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Abstract. Investigations into the physical characteristics of
deep firn near the lock-in zone through pore close-off are
needed to improve understanding of ice core records of past
atmospheric composition. Specifically, the permeability and
microstructure profiles of the firn through the diffusive col-
umn influence the entrapment of air into bubbles and thus
the ice age–gas age difference. The purpose of this study is
to examine the nature of pore closure processes at two po-
lar sites with very different local temperatures and accumu-
lation rates. Density, permeability, and microstructure mea-
surements were made on firn cores from the West Antarctic
Ice Sheet (WAIS) Divide, a site that has moderate accumu-
lation rates with a seasonal climate archive, and Megadunes
in East Antarctica, a site that is a natural laboratory for ac-
cumulation rate effects in the cold low-accumulation desert.
We found that the open pore structure plays a more impor-
tant role than density in predicting gas transport properties,
throughout the porous firn matrix. For firn below 50 m depth
at both WAIS Divide and Megadunes, finer-grained layers
experience close-off shallower in the firn column than do
coarser-grained layers, regardless of which grain size layer
is the denser layer at depth. Pore close-off occurs at a critical
open porosity that is accumulation rate dependent. Defining
pore close-off at a critical open porosity for a given accumu-
lation rate as opposed to a critical total porosity accounts for
the pore space available for gas transport. Below the critical
open porosity, the firn becomes impermeable despite hav-
ing small amounts of interconnected pore space. The low-
accumulation sites, with generally coarse grains, close off
at lower open porosities (∼ < 10 %) than the open porosity
(∼ > 10 %) of high-accumulation sites that have generally
finer grains. The microstructure and permeability even near
the bottom of the firn column are relic indicators of the nature

of accumulation when that firn was at the surface. The phys-
ical structure and layering are the primary controlling factors
on pore close-off. In contrast to current assumptions for polar
firn, the depth and length of the lock-in zone is primarily de-
pendent upon accumulation rate and microstructural variabil-
ity due to differences in grain size and pore structure, rather
than the density variability of the layers.

1 Introduction

As an archive for past atmospheric composition, the polar
ice sheets play an important role in understanding climate
change, both natural and anthropogenic in origin. The sur-
face of the Greenland and Antarctic ice sheets is covered in
a 60–120 m-thick layer of firn, multiyear snow that under-
goes further metamorphism with depth until it becomes solid
ice at the firn–ice transition. The firn layer acts as a filter on
atmospheric signals that are eventually captured within bub-
bles in the underlying ice. Because air within the firn column
can exchange with the atmosphere until deep in the firn at
the start of the lock-in zone, or at pore close-off at sites with
no lock-in zone, where horizontal layers of firn become im-
permeable, impeding vertical gas transport, the air entrapped
in bubbles of the ice matrix is always younger than the ice
(Schwander and Stauffer, 1984). Knowing the depth at which
air can no longer exchange with the atmosphere is pivotal for
determining the gas age–ice age difference. At present-day
polar sites, most studies have focused on the bulk properties
of the firn, and not until the recent past have studies started
to include the layered nature of the firn (Albert et al., 2004;
Courville et al., 2010; Freitag et al., 2004; Fujita et al., 2009;
Horhold et al., 2011).
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A typical firn column can be divided into three main zones
based on the dominating gas transport mechanisms operat-
ing at a given depth (Sowers et al., 1992). Gas movement
in the top of the firn column, the convective zone, is domi-
nated by convection due to highly permeable firn and/or wind
pumping. Below the convective zone is the diffusive zone,
where the main gas transport mechanism is molecular diffu-
sion. Near the base of the diffusive zone is the non-diffusive
or lock-in zone (LIZ) characterized by layers of firn, some of
which are permeable and some are not. At the top of the LIZ
is the lock-in depth (LID), the depth at which the first imper-
meable horizontal layer of firn impedes vertical gas exchange
with the atmosphere. The bottom of the LIZ is at the close-off
depth beyond which all pores are closed off from one another
both vertically and horizontally and no gas transport exists.

A useful technique to examine firn microstructure is X-ray
computed tomography. While X-ray computed tomography
is well established in soil science (Taina et al., 2008), initial
application to polar firn has only happened in the last 10–15
yr (e.g., Coleou et al., 2001; Freitag et al., 2004; Schneebeli
and Sokratov, 2004). Several studies have been done using
X-ray computed tomography to examine the microstructure
of polar firn. Lomonaco et al. (2011) examined the evolution
of fine-grained layers from the surface through pore close-
off. Freitag et al. (2004) and Fujita et al. (2009) focused
primarily on understanding how microstructure differences
between fine-grained and coarse-grained firn influences the
densification rate of polar firn. Other studies include the in-
fluence of microstructure, either from thick sections or X-
ray computed tomography on the permeability of firn at the
top of the firn column (Albert et al., 2004; Courville et al.,
2007; Rick and Albert, 2004). Courville et al. (2010) and
Freitag et al. (2002) used 3-D reconstructions of firn cube
microstructure to model centimeter-scale permeability of firn
using lattice Boltzmann techniques. The specific influence of
microstructure on bulk properties affecting gas transport in
deep firn has not been well investigated.

Pore close-off has been studied through three approaches:
(1) density predicted from densification models, (2) in
situ through firn air measurements and modeling, and (3)
laboratory-based permeability measurements. An inherent
issue in understanding the processes controlling pore close-
off is an integration between microscale processes and
macroscale processes. For example, in situ firn air measure-
ments are taken on a meter scale over many layers of firn,
while laboratory-based permeability measurements are taken
on the centimeter scale and often incorporate a single ho-
mogenous firn layer. Several studies have been done in an
attempt to understand the percolation nature of pore close-
off (Entig, 1993; Freitag, 2008). While macroscale processes
involved with gas transport through firn are important, un-
derstanding the origins of pore close-off on a much smaller
scale through the microstructural properties of the firn should
provide insight for understanding gas transport through firn
and for enabling improvements in firn air modeling.

The traditional assumption is that pore close-off density
is site specific, and the first layers of firn to reach this den-
sity will close-off and no longer exchange air with the atmo-
sphere. Martinerie et al. (1992) used sixteen different sites
to parameterize the mean density of pore close-off based on
the temperature of the sites. Parameterizing close-off with a
mean density ignores the layered nature of firn and the pres-
ence of a lock-in zone. To account for the length of the lock-
in zone in firn densification modeling, Goujon et al. (2003)
used a closed porosity of 37 % to indicate the close-off depth
(bottom of the lock-in zone), a closed porosity of 21 % for
Vostok, Antarctica, and 13 % for Summit, Greenland, to in-
dicate the lock-in depth. The thickness of present-day lock-
in zones tends to increase with an increase in accumulation
rate (Landais et al., 2006). An increase in lock-in zone thick-
ness at high-accumulation sites has been linked by Horhold
et al. (2011) to a second period of high density variability
using high-resolution density measurements. In this paper,
using laboratory measurements on firn cores retrieved from
Antarctica, we explore the role of microstructure including
pore structure on the nature of layers in deep firn and the
range of depths where pore close-off occurs.

The second approach for assessing pore close-off in polar
firn is through in situ bulk firn air measurements accompa-
nied by firn modeling. Firn air campaigns have been con-
ducted at a number of Arctic and Antarctic sites where trace
gas and isotopic fractionation are used to locate the lock-in
depth. The deepest location where air can be sampled from
the firn column is typically considered the close-off depth
and the bottom of the lock-in zone (Clark et al., 2007; Buiz-
ert et al., 2012a; Kawamura et al., 2006; Schwander et al.,
1993; Witrant et al., 2012; Etheridge et al., 1996; Trudinger,
2001; Severinghaus et al., 2001, 2010; Fabre et al., 2000;
Battle et al., 2011). Firn air models have been developed to
construct effective gas diffusivity profiles through a combi-
nation of forward and inverse modeling (e.g., Rommelaere et
al., 1997; Trudinger et al., 1997, 2002; Buizert et al., 2012a).
These models use density profiles derived from densification
models to estimate an open porosity profile of an individ-
ual site. The open porosity profile is then used to predict
effective diffusivity profiles for various tracer gases at the
site. The effective diffusivity profile is then tuned based on
measurements until a good fit is found. While this method
apparently works well for present-day sites where firn air
measurements are available, better parameterization of polar
firn based on temperature and accumulation rate is needed in
order to use firn air models accurately for firn columns ex-
isting in past environments (Brook, 2013). Schwander et al.
(1988) demonstrated a relationship for tortuosity as a func-
tion of porosity at Siple Station, Antarctica, but this relation-
ship does not account for microstructural differences in polar
firn from site to site. In an attempt to better characterize gas
transport and open porosity, Freitag et al. (2002) fitted both
gas diffusivity and permeability to open porosity using two
power law functions with exponents 2.1 and 3.4, respectively,
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for firn from Summit, Greenland. The results from Schwan-
der et al. (1988), Fabre et al. (2000) and Freitag et al. (2002)
agree reasonably well for open porosities greater than 0.2 but
diverge at low porosities, and none account for the layered
nature of firn or density variability of the lock-in zone.

This study aims to better understand the role firn mi-
crostructure plays in controlling gas transport in deep firn
and to investigate the validity of using density (bulk or local)
to predict gas transport in polar firn, including pore close-
off, by comparing firn structure from two Antarctic sites,
WAIS Divide and Megadunes, which are both sites that do
not experience melt but that have very different local cli-
mates. The WAIS Divide site in West Antarctica has a mean
annual temperature of−31◦C and gets significant annual ac-
cumulation. The very cold Megadunes site in the polar desert
of East Antarctica is a natural laboratory for the study of in-
vestigation of accumulation rate on firn properties (Courville
et al., 2007). Our microstructural analysis, density and per-
meability measurements show the importance of grain and
pore structure over local density and open porosity in con-
trolling gas transport and the pore close-off process. We in-
vestigate links between accumulation rate, pore structure and
gas transport properties affecting permeability, gas diffusiv-
ity and pore close-off in deep firn.

2 Methods

2.1 Visual stratigraphy

Stratigraphic layering of the firn was observed and recorded
using a backlit light table in a cold room at the Cold Re-
gions Research and Engineering Laboratory in Hanover, NH.
Meter-long core sections were placed on the light table where
grain size and wind crusts were recorded to the 1 mm scale.
Relative grain size was qualitatively described using a five-
tier scale from coarse to fine for each meter length sec-
tion. Coarse grains and fine grains were defined relative to
other layers within the meter-long section. The most coarse-
grained layers meter by meter are identified as coarse, while
the most fine-grained layers are identified as fine grain. All
other firn grain layers are classified into four categories be-
tween these two identifiers. In this way, the quantitative mea-
surements of a fine-grain layer at the surface and a fine-grain
layer at depth are not the same; the qualitative scale was done
in order to describe the layering. Comparison between the
WAIS Divide site and the Megadunes site was also done vi-
sually with a backlit light table in which the coarse-grain lay-
ers at WAIS Divide below 55m were observed to be smaller
relative to the fine-grain layers at Megadunes below 55 m.
Samples of 5–10 cm of similar grain size were cut for further
analysis. Emphasis was put on obtaining a single homoge-
nous layer of firn per sample whenever possible, in order to
facilitate comparisons of the measured transport properties
with quantitative microscopy results.

2.2 Bulk density

Bulk density measurements were made on the same 5–10 cm-
resolution samples using volumetric measurements and the
mass of the sample. Error in density measurements was
small, with less than 0.5 % standard deviation for 10 repeat
measurements on a single sample. The mass of the sample
from scale measurement is accurate to 1 %, and the volume
of the sample calculated from caliper measurements is ac-
curate to within approximately 2 %. To increase the accuracy
of bulk property measurements, broken and chipped samples,
not of an ideal cylindrical shape, were not included in bulk
density or permeability measurements and are not reported
in this paper.

2.3 Permeability

Permeability measurements were made using the methods
developed by Albert et al. (2000), and used for example in
Rick and Albert (2004), and Courville et al. (2007). Using
a custom apparatus that had been verified on glass beads, air
was drawn through a firn sample, and the associated flow rate
and pressure drop across the sample were measured, along
with temperature and barometric pressure. A variety of flow
rates was employed. Each measured flow rate and associated
measured pressure drop was used with Darcy’s law to calcu-
late the permeability. Flow rates of air through the samples
were kept within the laminar flow regime where Darcy’s Law
holds true:

v =
k

µ
·
dP

dx
, (1)

wherek is the permeability constant,µ is the air viscosity,
dP is the pressure differential, dx is the height of the sam-
ple andν is the flow velocity. Before measurements were
taken the permeameter was calibrated using glass bead sam-
ples. Calibration was complete when measured glass bead
permeability fell within the accepted literature values. Ten
measurements with ten different flow rates were done on
each sample and usually fell within 5–10 % of one another.
At very low permeabilities fewer but at least five measure-
ments were made on each sample due to the low flow rates
needed to stay within the laminar flow regime. The lowest
permeability measured was 1×10−12 m2. All samples whose
measurements fell below the range of the sensitive pressure
transducer were considered impermeable and assigned per-
meability values of 0 m2.

2.4 Microcomputed tomography

Firn microstructure properties were obtained using X4-ray
microtomography. A Skyscan 1172 model microCT was
used in a cold room. Scans were run at 40 kV, a 250 µA cur-
rent intensity, and a rotation step of 0.7◦ completing 180◦

rotation for each run. A total of 275 shadow images were ob-
tained and reconstructed using Skyscan’s NRecon software
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for two-dimensional slice reconstruction. The resolution of
the images obtained is 14.8 µm in which each voxel ob-
tained represents a three-dimensional cube with 14.8 µm side
length. Firn samples were cut to 1 cm width× 1 cm width
× 1.5 cm height segments from the center of the 5–10 cm
samples used in density and permeability measurements. The
volume of interest analyzed for microstructure properties was
538× 538× 673 voxels, or 8 mm× 8 mm× 10 mm in size.
For thresholding 256 grey levels were used and a threshold-
ing value of 89 was set between the air and the ice phase.
The large difference in linear attenuation coefficients (X-ray
absorption) between ice and air enables a simple threshold-
ing limit to be used to binarize the images. To reduce noise
and minimize falsely counting incorrectly binarized voxels
as pores or small ice clusters, all white specs less than 25
voxels surrounded by black voxels were removed and vice
versa. Image analysis on both the ice phase and pore phase
was done to obtain the microstructure properties of both the
ice structure and pore structure of the firn sample.

The microstructural properties, derived using Skyscan’s
CTan software, include total porosity, open porosity, closed
porosity, structural model index, surface-to-volume (S/V )
ratio, and anisotropy. The total porosity of the sample is de-
termined by counting the total number of voxels present for
the phase being analyzed and dividing that by the total num-
ber of voxels within the region of interest. Open porosity is
defined as any pore that intersects with the edge of the region
of interest at least once. From total and open porosity val-
ues, closed porosity of a sample can quickly be determined
through subtraction. To account for closed pores that were
cut during sample preparation, pore size distribution was de-
termined for all samples where the majority of closed pores
had volumes of 1 mm3 or less. Through individual object
analysis all pores with a center within 0.62 mm (the radius
of a 1 mm3 spherical pore) of the edge of the region of in-
terest were considered closed, and open porosity and closed
porosity were adjusted accordingly for each sample.

Structure model index (SMI) gives an estimation for the
type of shape present in the analyzed phase. SMI values of
0, 3 and 4 correspond to an ideal plate, cylinder, and sphere,
respectively. Calculation of SMI follows that developed by
Hildebrand and Rüegsegger (1997) in which one voxel thick-
ness is added to the surface of the phase analyzed. SMI is
then calculated as follows:

SMI = 6
S′

· V

S2
, (2)

whereS′ is the change in surface area between the initial
surface area and the artificially increased surface area,S is
the original surface area, andV is the initial volume of the
analyzed phase. For convex shapes, SMI is positive while
concave structures have negative SMI values. The surface-
to-volume ratio gives the ratio of the analyzed phase sur-
face area to the volume of the phase in three dimensions.
It gives estimation of how tortuous an object is where a

low S/V indicates less complexity in shape than a high
S/V (morphometric parameters measured by SkyscanTM
CT-analyser software, Bruker-MicroCT CT-Analyser,http:
//www.skyscan.be).

Anisotropy is a measure of alignment or three-dimensional
symmetry within the region of interest. The value of
anisotropy is determined using the mean intercept length:
the length of a line traveling through an object divided by
the number of times the line crosses the analyzed phase.
The higher the mean intercept length the more the object
is aligned in a single direction, indicating a high degree of
anisotropy. The mean intercept length is found at many 3-D
angles within the region of interest, and each MIL is plotted
to create an ellipsoid. The ellipsoid is described using an or-
thogonal tensor whose maximum and minimum eigenvalues
are used to determine the degree of anisotropy as follows:

DA = 1−

(
mineigenvalue

maxeigenvalue

)
. (3)

Using this definition, the degree of anisotropy (DA)
ranges from a value of 1, totally isotropic, to infinity, to-
tally anisotropic (morphometric parameters measured by
SkyscanTM CT-analyser software, Bruker-MicroCT CT-
Analyser,http://www.skyscan.be).

3 Site characteristics

The Megadunes and WAIS Divide sites were chosen to pro-
vide two contrasting local climates to understand how cli-
mate influences firn microstructure, gas transport and pore
close-off. WAIS Divide, which was chosen for drilling of a
deep ice core for climate science, is the Antarctic counterpart
to Summit, Greenland, and it has been described by Battle et
al. (2011) as an intermediate site in terms of temperature and
accumulation rate. The Megadunes site in the extremely cold
polar desert of East Antarctica was chosen for comparison
because it essentially constitutes a natural laboratory for the
study of effect of accumulation rate. Courville et al. (2007)
provide a complete description of the manner in which two
different accumulation rates exist under the same tempera-
ture and other climatic conditions at Megadunes. The wind-
ward faces of the low-amplitude, long-wavelength antidunes
experience accumulation, while the leeward faces undergo
zero accumulation or ablation. As the dunes slowly migrate
upwind over decades, past dunes are slowly buried, and the
resulting layering and firn structure provide enduring evi-
dence of alternation between accumulation and hiatus firn
layers as evidence of the layers persist down the firn column
(Courville et al., 2007).

3.1 Megadunes

Measurements of firn air and extraction of a firn core from
a megadunes site in East Antarctica were accomplished
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at an undisturbed site in December 2004–January 2005 at
80.77914◦ S, 124.48796◦ E. Courville et al. (2007) thor-
oughly describe the site details and near-surface measure-
ments, and Severinghaus et al. (2010) describe in situ firn air
measurement results. The average temperature at the site is
−49◦C with an accumulation rate less than 4 cm weq a−1. In
situ firn air measurements at Megadunes done by Severing-
haus et al. (2010) indicate a LIZ from 64.5 m to 68.5 m. The
convective zone at Megadunes is notably very thick, reaching
a depth of∼ 23 m (Severinghaus et al., 2010).

3.2 WAIS divide

The WDC05C firn core was retrieved from a previously
undisturbed site at 79.46300◦ S, 112.12317◦ W near the
WAIS Divide ice coring site for firn air measurements in De-
cember 2005–January 2006 (Battle et al., 2011). The mean
annual temperature at the site is−31◦C and the average ac-
cumulation rate is 21 cm weq a−1 (Banta et al., 2008). The
accumulation rate and average temperature at the site are
both significantly higher than those at the Megadunes loca-
tion. From in situ firn air measurements done by Battle et
al. (2011) a LIZ exists from approximately 66 m to 76.54 m.
Similar to other high-accumulation sites, the convective zone
is small, likely ranging between 1.4 m and 5.2 m in depth
(Battle et al., 2011).

4 Results

This paper primarily discusses the nature of firn at two depth
ranges: one at 30–36 m, which is within the diffusive zone,
and a deeper range encompassing just above the lock-in zone
through pore close-off. Measurements of density, permeabil-
ity, and microstructure in very deep firn are investigated start-
ing at 55 m, approximately ten meters above the start of the
LIZ at both sites that had been determined through in situ firn
air measurements, to a few meters below the close-off depth
at each site. The deepest measurements at WAIS Divide were
78 m, while the deepest measurements done at Megadunes
were 75 m. Including measurements of gas transport and mi-
crostructure above the LIZ enabled examination of trends
and how they relate to pore close-off in both bulk and mi-
crostructural properties. To relate relationships observed in
deep firn to firn at shallower depths, a series of permeabil-
ity and density measurements were done on each core from
30 to 36 m, and are reported here, along with the complete
bulk density profile of WAIS Divide. Analysis at all depths
for both cores includes both fine-grained and coarse-grained
firn layers.

Comparison of bulk properties taken from 5–10 cm-long
samples to microstructural properties taken from 8 mm×

8 mm× 10 mm was done on visually homogenous 5–10 cm-
long samples. By avoiding layered samples, the small mi-
croCT samples were representative of the larger single firn

layered samples used for density and permeability measure-
ments, enabling a valid comparison of properties between
the two sample sizes. While firn air campaigns typically re-
trieve gas samples coming from several layers of firn on the
decimeter to meter scale, gathering a more macroscale in-
terpretation that inherently confounds effects of properties
and processes across multiple scales, a detailed inspection of
firn microstructure (grain size, open porosity, closed porosity,
and pore structure) and its evolution with depth provides in-
sight into the microscale processes involved. Efforts to relate
microstructure and firn permeability to the percolation pro-
cess have been discussed by Entig (1993) and Freitag (2008),
and are beyond the scope of this paper.

4.1 Permeability and density

Density and permeability measurements made between 30
and 36 m and between 55 and 80 m at Megadunes and WAIS
Divide are displayed in Fig. 1. For both sites, the 30–36 m
depths are many meters above the lock-in zone, and the lock-
in zone falls within the 55–80 m depths. The firn at the ini-
tiation of the lock-in zone at Megadunes originated at an ac-
cumulation site when that firn was on the surface. It can be
seen from Fig 1a and b that in the 30–36 m depths above the
lock-in zone, the Megadunes site is much more permeable
than the WAIS Divide site, but their density profiles at this
depth range are similar. Figure 1c shows that even for a given
density in the 30–36 m depth range, Megadunes firn is more
permeable than WAIS Divide firn, above the lock-in zone.

The relationships are different within the lock-in zone. For
depths between 55 and 80 m just above and within the lock-
in zone, it can be seen from Fig. 1d and e that Megadunes
firn is denser than WAIS Divide but the permeability profiles
are similar. Very near and within the lock-in zone, the rela-
tionship existing between density and permeability (Fig. 1f)
shows that Megadunes firn is more permeable for any given
density than is the WAIS Divide firn. The LID, defined as
the depth where multiple sequential samples are imperme-
able, is at 64.4 m at Megadunes and 63.8 m at WAIS Divide,
indicated by a red and black line, respectively.

4.2 Microstructure

Microstructure imaging helps to understand the reasons for
different density and permeability profiles at Megadunes and
WAIS Divide. Figures 2 and 3 display three-dimensional
reconstructions obtained using microcomputed tomography.
The width and thickness of the reconstructed firn cubes is
8 mm while the height is 10 mm. Visually Megadunes firn
(Fig. 2) has larger but less total pore space at an equivalent
depth than WAIS Divide (Fig. 3). The pore structure at WAIS
Divide also looks more complex and divided. For both sites,
total pore space decreases and the occurrence of bubbles in-
creases with depth.
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Figure 1.  a) Density 30-36m, b) permeability 30-36m, c) density/permeability relationship 3 

30-36m, d) density 55-80m, e) permeability 55-80m, f) density/permeability relationship 55-4 

80m. In all graphs, black circles indicate data from  WAIS Divide and red diamonds indicate 5 

data from Megadunes . 6 
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Fig. 1. (a)Density 30–36 m,(b) permeability 30–36 m,(c) density–permeability relationship 30–36 m,(d) density 55–80 m,(e)permeability
55–80 m,(f) density–permeability relationship 55–80 m. In all graphs, black circles indicate data from WAIS Divide and red diamonds
indicate data from Megadunes.

Microstructural analysis enables quantification and vali-
dation of differences in visual observations seen between the
two sites. The SMI profile, an indicator of pore shape, is sim-
ilar for Megadunes and WAIS Divide with depth. The pore
structure at Megadunes and WAIS Divide (Fig. 4) ranges
from semi-cylindrical, an average value of 2 at 56 m with
increasing SMI, to average values of 2.7 at 75 m, indicative
of an almost perfectly cylindrical pore structure. Toward the
end of the LIZ (70–75 m) the pore structure is very close to
cylindrical with some high end values reaching 3.5. The data
from 56 to 75 m show a trend in increasing SMI with depth
that would likely continue to increase to a value of 4 (per-
fect spheres) around the firn–ice transition.S/V character-

izes the complexity of a structure and can serve as a proxy for
tortuosity (Spaulding et al., 2011). Megadunes firn has con-
sistently lower values ofS/V of the pore space than WAIS
Divide, indicating a less tortuous pore structure at a given
depth.S/V at Megadunes is lower than at WAIS Divide at
equivalent densities as well (Fig. 4). Anisotropy profiles of
both sites overlap and are almost completely isotropic. Using
these microstructure parameters to describe pore structure,
Megadunes and WAIS Divide pores are isotropic and evolv-
ing from semi-cylindrical type shapes at mid-depths toward
cylinders in the LIZ. Occasionally, within the LIZ, firn lay-
ers consist of a pore structure closer to spheres, and the fre-
quency of these layers increases with depth. The difference
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Fig. 2. Megadunes 3-D pore space reconstruction where white is the pore phase. Top row (from left to right): 56.25 m, 58.28 m, 60.43 m,
62.75 m, 64.98 m. Bottom row (from left to right): 66.79 m, 68.17 m, 70.30 m, 72.34 m, 73.27 m.
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Fig. 3. WAIS Divide 3-D pore space reconstruction where white is the pore phase. Top row (from left to right): 56.36 m, 58.52 m, 60.45 m,
62.44 m, 64.61 m. Bottom row (from left to right): 66.56 m, 67.38 m, 70.56 m, 73.51 m, 74.50 m.

occurs in tortuosity of the pore matrix, indicated byS/V ,
where WAIS Divide is more tortuous than Megadunes at a
given depth and at a given density.

4.3 Porosity

Porosity of polar firn decreases with depth as firn densifies
and reflects the amount of space that is not filled by ice for a
given volume at a given depth in the firn column. Total poros-
ity of polar firn is the ratio of the air space to the ice matrix
within a given volume. Total porosity is a direct reflection of
density in porous media, and is generally calculated directly
from the measured density of bulk samples as

P = 1−

(
ρ

ρice

)
, (4)

whereP is the porosity of the sample,ρ is the density of the
sample, andρice is the density of pure ice (0.917 g cm−3).
While total porosity is derived from the density of a sample,
open porosity reflects the amount of interconnected intersti-
tial air space available for gas transport. All pores catego-
rized as open are assumed to connect via the complex pore
network to the atmosphere. In contrast, closed porosity in-
dicates the amount of air volume completely surrounded by
ice, where interstitial gas transport cannot occur. All poros-
ity measurements in this study were derived from microcom-
puted tomography analysis on individual firn cubes.

Figure 5a shows that both total porosity and open poros-
ity of Megadunes firn is consistently lower than WAIS Divide
firn at a given depth near pore close-off. Despite having lower
open porosity, the less complex and less tortuous pore matrix
causes Megadunes firn to have larger and straighter air flow
channels, which leads Megadunes firn to be more permeable
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Figure 4.  a) Structure model index, b) Surface to Volume Ratio, c) Anisotropy, d) Surface to 4 

Volume Ratio vs Density for deep firn at Megadunes (red diamonds) and WAIS Divide (black 5 

circles). 6 
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Fig. 4. (a) Structure model index,(b) surface-to-volume ratio,(c) anisotropy,(d) surface-to-volume ratio vs. density for deep firn at
Megadunes (red diamonds) and WAIS Divide (black circles).

than firn at WAIS Divide, for a given density. A less tortu-
ous pore structure allows for greater air movement than if
the pore structure has many twists and turns. While total and
open porosity gradually decrease with depth, closed poros-
ity dramatically increases below the LID as seen in Fig. 5c.
Closed porosity at Megadunes and WAIS Divide is less than
8 % above the LID (Fig. 5). Below the LID, the rate at which
closed porosity increases accelerates.

To understand the acceleration in closed porosity with no
change seen in the rate of decrease in total porosity, the num-
ber and size of pores were examined. Figure 6 shows a de-
crease in pore size below the LID with a large increase in
the total number of pores below the LID. As pore close-off
progresses, WAIS Divide has more variability in the total
number of pores than Megadunes within the LIZ (Fig. 6c).
This is likely due to the small-scale layering of firn at high-
accumulation sites in comparison to firn at low-accumulation
sites (e.g., Landais et al., 2006). For pores less than 10 mm3,
the pores at WAIS Divide tend to be smaller than those at
Megadunes (Fig. 6b). For both sites, the abrupt increase in
closed porosity at the LID corresponds with dissection of
larger open pores in multiple locations to form many smaller
closed or almost closed pores. The dissection of large open
pores begins at an open porosity of∼ 8 % at Megadunes and
∼ 11 % at WAIS Divide.

Another method used by Lomonaco et al. (2011) to ob-
serve the pore close-off process is the closed pore fraction
(CPF), defined as the number of pores divided by the to-
tal pore volume of a given sample. Plotting CPF with depth
for Megadunes and WAIS Divide (Fig. 7) shows a steady
CPF of∼ 1, slightly lower for WAIS Divide, until a depth
of 63 m. Below 63 m, the CPF increases with depth at a con-
stant slope through the LIZ. While the magnitude of CPF
is slightly lower in the present study, the same trend in the
rate of CPF increase was observed through the LIZ at Sum-
mit, Greenland, by Lomonaco et al. (2011). The increase in
CPF in the LIZ of polar firn is the result of large open pores
that are abruptly dissected by the ice matrix initiating the
LIZ. Because firn is a layered material, variability in CPF
is due to microstructural differences between fine-grain and
coarse-grain firn. Thus the microstructural differences in lay-
ering between coarse-grained and fine-grained firn dictate the
thickness and size of the lock-in zone.

While the Megadunes site is within the cold desert of the
East Antarctic plateau, the presence of the megadune features
make it different from Vostok or Dome C, for example, which
are also very cold, low-accumulation sites in East Antarctica.
The presence of the megadune features make the Megadunes
site a natural laboratory for the impacts of accumulation rate
on firnification processes. At the Megadunes site, the endur-
ing evidence of the relic accumulation provides a contrast to
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Figure 5.  a) Total Porosity % of sample, b) Open Porosity % of sample and c) Closed 4 

Porosity % of total porosity for deep firn at Megadunes (red diamonds) and WAIS Divide 5 

(black circles). 6 

Fig. 5. (a) Total porosity % of sample,(b) open porosity % of
sample and(c) closed porosity % of total porosity for deep firn at
Megadunes (red diamonds) and WAIS Divide (black circles).

the rest of the firn, which had experienced accumulation hia-
tus, deep in the firn column. The propagation of the slightly
higher accumulation rate bands of firn through the column
has essentially created a firn column that is shallower than it
would have been without the accumulation effect. Hence the
pore close-off depth at Megadunes is shallower than at either
Vostok or Dome C. Indeed, the presence of the accumulation
band at Megadunes created a lock-in zone that very likely
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Figure 6.  a) Profiles of log pore size, b) pore size and c) number of pores for pores greater 4 

than 0.001mm3 in deep firn, 55m to 80m, for Megadunes (red diamonds) and WAIS Divide 5 

(black circles).   6 
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Fig. 6. (a)Profiles of log pore size,(b) pore size and(c) number of
pores for pores greater than 0.001 mm3 in deep firn, 55 m to 80 m,
for Megadunes (red diamonds) and WAIS Divide (black circles).
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Figure 7.  Closed pore fraction (CPF) for Megadunes (red diamonds) and WAIS Divide 5 

(black circles).   6 
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Fig. 7. Closed pore fraction (CPF) for Megadunes (red diamonds)
and WAIS Divide (black circles).

would not have existed at that site without that accumulation
effect.

5 Discussion

5.1 Application to densification models and LIZ
characteristics

Pore close-off is traditionally defined in layered firn as the
process in which individual layers of firn become imper-
meable and proceeds until all layers are impermeable or
closed off. In the current literature on pore close-off, den-
sity controls the depth at which pore close-off occurs in
an individual layer, and denser layers are thought to close
off shallower than lower-density layers (Martinerie et al.,
1992). Combining density-driven pore close-off and noting
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the density cross-over observed in polar firn (Hörhold et al.,
2011), the first firn layers in deep firn to reach pore close-off
should be the higher-density, coarser-grained layers. Hörhold
et al. (2012) postulate that the firn layers with the highest im-
purity concentration should reach the pore close-off density
first. In contrast, our observations of close-off including mi-
crostructure and density between Megadunes and WAIS Di-
vide suggest that a combination of microstructure and grain
size, rather than density, is the main driving force for an im-
permeable pore structure and pore close-off. Below 45 m,
Megadunes firn is consistently denser than WAIS Divide firn
at a given depth, yet the permeability profiles above the LID
are almost identical. In addition, the LID for both sites is
also very similar: 64.4 m at Megadunes and 63.8 m at WAIS
Divide. To explain the lack of a direct relationship between
density (or porosity) and permeability between Megadunes
and WAIS Divide, the tortuosity of the pore structure must be
taken into account. Megadunes has larger grains than WAIS
Divide at a given density, leading to a less tortuous pore
structure and causing higher permeabilities at a given den-
sity in Megadunes firn than those observed at WAIS Divide.

It should be noted that previous estimates based on den-
sity or porosity, such as those developed by Martinerie et
al. (1992) of mean pore close-off density, are close to the
peak of a Gaussian type density distribution for all imper-
meable layers within the lock-in zone at each site (Fig. 8).
Megadunes, a cold site with an average temperature of
−49◦C, has a predicted mean pore close-off density of
0.830 g cm−3, which is higher than 0.821 g cm−3 at WAIS
Divide, a warmer site with an average temperature of−31◦C
. Our results show that the density range of the distribution
and thickness of the LIZ are dependent upon the microstruc-
ture variability between firn layers even though the firn layers
are not annual layers but were deposited over much longer
intervals of time (Albert et al., 2004). This is consistent with
Landais et al. (2006), who postulated that low-accumulation
sites will have smaller lock-in zones from an homogenous
firn column and lack of annual layering.

Our comparison between two sites of significantly differ-
ent local climates reveals that microstructure and layering,
which were originally established at the surface due to the
impact of accumulation rate, play a significant role in dic-
tating deep-firn permeability and pore close-off. Continued
work to identify the signatures deep in the firn of original
accumulation rate impacts at additional sites should further
strengthen our finding. As commonly seen in polar sites,
WAIS Divide firn exhibits a density cross-over in which ini-
tially higher-density layers consisting of finer-grained firn
are less dense than corresponding initially lower-density lay-
ers consisting of coarser-grained firn. While not highly pro-
nounced on the 5–10 cm scale in Fig. 9, the density cross-
over at WAIS Divide has been noted in high-resolution den-
sity measurements on firn core WDC06A done by Breton
(2011) with a minima in density variability occurring around
30 m. In Fig. 9b, finer-grained layers become impermeable

 34 
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 3 

 4 Fig. 8. Density distribution of impermeable firn samples from the
LID to the end of the LIZ where all samples are impermeable at(a)
Megadunes and(b) WAIS Divide.

shallower than coarser-grained layers, and a coarser-grained
layer is the last permeable layer of the LIZ. Despite having
a lower density and higher porosity at depth at WAIS Di-
vide, finer-grained firn reaches pore close-off first there. Ac-
cumulation and near-surface metamorphism result in either
fine-grained or coarse-grained layers and remain (indepen-
dent of temperature) as identifiable features of the firn lay-
ering as they propagate down the column, leading to shal-
lower pore close-off in fine-grain layers at WAIS Divide.
In addition, the propagation of fine-grained accumulation
results in shallower pore close-off at Megadunes than at
other sites high on the East Antarctic plateau. In contrast,
Megadunes does not exhibit a density cross-over, and ini-
tially dense fine-grained firn at surface accumulation sites on
the upwind dune face remains denser than coarse-grained firn
from surface hiatus sites on the leeward dune face through
pore close-off (Gregory, 2013). These findings show a direct
link between surface deposition microstructure and firn mi-
crostructure within the lock-in zone. It has been suggested
by Hörhold et al. (2012) that impurity content is the con-
trolling parameter on firn densification as opposed to surface
microstructural characteristics. We suggest that the impurity
content of the firn is simply a co-located aspect of the firn
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Figure 8.  Density distribution of impermeable firn samples from the LID to the end of the 1 
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Figure 9.  a) Density cross-over of fine and coarse gain firn at WAIS Divide and b) deep firn 6 

permeability profile at WAIS Divide both show fine firn (green triangles), coarse firn (red 7 

diamonds), and intermediate firn (blue circles). 8 
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Fig. 9. (a)Density cross-over of fine- and coarse-gain firn at WAIS Divide and(b) deep firn permeability profile at WAIS Divide both show
fine firn (green triangles), coarse firn (red diamonds), and intermediate firn (blue circles).

due to the depositional event, and that the impurities are not
the cause of the densification rate. The fine-grained, dense
firn originating from a past accumulation site at Megadunes
becomes the first impermeable layers initiating the start of
the LIZ. The ability of fine-grained firn to become imper-
meable before coarse-grained firn in this study at both WAIS
Divide and Megadunes as well as in previous studies (Freitag
et al., 2004), regardless of whether or not it was the predom-
inately dense layer at depth, emphasizes the importance of
grain size and pore structure when predicting gas transport
and pore close-off in polar firn. A recent study by Horhold et
al. (2011) correlated an increase in accumulation rate to an
increase in density variability in deep firn leading to longer
LIZs. While we agree that density variability due to layering
does indeed increase for high-accumulation sites, the den-
sity cross-over seen in most polar firn sites leads to an in-
verse relationship of density and microstructure in deep firn
where fine-grained layers are less dense than coarse-grained
layers. Because they are both based on the layering and are
originally due to the nature of accumulation rate when that
firn was on the surface, microstructure will likely have high
layer-to-layer variability in places where layering also makes
the density variable. At a given site, the microstructure vari-
ability between fine-grained and coarse-grained layers, likely
of the same magnitude of the density variability observed by
Horhold et al. (2011), controls the thickness of the LIZ. For
a given polar site, fine-grained layers will reach pore close-
off at shallower depths than coarse-grained layers at that site.
To capture this behavior, firn densification models should in-
clude two pore close-off densities, one corresponding to the
finest-grained layers that will predict the LID and one corre-
sponding to the coarsest-grained layers that will predict the
COD. In this way, the LID, COD, and LIZ thickness esti-
mates can be improved, based on the accumulation rate of a
site and the resulting microstructure variability. The very dis-
tinct layering contrast between the relic surface accumulation
and hiatus zones at Megadunes provide a stark indicator of
the importance of accumulation rate on the microstructure-

dominated lock-in and close-off depths. While Megadunes
is unique due to the presence of buried antidunes, very low
accumulation will exhibit less microstructure variability in
deep firn in conjunction with less density variability ob-
served by Horhold et al. (2011) for low-accumulation sites.
High-accumulation sites should, on the other hand, exhibit
a higher degree of microstructure variability resulting in a
greater depth difference between fine-grain close-off (LID)
and coarse-grain close-off (COD). Quantifying the magni-
tude of microstructure variability within the lock-in zone for
a large number of polar sites would be a first step in devel-
oping a firn densification model that incorporates two pore
close-off depths, one for the finest-grain layers of a site and
one for the coarsest-grain layers of a site. A relationship
could be developed between the magnitude of grain size vari-
ability, lock-in zone length, accumulation rate, and tempera-
ture at a given polar site. We will pursue these ideas in future
work.

For a physical description of why fine-grain firn reaches
pore close-off first, we hypothesize that the grain size of
the ice and neck size of the pore structure in firn leads to
a threshold in open porosity corresponding to pore close-
off in a single layer of firn. Freitag et al. (2004) found that
coarse-grained layers densify at a quicker rate than fine-
grained layers but that the pore size of both layers decreased
at the same rate. Our findings show that whichever layer has
smaller pores at the surface (the fine-grained layer) will close
off first. Rick and Albert (2004) and Courville et al. (2007)
both found that buried layers retain evidence of their char-
acter when they were in the near-surface firn in proportion
to the amount of time that crystals remain in the near sur-
face due to the local accumulation rate. The larger grains
at Megadunes and subsequent larger pore necks enable the
firn at Megadunes to reach a higher density and lower open
porosity of ∼ 8 %, beneath which the open pore space is
quickly dissected into many smaller closed pores. Due to the
unique depositional process at Megadunes and the presence
of hiatus sites the∼ 8 % bound on open porosity is likely
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Figure 10.  a) Measured and predicted (blue line, Freitag et al., 2002) permeability values and 6 

b) relative error for Megadunes (red diamonds) and WAIS Divide (black circles). 7 

Fig. 10. (a)Measured and predicted (blue line; Freitag et al., 2002) permeability values and(b) relative error for Megadunes (red diamonds)
and WAIS Divide (black circles).

lower than a more typical low-accumulation site. At WAIS
Divide, the open porosity threshold occurs higher at∼ 11 %
open porosity, due to the smaller ice grains and smaller
necks in the pore structure. For a given accumulation rate,
fine-grained firn will have the highest open porosity at pore
close-off, coarse-grained firn layers will have the lowest open
porosity at pore close-off and intermediate grain size layers
should have open porosity thresholds for close-off in between
the two extremes. Expanding this relationship across many
accumulation rates, high-accumulation rates typically lead to
generally smaller grains and should have higher open poros-
ity (∼ > 10 %) and lower density at pore close-off, while very
low accumulation sites with larger grains should have lower
open porosity (∼ < 10 %) and higher density at pore close-
off. The exact physics controlling the sudden pore dissection
seen at the open porosity thresholds we observed will be ex-
plored further in future studies.

5.2 Application to firn air models

Increasing the understanding of the impact of microstructure
on gas diffusivity in deep firn through the LIZ should de-
crease the necessity for inverse modeling based on present-
day firn air measurements within firn gas transport models.
Initial gas diffusivity profiles within polar firn are typically
modeled off the Schwander et al. (1988) parameterization of
firn tortuosity as a function of porosity, despite recognition
by Fabre et al. (2000) that tortuosity profiles are site depen-
dent. An attempt to model permeability and diffusivity on the
millimeter-to-centimeter scale as a function of open porosity
was done by Freitag et al. (2002) on 3-D reconstructed firn
cubes. The permeability constant k was fitted to open poros-
ity following the power law commonly used in porous media
with exponents experimentally determined:

k = 10−7.7n3.4
op , (5)

wherenop is the open porosity of the sample (Freitag et al.,
2002). The power law fit allowed the firn to be permeable
below 0.12 open porosity, the threshold for permeable firn in

previous studies done by Fabre et al. (2000) and Schwander
et al. (1988). Adolph and Albert (2013) show that the Freitag
et al. (2002) relationship is site-specific.

Plotting permeability data for Megadunes and WAIS Di-
vide in Fig. 10 shows high scatter around the power law fit
from measured permeability for both sites, though the gen-
eral curve of the power law can be seen. The power law
function fails most at low open porosity values (5–10 %) at
Megadunes, where the firn is 200–1900 % more permeable
than predicted with the power law function. At low open
porosities, the Megadunes firn microstructure lends itself to
large pores with low complexity resulting in more permeable
firn than the Freitag et al. (2002) model could predict. Com-
parison of the Megadunes data with the Freitag et al. (2002)
Greenland study shows that the relationships developed for
Greenland do not apply to the Megadunes site in East Antarc-
tica. Pore structure, which is dependent on grain size and ac-
cumulation rate, influences gas transport in the diffusive col-
umn and also controls pore close-off. The low-accumulation
rate, large grain size, and larger less tortuous pore structure
at Megadunes enables the firn to be much more permeable
than predicted by Freitag et al. (2002). As WAIS Divide has
a local climate very similar to Greenland, the error between
modeled and measured permeability is not as large. Our re-
sults show that at both WAIS Divide and Megadunes, firn
layers at a given open porosity display a range of permeabil-
ities due to the open pore structure and its dependence on
grain size variability. This span in permeability values at a
constant open porosity would likely be seen in other polar
firn profiles as well.

In deep firn it has been shown that diffusivity and perme-
ability are linearly related (Adolph and Albert, 2013), and
thus the connection between permeability and grain size/pore
structure can be extrapolated to diffusivity. Firn air mod-
els that use density profiles derived from firn densification
models to determine the open porosity which is then used
to calculate the effective diffusivity profile of a specific gas
(Buizert et al., 2012b) will fall short of capturing the true
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nature of gas transport in deep firn. A given open porosity at
a high-accumulation site will lead to lower observed gas dif-
fusivity than the diffusivity observed at a low-accumulation
site. The microstructure must be accounted for to improve
physics-based models of diffusivity in polar firn. The depen-
dence of microstructure on post-depositional effects of accu-
mulation rate and near-surface residence time observed by
Albert et al. (2004), Rick and Albert (2004), Courville et
al. (2007), and Fujita et al. (2009), along with an increase
in gas transport due to an increase in grain size shown in
this study, will in the future be used to create site-specific
effective gas diffusivity profiles. A gas diffusivity profile de-
rived from local climate parameters, specifically accumula-
tion rate, which captures gas transport dependence on pore
structure, could provide constraints for forward firn air mod-
eling. If the physics of forward firn air modeling can be accu-
rately captured through climate parameters, it should reduce
the need for inverse modeling and enhance the ability of for-
ward modeling to describe past firn columns where inverse
modeling is not plausible.

6 Conclusions

Microstructure, specifically open pore structure, and not den-
sity, is the main parameter controlling the permeability and
gas transport in polar firn. Pore structure is the direct re-
sult of microstructure resulting from the initial depositional
processes and post-depositional metamorphism controlled by
accumulation rate when the firn was near the surface of the
ice sheet. Pore close-off will occur when the pore structure
restricts air movement, causing the firn layer to become im-
permeable independent of the density of the layer. At typical
firn sites, of both high and low accumulation, where a den-
sity inversion of the firn column exists, the finer, less dense
firn layers will reach pore close-off shallower than coarse-
grained, denser layers below the density inversion. There-
fore, the shallowest fine-grained layers to close at a polar
site with a density cross-over will contain more air than the
coarse-grain layers, which close off deeper and at higher den-
sities. At unique sites such as Megadunes, where no inver-
sion is seen, pore close-off will occur shallower in the denser,
finer-grained firn layers, causing the first layers to close and
contain less air than the less dense, coarser-grained layers
that reach pore close-off deeper in the firn column. There-
fore, an important aspect for determining which firn layers,
coarse grain or fine grain, have the higher air content is the
presence or absence of a density inversion. Because both the
density variability and the microstructure variability are fea-
tures of the firn layering, microstructure will have high vari-
ability at sites where high density variability also exists. Thus
the microstructure has high variability in the deep firn of
high-accumulation sites and low variability in deep firn of
low-accumulation sites where megadune features are absent.

In consideration of pore close-off, a threshold is seen
in open porosity below which pore segregation increases
dramatically and permeability reduces to zero. The exact
threshold varies as a result of accumulation rate impacts
on near-surface grain size propagating down the firn col-
umn into deep firn. At porosities lower than the threshold
(≥ 10 % for high-accumulation sites similar to WAIS Divide,
∼ 21 cm weq a−1, and ≤ 10 % for low-accumulation sites
similar to Megadunes, 4 cm weq a−1 or less), closed poros-
ity increases rapidly, the total number of pores increases at
a greater rate, and the size of pores dramatically decreases,
resulting in many small pores opposed to a few large open
pores.

These results could be incorporated into next-generation
firn air models. First, two pore close-off densities should be
incorporated, one for the finest-grained layers at an individ-
ual site which would define the top of the LIZ (the LID),
and one for coarsest-grained layers at that same site which
would define the bottom of the LIZ (the COD). Parameteriz-
ing pore close-off with both grain size and density, along with
the layered nature of firn in firn densification models, would
improve their ability to accurately predict the LID and LIZ
thickness. Future studies examining relationships between
surface temperature, accumulation rate and density of both
coarse-grain and fine-grain layers at the surface, and when
each layer type becomes impermeable at a multitude of po-
lar sites, are necessary to create a parameterization based on
both grain size and density.

For a given density, coarse-grain firn is more permeable
than fine-grain firn due to a less complex and less tortuous
pore structure. Next-generation firn air models should in-
clude an effective open porosity that accounts for differences
in pore structure between high- and low-accumulation-rate
sites. An effective open porosity that reflects the pore struc-
ture of the site, not simply how much pore space is present,
and that correctly captures permeability in deep firn may pro-
vide better modeling to contribute to improved interpretation
of gas records in ice cores. An increase in the physical un-
derstanding of pore close-off in polar firn and its dependence
upon local climate enables next-generation firn air model-
ing under conditions with no present-day analogue, thus con-
straining the gas age–ice age difference. In ongoing work we
will examine data from sites with a variety of local climates
in order to further develop the dependence of gas transport
and pore close-off on pore structure, grain size, and climatic
condition.
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