measurement campaigns. Clow et al. (2012) performed

snow surveys of snow depth within 45 SNODAS pixels over

a 3-month period in 2007. The results revealed that SNODAS

performed satisfactorily for predicting snow depth in forested

areas, but depth estimates in alpine areas were poor in com-

parison to manual measurements chiefly due to sub-grid-

scale variability from wind redistribution of snow. This dis-

crepancy was addressed by applying a correction factor to

account for wind redistribution of snow in the wind-affected

alpine areas. In another study, Anderson (2011) intensively

sampled three SNODAS pixels in the mountains just north

of Boise, Idaho, over the course of two winter seasons and

found that SNODAS slightly underpredicted snow depths in

heavily forested areas but maintained reasonable estimates

of SWE overall. Each of the studies required an enormous

amount of manpower and time to obtain the independent data

sets for proper comparison, but came to somewhat different

conclusions about the model performance most likely due to

the individual locations of the collected data (Idaho and Col-

orado, USA). This study’s goal was to increase the spatial

continuity of the validation data set in order to come closer

to discovering individual biases with the SNODAS model

framework.

2 Study area

The second Cold Lands Processes Experiment campaign

(CLPX-2, 2006–2008) was a multi-faceted mission designed

to cover a much larger coincident extent than the previous

campaign (CLPX-1, 2002–2003) 3 years prior. The primary

objective of CLPX-2 was to acquire snow volume backscat-

ter measurements from NASA’s POLSCAT (POLarimetric

SCATterometer) airborne Ku-band radar system and the nec-

essary ground truth measurements (Yueh et al., 2009) for val-

idation of the proposed NASA Snow and Cold Land Pro-

cesses (SCLP) and ESA Cold Regions Hydrology High-

resolution Observatory (CoreH2O) satellite missions (Rott

et al., 2010). The airborne lidar portion of the campaign was

intended to be an ancillary validation data set for the radar

measurements.

Three intensive observation periods (IOPs) were organized

over a 9× 84 km rectangular swath to the south and east of

the town of Steamboat Springs in northern Colorado, USA

(Fig. 1). During both IOP-1 (early December 2006) and

IOP-3 (late February 2007), airborne lidar surveys were per-

formed to provide high-resolution surface elevation change

data sets to aid in the POLSCAT validation process. Cov-

ering approximately 750 km2, the study area encompasses a

wide range of elevations, terrain and vegetation types, and

ecological classes. Maximum lidar-derived changes in snow

depth varied from merely 30 cm in the central wind-swept

prairies to over 4 m in the drifts of the higher elevations.

The study area can be viewed as containing three main

classification areas: (1) the grass-covered, low-elevation

rolling farmland in the Yampa River valley in the far west;

(2) the coniferous forests of the Rabbit Ears Pass portion of

the Park Range as well as the foothills of the Medicine Bow

Mountains in the far east; and (3) the sagebrush-dominated

high desert of the central North Park region. Six SNOw

TELemetry (SNOTEL) sites, operated by the National Re-

sources Conservation Service (NRCS), are located within

15 km of the study area and yield a relatively dense network

of automated measurements of various snowpack properties.

The data from these ground-based measurement stations are

often assimilated by SNODAS in order to augment the NSM

estimates.
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Figure 1. Location of the CLPX-2 lidar footprint in Colorado, USA, with nearby towns, SNOTEL sites, and IOP in situ hourglass (HG)

measurement transect locations indicated.

3 Methods

3.1 Lidar acquisitions

Due to the supportive role of the lidar surveys, only two

flights were planned and carried out concurrent with the

POLSCAT radar acquisitions. On 3 December 2006 and

22 February 2007 lidar acquisitions were obtained by Fugro

Horizons, Inc. using a Leica ALS50 laser range finder on-

board a Cessna 310 aircraft flying at 3000 m above ground

level. The 1064 nm laser wavelength is optimal for snow-

covered surfaces owing to the minimal penetration depth

on the order of only 1 cm (Deems et al., 2013). The pulse

rate of 32 500 Hz, combined with the aircraft’s speed, alti-

tude, and scan rate, resulted in raw point clouds with nomi-

nal point spacings of 2.0–2.5 m, depending on surface rough-

ness, canopy coverage and scan angle relative to the aircraft.

The lidar vendor filtered vegetation returns from ground

returns using a minimum block mean algorithm and pro-

prietary software to create vegetation-filtered point clouds

for each flight with updated nominal point spacings of 2.5–

3.0 m, again depending on the terrain, canopy cover and scan

angle. Various alternative filtering algorithms were explored

during the course of this study, but the decision was ulti-

mately made to utilize the vendor-filtered data in order to

maintain consistency over the large variety of landscapes.

Next, we applied the open-source Points2Grid interpolation

tool, employing an inverse distance weighting scheme, to

produce a 5 m digital surface model (DSM) for both of the

vegetation-filtered point clouds. Because the CLPX-2 lidar

scans were never acquired over an absolutely snow-free sur-

face, as many of the higher elevations had already received

snow by 3 December, the interpolated surfaces were differ-

enced to provide a raster of the estimated change in total

snow height between 3 December and 22 February at 5 m res-

olution (Fig. 2a). This 5 m gridded product of lidar-estimated

changes in snow depth will hereafter be referred to as1lidar.

Though less dense than the original CLPX-1 point clouds

used by Deems et al. (2006), Trujillo et al. (2007), and Mc-

Creight et al. (2014), the CLPX-2 lidar footprint covered a

greater variety of terrain, vegetation, and snowpack classes,

thereby providing a useful comparison tool for hydrologic

snow models over large spatial extents.

3.2 In situ measurements

All remote sensing methods are subject to an appreciable

amount of measurement uncertainty which should be quan-

tified, if possible, by ground truth validation. The CLPX-

2 intensive manual measurement campaigns were arranged

The Cryosphere, 9, 13–23, 2015 www.the-cryosphere.net/9/13/2015/



A. Hedrick et al.: Lidar validation of SNODAS 17

False Easting [km]

Fa
ls

e 
N

or
th

in
g 

[k
m

]

CLPX−II Lidar−derived Snow Depths [cm]

 

 

*LLcorner = [336720 mE, 4464475 mN]
0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

−100

−50

0

50

100

150

200

False Easting [km]!

Fa
ls

e 
N

or
th

in
g 

[k
m

]!

CLPX-II Lidar-derived Snow Depth [cm]!
at 5-meter resolution!

*LLcorner = [337338 mE, 4463901 mN]!

*!

Steamboat Springs!

Coalmont!

Rand!

False Easting [km]

F
a
ls

e
 N

o
rt

h
in

g
 [
km

]

SNODAS modeled snow accumulation [cm]
Dec 3, 2006 − Feb 22, 2007

 

 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

−10

0

10

20

30

40

50

60

70

80

90

= Lidar Footprint

= SNOTEL Sites

*LLcorner (UTM zone 13):!
[337338 mE, 4463901 mN]!:  SNOTEL site!

False Easting [km]

F
a
ls

e
 N

o
rt

h
in

g
 [
k
m

]

SNODAS modeled snow accumulation [cm]
Dec 3, 2006 − Feb 22, 2007

 

 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

−10

0

10

20

30

40

50

60

70

80

90

= Lidar Footprint

= SNOTEL Sites

Fa
lse

 N
or

th
in

g 
[k

m
]!

False Easting [km]!
0! 10! 20! 30! 40! 50! 60! 70! 80!

30!

25!

20!

15!

10!

 5!

 0!

80!

60!

40!

20!

centim
eters!

0!Fa
ls

e 
N

or
th

in
g 

[k
m

]!

False Easting [km]!
0! 10! 20! 30! 40! 50! 60! 70! 80!

30!

25!

20!

15!

10!

 5!

 0!

200!

150!

100!

50!

centim
eters!

-100!
False Easting [km]

Fa
ls

e 
N

or
th

in
g 

[k
m

]

CLPX−II Lidar−derived Snow Depths [cm]

 

 

*LLcorner = [336720 mE, 4464475 mN]
0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

−100

−50

0

50

100

150

200

False Easting [km]!

Fa
ls

e 
N

or
th

in
g 

[k
m

]!
CLPX-II Lidar-derived Snow Depth [cm]!

at 5-meter resolution!

*LLcorner = [337338 mE, 4463901 mN]!

*!

Steamboat Springs!

Coalmont!

Rand!

-50!

0!

(a)!

Easting [m]
UTM Zone 13T

No
rth

ing
 [m

]

Median Lidar−measured Accumulation [cm] at SNODAS resolution [30 arc second]
Dec 3, 2006 − Feb 22, 2007

Derived from 5 meter resolution DEM

 

 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

−10

0

10

20

30

40

50

60

70

80

90

False Easting [km]

F
al

se
 N

or
th

in
g 

[k
m

]

SNODAS modeled snow accumulation [cm]
Dec 3, 2006 − Feb 22, 2007

 

 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

−10

0

10

20

30

40

50

60

70

80

90

= Lidar Footprint
= SNOTEL Sites

Fa
ls

e 
N

or
th

in
g 

[k
m

]!

False Easting [km]!
0! 10! 20! 30! 40! 50! 60! 70! 80!

30!

25!

20!

15!

10!

 5!

 0!

80!

60!

40!

20!

centim
eters!

0!

(b)!

False Easting [km]

F
a
ls

e
 N

o
rt

h
in

g
 [
km

]

SNODAS modeled snow accumulation [cm]
Dec 3, 2006 − Feb 22, 2007

 

 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

−10

0

10

20

30

40

50

60

70

80

90

= Lidar Footprint

= SNOTEL Sites

*LLcorner (UTM zone 13):!
[337338 mE, 4463901 mN]!:  SNOTEL site!

False Easting [km]

F
a

ls
e

 N
o

rt
h

in
g

 [
k
m

]

SNODAS modeled snow accumulation [cm]
Dec 3, 2006 − Feb 22, 2007

 

 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

−10

0

10

20

30

40

50

60

70

80

90

= Lidar Footprint

= SNOTEL Sites

Fa
lse

 N
or

th
in

g 
[k

m
]!

False Easting [km]!
0! 10! 20! 30! 40! 50! 60! 70! 80!

30!

25!

20!

15!

10!

 5!

 0!

80!

60!

40!

20!

centim
eters!

0!

(c)!

Figure 2. Estimates of snow depth change between 3 Decem-

ber 2006 and 22 February 2007 along with the six nearby SNOTEL

sites used by SNODAS for data assimilation. (a) represents the 5 m

resolution lidar-derived snow depth change, 1lidar, (b) shows the

upscaled lidar estimates of snow depth change at the 1 km SNODAS

resolution, and (c) is the difference in SNODAS estimates of snow

depth, 1SNODAS, on the dates of the lidar acquisitions, with the

lidar footprint outlined for reference.

and completed by a team of 12–15 researchers during each

IOP, and originally intended to be the primary ground truth

data set for the multi-temporal POLSCAT radar acquisitions

over the 2006–2007 winter season (Yueh et al., 2009). 12

500× 500 m “hourglass” transects (Fig. 1, and henceforth re-

ferred to as HG sites), comprised of 47–50 evenly spaced

snow depth measurements, were manually sampled during

IOP-1 and IOP-3 within a day of each of the CLPX-2 lidar

acquisitions. The HG sites were chosen to represent physio-

graphically distinctive regions of the CLPX-2 survey swath.

Ground crews made measurements at preprogrammed way-

points loaded onto mapping-grade handheld GPS units in or-

der to maintain location consistency for each survey. We es-

timate the resulting relative point-to-point horizontal uncer-

tainty between the HG surveys to be less than 2 m while the

HG transect locations themselves can be approximated to 7 m

in absolute space. The repeated HG surface elevation mea-

surements were differenced to provide a similar comparison

metric of snow depth change, or1HG, to the1lidar data set.
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Figure 3. SNODAS estimates of snowmelt as a percentage of the

estimated mass lost from the estimated mass gained due to accu-

mulation between 3 December 2006 and 22 February 2007. Mass

loss due to ambient air temperature and solar radiation between the

survey dates can be effectively eliminated as a cause of model error

over much of the CLPX2 survey footprint.

3.3 SNODAS snow depths

SNODAS estimates of snow depth were downloaded from

the NSIDC for the two dates of the CLPX-2 lidar acquisi-

tions (3 December 2006 and 22 February 2007), then spa-

tially referenced to the UTM coordinate projection. The two

rasters of snow depth were differenced to provide 1 km grid-

ded model estimates of snow depth change, hereafter referred

to as 1SNODAS. Figure 2c depicts 1SNODAS over the

area surrounding the lidar swath, along with the locations of

all nearby SNOTEL stations that can be used for model as-

similation when necessary. In order to aid in uncoupling the

causal influences of error within the model, we examined the

SNODAS estimates of snowmelt due to incoming solar radi-

ation and ambient air temperature between the survey dates

(Fig. 3). Only in the North Park region did any appreciable

melt occur (10–20 % of the total snow precipitation), while

everywhere else experienced negligible mass loss. Therefore,

we can be more certain that 1SNODAS discrepancies from

1lidar were due to other factors such as sublimation and den-

sification routines within the model or uncertainties in the

lidar data.

3.4 SNODAS/in situ measurement comparison

To provide a link to the previous ground-based SNODAS val-

idation studies, we examined the ability of manual measure-

ments from the 12 HG sites to represent 1SNODAS. Men-

tioned previously, Clow et al. (2012) averaged depth mea-

surements from snow surveys performed within 45 individ-

ual SNODAS pixels to perform model validation. We em-

ployed the same basic method to assess SNODAS-predicted

snow depth changes using the CLPX-2 in situ 1HG tran-

sects. The mean 1HG over each HG site was calculated

along with an associated interquartile range. Then, a new co-

incident 1 km2 1SNODAS estimate was constructed around

each HG transect site from the areal coverage fraction of the

four overlapping SNODAS pixels, creating an area-weighted
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average of 1SNODAS centered over each 1HG measure-

ment site. This spatial averaging was performed because the

CLPX-2 campaign was not designed during the planning

phase to be a validation source for SNODAS, and the HG

transects were therefore not aligned within individual model

pixels.

3.5 Characterizing lidar uncertainty

The 750 km2 CLPX-2 lidar data set (1lidar) overlaps 980

individual SNODAS pixels completely1, supplying a statisti-

cally robust validation data set for determining contributing

factors to SNODAS uncertainty. However, 1lidar measure-

ments are fundamentally estimates themselves and require

uncertainty assessments, which was available from the in situ

1HG transects. To account for the horizontal position uncer-

tainty in both the1HG and1lidar data sets, the 5-meter grid-

ded 1lidar estimates were averaged in a 10 m radius around

each reported in situ point measurement location and treated

as a separate point measurement for comparison purposes.

To perform the model comparison, the 5 m 1lidar esti-

mates were binned into the spatial extents of the 980 overlaid

1SNODAS grid cells. Statistics were calculated within each

1 km pixel, resulting in a mean, standard deviation, and in-

terquartile range of 1lidar estimates over the CLPX-2 study

area at the SNODAS model resolution. These mean 1lidar

estimates are portrayed in Fig. 2b.

4 Results and discussion

To link this study to previous SNODAS validation efforts that

used independent manual measurements, we compared the

12 averaged in situ 1HG transect pixels to the 1SNODAS

estimates to determine the feasibility of validating the model

with in situ gathered data. The comparison is shown as the

blue circles in Fig. 4. The trend of this limited data set of only

12 measurement points suggests that as the mean snow depth

within a model pixel increases above approximately 40 cm,

the ability of SNODAS to estimate the amount of total snow

depth change decreases substantially. Also, without access to

the NOHRSC Snow Model source code, it is not possible to

discern the physiographic factors that could be influencing

such discrepancies using the relatively small sample size of

the in situ measurements alone. A much more spatially con-

tinuous data set, such as the CLPX-2 lidar, is necessary to

begin quantifying the underlying causes of SNODAS uncer-

tainty.

The exhaustive CLPX-2 in situ HG measurement cam-

paign provided an ideal data set for limiting uncertainty in the

large-scale lidar surveys of 3 December 2006 and 22 Febru-

1Though previously stated as nominally 1 km2, the actual reso-

lution of SNODAS is 30 arcsec because the model is implemented

in the geographic coordinate system (Barrett, 2003). At the CLPX-2

latitude, 30 arcsec≈ 830 m.
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Figure 4. 1SNODAS (blue circles) and 1lidar (red crosses) snow

depths evaluated over the centers of the 121HG measurement tran-

sects. The 1lidar points were determined by averaging each re-

ported 5 m resolution 1lidar snow depth within a 10 m radius of

each reported HG measurement, then averaging again over each HG

transect site. The1SNODAS estimates were the areal-weighted av-

erages of the four nearest SNODAS pixels to the center of each HG

transect site.

ary 2007. The changes in snow depth as measured by the

standard probing method and interpolated from the lidar sur-

veys were compared throughout all 12 HG sites individually,

and then averaged on a site-by-site basis similar to the av-

eraging scheme used by Clow et al. (2012). The red crosses

in Fig. 4 indicate the correlation between the upscaled1lidar

with the mean1HG measurements. As stated previously, the

comparison data set of lidar snow depth change was deter-

mined from the average 5 m gridded 1lidar estimate within

a 10 m radius surrounding each reported1HG measurement.

The purpose of the 1lidar areal averaging was to account

for error in the handheld GPS units that were used to lo-

cate survey points. The resulting 12.9 cm rms difference be-

tween mean1HG and mean1lidar point estimates for all 12

CLPX-2 HG sites is well within the bounds of conventional

airborne lidar uncertainty estimates (Baltsavias, 1999; Hodg-

son and Bresnahan, 2004). The 1lidar observations resulted

in a higher r2 value (0.942) than the 1SNODAS depth esti-

mates (0.655), but exhibited a small negative bias of≈ 12 cm

over all the HG sites.

The presence of a slight negative bias in the 1lidar results

with respect to the manual measurements could be due to a

combination of contributing factors: (1) a number of Decem-

ber lidar returns may have not fully penetrated the low-lying

brush and grass, resulting in lower estimates of snow depth
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Figure 5. SNODAS model estimates plotted against mean lidar-

derived snow depth change within all 1 km2 SNODAS pixels (n=

980).

change; (2) the snow depth probe tips may have penetrated

the soil more easily during the February in situ measurement

campaign, which would have produced higher estimates of

snow depth change; and (3) the difference in measurement

support that exists between the tip of a snow depth probe

(< 1 cm) and spatially averaged and interpolated 5 m lidar

may have had an effect on the 1 km2 averaged snow depth

change as the spatial variability of each site increased. Nev-

ertheless, the negative bias of 5–15 cm shown in Fig. 4 is on

the order of the lidar uncertainty, and since the sample size of

comparisons was so small relative to the total area of the sur-

vey footprint, no bias correction was performed on the1lidar

data for the SNODAS validation.

The comparison between 1SNODAS and mean 1lidar

within the model pixels (Fig. 5) resulted in an r2
= 0.72, sig-

nifying a reasonably strong correlation between the two esti-

mate data sets. Since snowmelt between the lidar flights was

found to be an insignificant portion of the snowpack evolu-

tion (Fig. 3), the actual changes in snow depth over the study

area were primarily influenced by accumulation, densifica-

tion, sublimation, and redistribution factors.

To investigate the primary cause of disagreement between

1SNODAS and 1lidar, seven potential explanatory phys-

iographic variables were culled from the lidar data to per-

form a regression analysis. In addition to the1lidar estimates

and the vegetation-filtered elevations, vegetation height and

canopy coverage across the survey swath was calculated at

5 m resolution using both the raw and vegetation-filtered De-

cember lidar point returns. Vegetation heights and elevations

were each upscaled to the 1 km SNODAS resolution in a sim-

ilar fashion to the lidar snow depth change, while the vegeta-

tion cover was calculated by finding the number of 5 m pixels
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Figure 6. Pixel by pixel 1SNODAS−1lidar differences of snow

depth change plotted against the mean1lidar within each SNODAS

pixel. The pink and blue shaded areas represent the ±13 cm er-

ror threshold for the upscaled lidar estimates determined from the

CLPX-2 in situ 1HG measurements. Three grouped regions are

depicted that were found to contain model pixels of significant

1SNODAS−1lidar discrepancies (>±13 cm). Also plotted is a

histogram of differences showing a bias toward higher SNODAS

estimates across the CLPX-2 study area.

within each 1 km SNODAS grid cell that contained lidar first

returns greater than 50 cm above the filtered surface. Lastly,

the interquartile ranges (IQRs) of the 5 m variables were de-

termined within each model pixel, resulting in the following

group of seven individual predictor variables for regression

analysis:

1. vegetation cover (%)

2. mean vegetation height (m)

3. interquartile range of vegetation height (m)

4. mean snow depth change (1lidar) (cm)

5. interquartile range of snow depth change (cm)

6. mean elevation (m)

7. interquartile range of elevation (m).

The relative importance of each of the seven predictor

variables with regard to the 1SNODAS−1lidar differences

within each of the 980 model cells was determined by stan-

dardizing the predictors to correct for unit differences, then

performing a stepwise multiple linear regression. The re-

sulting β coefficients, t statistics, and the relative impor-

tance of each of the singular predictor variables are pre-

sented in Table 1 in order of importance to the linear model.

The upscaled snow depth changes (#4) were overwhelmingly

found to best predict the discrepancy between 1SNODAS

and 1lidar, indicating that none of the other six explana-

tory variables had a significant effect on SNODAS perfor-

mance over the entire study area. However, as terrain and
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Table 1. Summary table of the stepwise multiple linear regression for predicting 1SNODAS–1lidar differences using seven explanatory

variables from the CLPX-2 lidar surveys. Relative importance was determined from the ratio of the individual t statistics to the sum of all t

statistics.

β− |t statistic| Relative

Predictor variable coefficient (|β| – Std. error) importance

Mean 1lidar (cm) −17.075 52.936 62.8 %

Mean elevation (m) 3.729 13.208 15.7 %

1lidar IQR (cm) 2.282 6.625 7.9 %

Vegetation cover (%) −2.048 4.050 4.8 %

Mean vegetation height (m) 1.989 3.742 4.4 %

Vegetation height IQR (m) 1.097 2.970 3.5 %

Elevation IQR (m) −0.291 0.735 0.8 %
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Figure 7. Image of the difference (1SNODAS−1lidar) between

model and remote sensing estimates of snow depth change between

3 December 2006 and 22 February 2007 over the CLPX-2 study

area. The three outlined regions correspond to the regions high-

lighted in Fig. 6.

canopy coverage certainly have an influence on model per-

formance and lidar uncertainty, it should be noted here that

smaller subsets of the survey area might have yielded differ-

ing results from our analysis of the entire 750 km2 study area.

Figure 6 shows the plot of mean 1lidar estimates against

the1SNODAS−1lidar differences within each model pixel.

Within that plot, the pink vertical and blue horizontal shaded

areas between −13 and +13 cm on each axis represent the

minimum attainable resolution of the 1lidar estimates de-

termined from the 1HG ground-based measurement data.

Three regions have been circled in the figure, each corre-

sponding to portions of the difference data set that were

found to be outside the uncertainty levels of the lidar-derived

changes in snow depth.

Contrasting the images of 1SNODAS−1lidar (Fig. 7)

and mean 1lidar (Fig. 2b) reveals the geographic locations

of the three regions within the survey swath containing the

greatest SNODAS and lidar disagreements. Within these

three regions specific physiographic factors are likely the

causes of greater relative discrepancies.

Region #1: North Park

The region within the survey area exhibiting the lowest an-

nual snow totals is approximately delineated within Fig. 7,

and is comprised of pixels that SNODAS has estimated to

have had a larger positive change in snow depth than that of

the lidar acquisitions (Fig. 6). However, the lidar snow depth

changes within these pixels are well below the trusted lidar

uncertainty level (the pink vertical shading). These pixels are

located in the North Park region of the survey area, where the

flat landscape is densely populated by low sagebrush (≈ less

than 30 cm) and high winds frequently scour the snow above

and near the height of the sage throughout the winter. The

snow that remains is subsequently packed between the low

vegetation, and the snow height changes very little through-

out the year once it has reached a height similar to the sage-

brush. SNODAS does incorporate a sublimation factor due to

wind into the accumulation model, but requires an accurate

representation of wind speed and direction as input to the as-

similation step. In the case of the prairie-like North Park area

the nearest meteorological station used by the model assimi-

lation step is a sheltered SNOTEL site located nearly 15 km

to the southwest in very different terrain and at a higher al-

titude, affecting not only the wind forcings, but also solar

radiation as well. Further study is required to quantify the ef-

fect of the distance from assimilation measurement sites on

SNODAS performance for remote areas such as North Park.

Region #2: east slope of Rabbit Ears Pass

Pixels that comprise region #2 in Fig. 6 are where snow

depths are similarly estimated by SNODAS to have accumu-

lated more snow than observed by the lidar. However, the

pixels are in a region with higher snow accumulation totals,

which are above the lower lidar uncertainty level of 13 cm.

Again delineated in Fig. 7, these pixels are nestled directly

to the east of Rabbit Ears Pass where the Columbine SNO-

TEL station provides assimilation data for SNODAS. Since

the relative error of the lidar observations is small and a large

altitudinal effect can be seen in the 1lidar (Fig. 2b), this dis-
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crepancy can possibly be attributed to SNODAS distributing

the SNOTEL information to areas of lower elevations and

vegetation types. Future study on regions such as this would

be important for determining optimal precipitation forcings

by the SNODAS data assimilation process.

Region #3: Rabbit Ears Pass

Finally, the region #3 pixels represent an area where the up-

scaled lidar changes in snow depth are significantly larger

than the SNODAS estimates. These pixels occur primarily in

topographically complex areas with exceptionally high snow

totals and dense coniferous forests, once again outlined in

Fig. 7. The probable controlling factor of underestimation

by SNODAS in this region is the sub-kilometer-scale het-

erogeneity of snow distribution caused by both vegetation

and topography. Furthermore, canopy interception remains

an important aspect of the mountain snow energy balance

that is still not well understood (Marks et al., 2008; Pohl

et al., 2014), adding uncertainty to the assimilation model

framework. SNODAS has been found to underestimate snow

depths in similar forested alpine terrain (Anderson, 2011),

so this result is not unexpected. Areas such as Rabbit Ears

Pass are of primary interest to water managers due to the

amount of water stored in the snowpack, so more analysis

is required to effectively constrain SNODAS uncertainty in

complex, deep snowpacks.

5 Conclusions

Over the past decade, high-resolution snow depth informa-

tion has become a highly sought-after data product by snow

researchers and many scientific questions have been ad-

dressed using the spatial continuity and extent provided by

lidar surveys. This study first examined the ability of ground-

based measurements to constrain remote sensing uncertainty,

and in turn compared the remote sensing estimates to an op-

erational hydrologic model for validation purposes. In this

case, the CLPX-2 ground truth campaign was vitally impor-

tant for quantifying uncertainty in the lidar snow depth esti-

mates, emphasizing the necessity of similar in situ campaigns

to complement future lidar remote sensing missions.

From the comparison study, three distinct regions were ex-

tracted from the survey footprint that exhibited greater dis-

agreement than could be explained by lidar estimate uncer-

tainty alone. It is our opinion that the distinct physiographic

characteristics within these three regions ultimately affected

the accuracy of the SNODAS predictions of snow height

change between the two lidar acquisitions.

To further investigate model performance, more studies

are needed from subsequent large extent lidar surveys to fo-

cus on the accuracy of SNODAS as a function of distance

from SNOTEL stations. Additionally, micro-scale wind re-

distribution effects could be applied within the model struc-

ture to assist in areas where blowing snow transport is a ma-

jor cause of spatial variability. Finally, large-scale coincident

density surveys would allow model validation with lidar-

derived snow depths as well as in situ estimates of SWE, for

which SNODAS is likely to be more accurate than compared

with depth alone.
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