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Abstract. This work focuses on the numerical assessment
of the accuracy of an adjoint-based gradient in the perspec-
tive of variational data assimilation and parameter identifica-
tion in glaciology. Using noisy synthetic data, we quantify
the ability to identify the friction coefficient for such meth-
ods with a non-linear friction law. The exact adjoint problem
is solved, based on second-order numerical schemes, and a
comparison with the so-called “self-adjoint” approximation,
neglecting the viscosity dependence on the velocity (leading
to an incorrect gradient), common in glaciology, is carried
out. For data with a noise of 1%, a lower bound of identifi-
able wavelengths of 10 ice thicknesses in the friction coef-
ficient is established, when using the exact adjoint method,
while the “self-adjoint” method is limited, even for lower
noise, to a minimum of 20 ice thickness wavelengths. The
second-order exact gradient method therefore provides ro-
bustness and reliability for the parameter identification pro-
cess. In another respect, the derivation of the adjoint model
using algorithmic differentiation leads to the formulation of
a generalization of the “self-adjoint” approximation towards
an incomplete adjoint method, adjustable in precision and
computational burden.

1 Introduction

The main available observations of the cryosphere are gen-
erally obtained from remote-sensed techniques and are thus
essentially surface observations. However, ice dynamics is
known to be highly sensitive to the state of the bed (and
therefore to how the bed is modelled; see e.g.Cuffey and
Paterson, 2010), not to the surface which is more easily ob-
servable. The friction coefficient is consequently a critical

parameter in terms of controlling ice flows. This raises ques-
tions about, on one hand, whether the surface can provide
the necessary information about basal conditions and, on the
other hand, whether inverse methods can adequately recover
this information.

Many authors have addressed the first question by inves-
tigating how bedrock topography affects the surface.Balise
and Raymond(1985) conducted one of the earliest studies
concerning the transmission of fluctuations in basal slip to
the surface for a Newtonian fluid, using perturbation meth-
ods. The non-local aspect of the transmission of the varia-
tions of the friction coefficient at the surface is established
by Raymond(1996), where it is dependent upon the slip ra-
tio (the ratio between mean sliding velocities and mean ice
deformation velocities). These queries are extended inGud-
mundsson(2003), still under the Newtonian hypothesis us-
ing perturbation methods. In these studies, one of the main
conclusions is that the transmission of basal variability at the
surface increases with increased sliding.

The question of the representability of the friction coef-
ficient through surface velocity observations (horizontal and
vertical) using an inverse method is studied byGudmunds-
son and Raymond(2008). The method, based on a Bayesian
approach, is used to study the effect of density and quality
of surface velocity data on the estimation of the friction co-
efficient for a Newtonian fluid and a linear sliding law. In
the reconstruction of small amplitude variations of the fric-
tion coefficient, a wavelength limit of around 50 times the
ice thickness is found. A similar method in the case of a non-
Newtonian fluid and a non-linear sliding law is developed in
Raymond and Gudmundsson(2009).

In other respects, the identification method based on
MacAyeal (1993) and widely used (see e.g.Larour et al.,
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2005; Joughin et al., 2004; Morlighem et al., 2010) makes the
assumption that viscosity is independent of the velocity, and
limited attention has been paid to the quality of the resulting
estimations in terms of spatial variability of the friction co-
efficient (seeGudmundsson and Raymond, 2008). Compar-
isons with the “self-adjoint” method and the use of an exact
adjoint are made byGoldberg and Sergienko(2011), based
on a vertically integrated approximation and byMorlighem
et al. (2013) based on the higher-order model. Limitations
for the minimizing process are highlighted byGoldberg and
Sergienko(2011) when using the “self-adjoint” method. To
the best of our knowledge, the use of an exact adjoint in a
glaciological context for the full Stokes problem has been
made only byPetra et al.(2012). A comparison between their
results and the results ofGudmundsson and Raymond(2008)
on an academic problem allowed us then to conclude that the
exact adjoint is able to recover wavelengths in the friction
coefficient of approximately 20 times the ice thickness in the
case of a linear sliding law.

The purpose of this study is the numerical evaluation of
the limitations of the “self-adjoint” method compared to the
method using the exact adjoint solution, referred as the full
adjoint method in what follows hereafter. The “self-adjoint”
approximation for the full Stokes problem is detailed in
terms of equations and presented as a limited case of the
reverse accumulation method used to compute the adjoint
when obtained using source-to-source automatic differenti-
ation. From a strictly numerical perspective, tests on the ac-
curacy reached by the gradients for both methods are per-
formed, demonstrating an important limitation for the gradi-
ent computed by the “self-adjoint” method. We then study
the identifiability, for a non-linear sliding law, of high fre-
quencies in the friction coefficient depending on the level of
noise considered on synthetic data. The quality of the esti-
mations provided by both methods is compared in the case
of dense horizontal surface velocity observations for a quasi-
uniform flow and then for a realistic flow presenting an im-
portant spatial variability. The realistic case is then applied
for less dense data.

2 Forward and adjoint model

In this section, we briefly present what shall be referred to
hereafter as the forward model and describe the derivation of
the adjoint model and the computation of the adjoint state.

2.1 Forward model

The flow model considered here is the bidimensional flow-
line power-law Stokes model applied to a gravity-driven flow
(see e.g.Cuffey and Paterson, 2010) and solved on a given
domain� of horizontal extentL (see Fig.1):

div(u) = 0 in �, (1)

−div(2η(u)D) + ∇p = ρg in �, (2)

η(u) = η0‖D‖

1−n
n

F , (3)

whereσ = η(u)D − pId represents the Cauchy stress ten-
sor (with Id the second-order two-dimension identity ten-
sor),η(u) the viscosity,η0 the consistency of the fluid,n the
power-law exponent,D the strain rate tensor,u = (ux,uz)

the velocity field defined in the Cartesian frame(x,z), p the
pressure field,ρ the ice density,g the gravity and‖D‖

2
F =

D : D the Frobenius matrix norm.
A Weertman-type sliding law is then prescribed at the

bedrock boundary0fr :

|σnt |
m−1σnt = βu · t on0fr, (4)

u · n = 0 on0fr, (5)

whereβ = β(x) is a spatially variable parameter and where
(t,n), the tangent-normal pair of unit vectors, is such that

σ = (σ · n)n + (σ · t)t (6)

and

σ · n = σnnn + σnt t, σ · t = σtnn + σt t t . (7)

A velocity profile corresponding to the solution of the
Stokes problem for a uniform steady flow of a parallel-sided
slab on an inclined bed with non-linear friction defined by
Eq. (4) at the bottom is prescribed on the inflow boundary.
This solutionu = (ux,uz), expressed in the “mean slope”
reference frame(x,z), is written (see e.g.Martin, 2013):

ux(z) =
(−ρg sin(θ)h)m

β
+

1

1+ n
(2η0)

−n(ρg sin(θ))n(h1+n
− (H − z)1+n),

(8)

uz = 0, (9)

p(z) = ρgcos(θ)(H − z), (10)

with θ defining the slope of the slab,H the height of the
upper surface andh the thickness.

A hydrostatic pressure is considered on the outflow. All
the simulations are performed with an exponentm = 3 for
the sliding law. The domain is discretized using triangular
Taylor–Hood finite elements and the solution of the continu-
ous forward problem is obtained using a classical fixed point
algorithm. The geometry and notations of the problem are
plotted in Fig.1.
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Fig. 1. Geometry, boundary conditions and notations of the prob-
lem.

The sensitivities and identifications carried out in this
work use adjoint-based computation and thus require the so-
lution of the adjoint problem associated with the full Stokes
model.

All the computations are performed using the DassFlow
software (DassFlow Software, 2007). The fixed point algo-
rithm is used here as a typical iterative method for solving of
the full Stokes problem, but the assessments of the precision
and efficiency of the adjoint-based inverse problems should
be valid for any iterative algorithm. The details of the dif-
ferent approaches used in DassFlow for the solution of the
power-law Stokes problem can be found inMartin and Mon-
nier (2014a).

2.2 The basic principles of the adjoint model

The output of the forward model is represented by a scalar-
valued functionj called acost function, which depends on
the parameters of the model and represents a quantity to be
minimized. In the presence of observations, part of the cost
measures the discrepancy (the misfit) between the computed
state and an observed state (through any type of data).

The parameters of interest are calledcontrol variablesand
constitute a control vectork. The minimizing procedure op-
erates on this control vector to generate a set of parameters
which allows a computed state closer to the observations to
be obtained. In the following the control vector includes only
the friction coefficient fieldβ(x). The corresponding optimal
control problem can be written as

Min
k

j (k). (11)

This optimization problem is solved numerically by a de-
scent algorithm. Thus, we need to compute the gradient of the
cost function. This is done by introducing the adjoint model.

2.3 Cost function, twin experiments and Morozov’s
discrepancy principle

The cost function used for the identification is defined by

j (β;γ ) =
1

2

∫
0s

‖uobs
s (βt ) − us(β)‖2

2 dx + γT (β ′), (12)

where the datauobs
s are synthetic horizontal surface velocities

obtained using a given friction coefficientβt and perturbed
with a random Gaussian noise of varying levelδ. The term
T (β ′) called Tikhonov’s regularization controls the oscilla-
tions of the control variable gradientβ ′. It is defined by

T (β ′) =

∫
[0,L]

‖β ′
‖

2
2 ds, (13)

whereL is the length of the domain. The parameterγ quan-
tifies the strength of the imposed smoothness. This term reg-
ularizes the function to be minimized and introduces a bias
toward a smoothly varying field. The tuning of these weights
can be achieved from various considerations generally re-
lated to the quality of the data (or the noise level) and the
degree of smoothness sought on the control variable. A clas-
sical approach, referred to as Morozov’s discrepancy princi-
ple (see e.g.Vogel, 2002), consists of choosingγ such that
j (β;γ ) = j (βt ;0), i.e. when the final cost matches the noise
level on the data. The methodology that consists of using
noisy synthetic data in order to retrieve a set of reference
parameters (here defined asβt ) known a priori is called a
twin experiment. The gradient of the cost function is given
by solving the adjoint problem and used by the algorithm to
compute at each iteration a new set of parameters in order to
make the costj decrease until convergence.

2.4 Derivation of the adjoint model

In order to compute all partial derivatives of a cost function
j (k) efficiently with respect to the components of acon-
trol vectork, we introduce the adjoint model (see e.g.Lions,
1971).

In the DassFlow software, the adjoint model is obtained
by using algorithmic differentiation of the source code (see
Honnorat, 2007; Honnorat et al., 2007; DassFlow Software,
2007). This last approach ensures a better consistency be-
tween the computed cost function and its gradient, since it
is the computed cost function that is differentiated. A large
part of this extensive task can be automated using auto-
matic differentiation (seeGriewank, 1989). In the case of
DassFlow-Ice, the direct code is written in Fortran 95 and
is derived using the Tapenade automatic differentiation tool
(seeHascoët and Pascual, 2004). The linear solver used is
MUMPS (Amestoy et al., 2001) and the differentiation of the
linear system solving process is achieved using a “bypass”
approach which considers the linear solver as an unknown
black box (see AppendixA). This approach is similar to the
one used byGoldberg and Heimbach(2013).

LetK be the space of control variables andY the space of
the forward code response. In the present case, we have

k = (β) andY = (y,j)T ,

whereβ is defined by Eq. (4).
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Let us point out that we include both the state and the cost
function in the response of the forward code. The direct code
can be represented as an operatorM :K −→ Y such that

Y =M(K).

The tangent model becomes∂M
∂k

(k) :K −→ Y. As an in-
put variable, it takes a perturbation of the control vector
dk ∈K; it then gives the variationdY ∈ Y as its output vari-
able:

dY =
∂M
∂k

(k) · dk .

The adjoint model is defined as the adjoint operator of the
tangent model. This can be represented as follows:(

∂M
∂k

(k)

)∗

: Y ′
−→K′.

It takesdY ∗
∈ Y ′ as an input variable and provides the ad-

joint variabledk∗
∈K′ at output:

dk∗
=

(
∂M
∂k

(k)

)∗

· dY ∗ .

Now, let us make the link between the adjoint code and the
gradientdj

dk
we seek to compute. By definition of the adjoint,

we have:〈(
∂M
∂k

)∗

· dY ∗, dk
〉
K′×K

=

〈
dY ∗,

(
∂M
∂k

)
· dk

〉
Y ′×Y

. (14)

It reads, using the relations presented above:〈
dk∗, dk

〉
K′×K =

〈
dY ∗, dY

〉
Y ′×Y . (15)

If we setdY ∗
= (0,1)T and by denoting the perturbation

vectordk = (δβ)T , we obtain〈(
0
1

)
,

(
dy∗

dj∗

)〉
Y ′×Y

=

〈(
δβ∗

)
,
(
δβ
)〉
K′×K

.

Furthermore, we have by definition:

dj =
∂j

∂β
(k) · δβ. (16)

Therefore, the adjoint variabledk∗ (output of the adjoint
code withdY ∗

= (0,1)T ) corresponds to the partial deriva-
tives of the cost functionj :

∂j

∂β
(k) = β∗. (17)

A single integration of the forward model followed by a
single integration of the adjoint model allow us to compute
all components of the gradient of the cost function.

The optimal control problem (11) is solved using a lo-
cal descent algorithm, more precisely the L-BFGS algorithm
(a quasi-Newton method), implemented in the M1QN3 rou-
tine (seeGilbert and Lemaréchal, 1989). Thus, these partial
derivatives are used as input to the minimization algorithm
M1QN3. The global optimization process is represented in
Fig. 2.

Fig. 2. Principle of a 3D-Var type variational data assimilation al-
gorithm.

2.5 The gradient test

The gradient test is a classical adjoint code validation test
and is used hereafter in order to assess the precision of the
“self-adjoint” approximation. The test aims to verify that the
partial derivatives of the cost function are correctly computed
by comparing it with a finite difference approximation (see
e.g.Honnorat et al., 2007for the detailed test procedures).

Let us consider the following order two central finite dif-
ference approximation of the gradient:

j (k + αδk) − j (k − αδk)

2α
=

∂j

∂k
· δk + O

(
α2δk3

)
(18)

with dk = αδk. This scheme leads us to define

Iα =
j (k + α δk) − j (k − α δk)

2α
∂j
∂k

(k) · δk
. (19)

According to Eq. (18), one must have lim
α→0

Iα = 1. The gra-

dient test consists of verifying this property.

3 “Self-adjoint” approximation, full adjoint and
reverse accumulation

The model considered here has been obtained using algorith-
mic (or automatic) differentiation of the source code. Auto-
matic differentiation of a fixed point type iterative routine of
the formy = 8(y,u) (such as the solution of the non-linear
Stokes problem using a Picard method) is carried out by re-
verse accumulation (seeGriewank, 1989; Griewank et al.,
1993). The reverse accumulation technique consists of build-
ing a computational graph for the function evaluation where
the nodes of the graph represent every value taken by the
function. An adjoint quantity containing the gradient of the
function8 with respect to the node is associated with every
node.
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The adjoint values are computed in reverse order. The fi-
nal value of the gradient is given by the sum of the partial
derivatives of the function of the nodes of the computational
graph. This result is a consequence of the chain rule. This
process a priori requires the storing of as many states of the
system as iterations performed by the forward solver to reach
the converged state.

It is shown byChristianson(1994) that, in the case of a
forward computation carried out by a fixed point method, the
adjoint quantity also satisfies a fixed point problem whose
rate of convergence is at least equal to the rate of conver-
gence of the forward fixed point. Based on this result, it is a
priori necessary to retain every iteration of the forward run
to evaluate the gradient. In practice, as further detailed in
Sect.3.4, the number of reverse iterations required to obtain
an adjoint state with the same precision of the forward state
can be adjusted depending on the convergence speed of the
direct construction.

3.1 The “self-adjoint” approximation

The “self-adjoint” method in glaciology, applied to
the shelfy-stream approximation, has been proposed by
MacAyeal (1993). The approximation consists of deriving
the adjoint equation system without taking into account the
explicit dependence of the viscosityη on the velocity field
u. Let us recall that the terminologyself-adjointonly makes
sense in the Newtonian case (n = 1). It is important to make
clear that the gradient resulting from this procedure is there-
fore an incorrect gradient.

For the full Stokes case, the adjoint system considered
under this approximation is the adjoint associated with the
forward problem (1)–(2) using a viscosity fieldη(u0) =

2η0‖D(u0)‖F for a givenu0. This problem is indeed a “self-
adjoint” problem (the underlying operator is linear and sym-
metrical with respect tou).

In general, the procedure consists of calculating a mechan-
ical equilibrium based on the complete non-linear system to
obtain a convergedu0 and the gradient is then obtained by
simply transposing the final computed state. This method ap-
plied to the full Stokes problem can be found inMorlighem
et al.(2010).

In the automatic differentiation context, this approxima-
tion is equivalent to retaining, in the reverse accumulation
process, only the gradient computed from the final evalua-
tion of the function8. The quality of such an approximation
is thus questionable and will strongly depend on the problem
one considers and the required accuracy on the gradient.

The quality of this approximation (compared to the ex-
act adjoint state) for parameter identification is assessed by
Goldberg and Sergienko(2011) for depth-integrated shallow-
ice type equations, but has never been treated for the full
Stokes equations.

3.2 The continuous adjoint system

Before the numerical assessment of the “self-adjoint” ap-
proximation it seems relevant to look into the continuous
adjoint equation system in order to highlight the terms that
are being ignored by the approximation and to estimate their
weight in the complete adjoint system.

Omitting the lateral boundaries, the adjoint system of the
full Stokes problem (1)–(5) is (see e.g.Petra et al., 2012):

− div(6) = 0 in �, (20)

div(v) = 0 in �, (21)

6n = uobs
s − u on0s, (22)

6nt = β1/m
(
|uτ |

1−m
m vτ+ ,

(m − 1)|uτ |
1−3m

m (uτ ⊗ uτ )vτ

)
on0fr, (23)

v · n = 0 on0fr, (24)

wherev denotes the adjoint velocity and6 the adjoint stress
tensor. The quantity6nt is defined in the same way asσnt

(see Eq.7). The adjoint stress tensor is written as

6 = 2η(u)

(
I +

2(1− n)

n

D(u) ⊗ D(u)

‖D(u)‖2
F

)
D(v) − Idq, (25)

with q denoting the adjoint pressure,I the fourth-order iden-
tity tensor applied to order two tensors,Id the second-order
identity tensor and′⊗′ the tensor product.

By construction, this problem is a linear problem inv and
depends on the forward velocityu. The method to derive the
adjoint system associated with any non-linear elliptic prob-
lem can be found in e.g.Monnier(2013).

First, the non-linearity of the forward problem appears in
the definition of the adjoint stress given in Eq. (25). The
norm of the termD(u)⊗D(u)

‖D(u)‖2
F

is simply one (since‖D ⊗ D‖ =

‖D‖F × ‖D‖F given a consistent choice of the fourth-order
tensor norm with the Frobenius matrix norm), and the norm
of the identity tensor is known to be greater or equal to
one (and typically equal to one for thesupnorm). The lin-
earity assumption of the “self-adjoint” method leads to set
n = m = 1 in the adjoint system (20)–(24). It then leads to
the dropping of a term that is comparable to the one that is
kept, for 1−n

n
close to one (2/3 forn = 3). It logically follows

that the greater the non-linearity (the value ofn), the greater
the non-linear contribution, and the coarser the “self-adjoint”
approximation.

The other non-linearity comes from the non-linear friction
law and appears in Eq. (23). A similar calculation leads to a
similar conclusion: form > 1, the norm of the terms that are
being dropped by the “self-adjoint” approximation is compa-
rable to the one being kept.

Let us point out that, in Eq. (23), for larger values ofm
(representing hard-rock sliding or mimicking Coulomb fric-
tion), the non-linear contribution is no longer comparable
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to the linear part and becomes dominant due to the factor
(m−1), and to neglect the non-linear terms is most certainly
unsuited.

These observations are clearly retrieved numerically in the
gradient test performed hereafter (see Fig.3), which shows a
relative error around 1 for the “self-adjoint” approximation.

3.3 Numerical evaluation of the “self-adjoint”
approximation

We consider the flow described in Sect.2.1. The domain is a
parallel-sided slab on an inclined bed with an aspect ratio of
1/10 on a 10% slope. The friction condition at the bottom is
given by Eq. (4) with a constantβ and an exponentm = 3.
A stationary free surface flow, uniform with respect tox, is
thus obtained.

The cost functionj used here corresponds to the one de-
fined by Eq. (12) without regularization:

j = j (β;0) =
1

2

∫
0s

∣∣∣u(β,z) − uobs
s

∣∣∣2 dx, (26)

where the observationsuobs are the horizontal velocities at
the surface0s, (x,z) designates the mean-slope frame and
the control variable is the discrete friction coefficient fieldβ.

The gradient tests carried out for the “self-adjoint” and
full adjoint methods, using cost function (26), are plotted in
Fig. 3. The tests are performed for various levels of preci-
sion of the forward problemν = ‖uk+1 − uk‖/‖uk‖ in order
to quantify the best attainable precision by the adjoint prob-
lem with respect toν. This precision is explicitly given to the
direct solver through a convergence threshold for the non-
linear loop but can be seen as the available accuracy on the
datauobs; a direct solution accuracy ofν = 10−4 mimics data
presenting a noise of 0.01%. The use of unnoisy data helps
to preserve the theoretical constant rate decreasing error of
the gradient test, thus validating the method.

The gradient test compares the gradient computed by the
adjoint code to a reference gradient. For these tests, the ref-
erence gradient is obtained using a centered finite difference
approximation (of order 2) computed for a precision on the
function evaluation of 10−12. This precision being consid-
erably higher than those considered for the solution of the
forward problem, the finite difference gradient plays the role
of an “exact” value (see Sect.2.5).

The full adjoint method shows the expected theoretical be-
haviour. We recover the slope of 2 (in logarithmic scale) as-
sociated with the order of convergence of the finite difference
approximation (18). Figure3 thus shows that the precision of
the adjoint state is of the same order as the one of the direct
solver.

On the contrary, the precision of the gradient provided by
the “self-adjoint” approximation is rather limited. The best
reachable precision, as expected from the continuous adjoint
system analysis, is slightly smaller than 1, irrespective of the

direct solver precisionν (and thus, only one gradient test
curve is plotted in Fig.3, for the caseν = 10−8, ν being the
precision of the forward solution).

The “self-adjoint” approximation used within a parameter
identification process is thus not able to compute an accurate
gradient. However, as further discussed hereafter, numerical
tests demonstrate a certain ability for this approximation to
reconstruct the friction coefficient partially (for a computa-
tional cost well below the one of the full adjoint method in
the automatic differentiation context). Nevertheless, signifi-
cant weaknesses in the reconstruction of high frequencies as
well as the reconstruction of the main frequency of the fric-
tion coefficient signal, specifically for extreme situations of
sliding (very slow or very fast), are brought to the forefront.

3.4 Adjustable adjoint accuracy and truncation of the
reverse accumulation

This section focuses on the effect of a truncation of the re-
verse accumulation process. Figure4 plots gradient test re-
sults obtained for a truncated evaluation of the adjoint state.
To do so, the number of iterations of the adjoint loop is trun-
cated from one toN , the total number of iterations performed
by the direct solver. We thus obtainN gradient tests, pro-
viding every level of precision for each intermediary adjoint
states between the exact adjoint (N iterations) and the “self-
adjoint” approximation. This test is carried out for various
levels of precisionν of the direct solver. The number of iter-
ationsN performed by the direct solver to reach the required
accuracyν depends on this precision.

The results concerning the precision of the gradient pre-
sented previously are well recovered (see Fig.3). The low-
est precision, identical for everyν and equal to 0.6, is ob-
tained from the “self-adjoint” approximation (corresponding
to 1 reverse iteration) and the highest precision is reached
by the full adjoint method (corresponding to the last point of
each curve).

A linear decrease in the error (in logarithmic scale) result-
ing in a slope of 3.7 is observed. This behaviour of the error
is coherent with the result ofChristianson(1994), who states
that the computation of the adjoint state by reverse accumula-
tion is equivalent to a fixed point computation. In the present
case, we have a reverse accumulation algorithm presenting
a rate of convergence of 3.7. Yet, the convergence speed of
the forward fixed point (not plotted here) leads to a slope of
3. The convergence of the adjoint state computation is there-
fore higher than the one of the direct state computation. This
result explains theplateauobserved for the final iterations;
indeed, a faster convergence of the reverse accumulation al-
gorithm allows us to reach the converged adjoint state with
fewer iterations.

Again, the accuracy of the “self-adjoint” approximation
appears strongly limited and the possibility of an incomplete
method, intermediary between the full adjoint method and
the retention of only one iteration could bring an important
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Fig. 3. Gradient test for the full adjoint method and the self adjoint method for various levels of precisionν of the forward solution. The
quantityIα is defined by Eq. (19).
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gain of precision; taking into account the linearly decreasing
error (in logarithmic scale) leads to significantly improved
accuracy for each additional iteration retained during the
computation of the adjoint state.

Furthermore, the faster convergence of the reverse accu-
mulation algorithm compared to the direct solver allows us,
in any case, to spare a few iterations during the computation
of the adjoint state without any loss of precision. The number
of unnecessary iterations is likely to be strongly dependent
on the situation and must be studied in every case.

For the present test case, we observe that the last five iter-
ations during the reverse accumulation are useless whatever
the level of precision of the forward run (see theplateauin

Fig. 4). These last five iterations correspond to the first five
iterations carried out by the direct solver. Avoiding the ac-
cumulation of these iterations for the adjoint state evaluation
amounts to starting the reverse accumulation from a residual
on the forward run of 0.1 (i.e. a relative variation between
two successive iterations of 0.1). This observation, although
dependent on the considered case, can be seen as an empiri-
cal method to define a criterion for the number of direct iter-
ations that should be accumulated to obtain the best accuracy
on the adjoint state. In the present case, it amounts to initi-
ating the memory storage of direct iterations once the direct
solver residual is lower than 0.1.
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In a more general point of view, the threshold imposed on
the direct solver to limit the accuracy of the computed state
is a quite numerical artifice and should not be seen as a way
of saving time, regardless of the data precision. A reliable
approach for real numerical simulations could be to perform
an accurate direct simulation but a truncated adjoint in ade-
quation with the level of noise on the data. This adjustment
could be made based on one gradient test which allows for
the quantification of the rate of convergence of the reverse
accumulation loop.

4 Friction coefficient identifiability

This section focuses on the practical limits of identifiabil-
ity of the friction coefficient by both the full adjoint and the
“self-adjoint” method.

The main goal is to draw conclusions on the possibility
of using the “self-adjoint” method (which brings important
time and memory saving) and then on the quality of the re-
sults it provides in the perspective of realistic identification of
the friction coefficient. The quality of the results is evaluated
in terms of frequencies and amplitudes of the reconstructed
friction coefficients compared to the target ones.

As presented before, the precision of the “self-adjoint”
gradient is bounded, whatever the level of precision of the
direct solverν. This level of precision can be seen as an a
priori accuracy on the data considered in the cost function.
In view of a thorough analysis of the invertibility capacities
of an adjoint-based inverse method, only synthetic data are
used in the present work. A Gaussian noise of levelδ is thus
added a posteriori to emulate real data. The precision of the
exact adjoint gradient depending onν (and equivalently on
the level of noiseδ on the data), we seek to observe which
value ofν is required to observe the limit of precision of the
self-adjoint method.

To this end, we consider three noise levelsδ of 0.01%,
0.1% and 1%, representing very low, low and realistic noise.
Although a realistic level of noise depends on many aspects,
the use of GPS techniques and InSAR velocity measurements
can provide this type of precision (King, 2004; Joughin et al.,
2010; Rignot et al., 2011).

In all cases, the final cost reached by both methods is not
sufficient enough to inform their precision, especially for
noise levels greater or equal to 1 % (which is typically the
case for real data). This means that one cannot draw conclu-
sions about the quality of the “self-adjoint” approximation
solely based on a comparison of the costs provided by both
methods.

On the contrary, the frequency analysis suggests that an
identical final cost is not equivalent to an identical inferred
friction coefficient. It demonstrates that this type of inverse
problem is ill-posed, which can be seen as an equifinality
issue (i.e. an identical state, and consequently an identical
cost, can be obtained with different sets of input parameters).

It is important to point out that the poorer the data (or sim-
ilarly the greater the noise), the stronger the equifinality.

In what follows, we first consider the idealized case of a
quasi-uniform flow on an inclined parallel-sided slab with
very low and low noise levels in order to highlight the nu-
merical limits of the “self-adjoint” method.

We then perform pseudo-realistic, spatially variable, flow
experiments with a realistic noise for various densities of
the surface data. All the identifications presented hereafter
use, as an initial guess for the friction coefficient, the aver-
age valuea of the target coefficient. The optimization proce-
dure stops when the three following criterions are achieved:
a relative variation of the cost smaller than 10−8, a relative
variation of the norm of the gradient smaller than 10−4, and
a relative variation of the norm of the inferred friction coef-
ficient smaller than 10−4.

4.1 Quasi-uniform flow

The following experiments are performed on the same in-
clined parallel-sided slab as in Sect.3.3. A non-linear friction
law, defined by Eq. (4), is considered at the bottom with an
exponentm = 3. The target friction coefficient, variable inx,
is given by

βN
r (x) = a +

a

2
sin

(
2πx

20dx

)
+

a

5

N∑
i=1

fi(x), (27)

with

fi(x) = sin

(
2πx

widx

)
with w1 = 10, w2 = 4, w3 = 2, (28)

and by extension, we set

f0(x) = sin

(
2πx

w0dx

)
with w0 = 20. (29)

The quantitya is the average value of the friction coef-
ficient in Pa s m−1 anddx = 0.2 m denotes the length of a
basal edge or, in other words, the sharpness of the bedrock
discretization.

We setβr = β3
r , the friction coefficient resulting from the

sum of four frequencies corresponding to wavelengths of 20,
10, 5 and 2, edge lengthdx. The low frequencyf0 represents
a carrier wave for the three higher frequenciesfi, i ∈ J1,3K.
In terms of thickness of the domainh (here constant and
equal to 1 m, see Table1), frequenciesfi, i ∈ J1,3K corre-
spond to wavelengths of 4h, 2h, 0.8h and 0.4h respectively.
The coefficientsβN

r ,N ∈ J1,3K are plotted in Fig.5 for the
casea = 1. These properties are summarized in Table1.

The flow is uniform when the friction coefficient is con-
stant along the domain and can be described as quasi-uniform
when the friction coefficient is given by Eq. (27).

We seek to determine the level of spatial variability of
the friction coefficient the full adjoint and the “self-adjoint”
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Fig. 5.Friction coefficientβn
r ,1 ≤ n ≤ 3 given by Eq. (27) with a = 1.

Table 1.Characteristics of signalβ given by Eq. (27).

f0 f1 f2 f3

Wavelength w.r.th = 1 m (thickness) 4h 2h 0.8h 0.4h

Wavelength w.r.t.dx = 0.2 m (edge length) 20dx 10dx 4dx 2dx

Wavenumber w.r.t.L = 10 m (domain length) 2.5 m−1 5 m−1 12.5 m−1 25 m−1

methods can provide through the identification process,
based on surface velocity observations, with respect to the
degree of slip. The degree of slip depends on the value of
parametera and will be described hereafter in terms of the
slip ratio r. The slip ratio is a dimensionless quantity that
quantifies how slippery the bedrock is. It is calculated as the
ratio of the mean sliding velocityub to the difference be-
tween mean surface velocityus and mean basal velocityub
(cf. Hindmarsh, 2004). It leads to

r = ub/|us− ub|. (30)

A slip ratio r = 1 represents a situation where half of the
surface velocities are attributed to sliding and half are at-
tributed to deformation.

We consider six different slip ratios ranging from very
high friction (close to adherence) to very rapid sliding. The
slip ratiosr = 0.005,r = 0.05 andr = 0.5 can be described
as moderate sliding and the slip ratiosr = 5, r = 50 and
r = 500 as rapid sliding.

In order to highlight the limitations of the “self-adjoint”
approximation, the identifications ofβ performed hereafter
consider noise levelsδ = 0.1% andδ = 0.01% on the sur-
face velocity data. Let us point out that the “self-adjoint”
method provides very similar results to the full adjoint one
in terms of final cost whenδ = 1% (not plotted in Fig.6)
and the distinction between both methods clearly appears for
lower noises.

The cost function is defined by Eq. (12). The tuning of
the regularization parameterγ is achieved according to the
Morozov discrepancy principle (see Sect.2.3). We plot in

Fig. 6 the application of this method to the identifications
performed with both methods (full adjoint and “self-adjoint”)
in the case of an intermediate friction (r = 0.5). The corre-
sponding curves for other slip ratios are identical and conse-
quently not plotted.

Figure 6 clearly demonstrates the inability, of the “self-
adjoint” method, to provide a gradient for sufficiently low
noise. For noise levelsδ = 0.1% andδ = 0.01%, the “self-
adjoint” gradient does not allow the optimal misfit to be
reached. Therefore, in these situations, the “self-adjoint” ap-
proximation is theoretically not valid. However, as we will
see, the “self-adjoint” method shows a certain ability to re-
trieve the target parameter. This observation is independent
of the degree of slip.

In order to study the effects of the approximation on the
gradient computation, we compare, in the following, the fric-
tion coefficient inferred by both methods forδ = 0.01% and
δ = 0.1%.

The best inferred friction coefficients (according to Mo-
rozov) are notedβf for the full-adjoint andβs for the self-
adjoint. The quantitieŝβf and β̂s thus denote their associ-
ated discrete Fourier transform (DFT). We denote byβ̂r the
DFT associated with the target friction coefficient (27). The
single-sided amplitude spectrum of the DFTsβ̂r, β̂f and β̂s
obtained for the three small slip ratios (moderate sliding) are
plotted in Fig.7 and those obtained for the three high slip ra-
tios (rapid sliding) are plotted in Fig.8. The amplitude spec-
trum plots the modulus of the complex Fourier coefficient
multiplied by two, providing the original amplitude of the
frequencies of the signal (approximated by the sharpness of
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the sampling frequency). The abscissae have been rescaled
according to the discretization of the bedrockdx and the
length of the domainL in order to directly provide the origi-
nal wavenumber of the frequencies. All the signals have been
centered (to have a zero mean) in order to remove the peak
corresponding to the average. Since the zero mean amplitude
spectrum is symmetrical, the single-sided spectrum is plotted
everywhere. The single-sided amplitude spectrum plotted in
Figs.12and14are identically defined.

4.1.1 Moderate sliding

One observes first that frequenciesf0 andf1 (see Table1) are
globally well reproduced by both methods forδ = 0.01%,
whatever the slip ratio, namely, the carrier frequencyf0 is
very well reconstructed by both methods and this property
seems desirable. The full adjoint method shows a greater ro-
bustness when identifying these two low frequencies with
respect to the slip ratio, whereas a noticeable deterioration
in the identification of frequencyf1 occurs for the “self-
adjoint” method when slip ratio decreases.

However, frequencyf2 appears correctly captured by the
full adjoint method, while it does not appear in the spectrum
of the “self-adjoint” one. An increased difficulty in capturing
this frequency occurs with slip ratio increase.

Finally, the highest frequencyf3 does not appear in any of
the spectrums of bothβf andβs, whatever the degree of slip.

For a noise levelδ = 0.1%, one loses the ability to retrieve
frequencyf2 using the full adjoint method. The identification
of frequencyf1 is accurately obtained for the slip ratior1 =

0.5, but we observe a deterioration in the result when slip
ratio decreases. The “self-adjoint” method captures almost
none of frequencyf1, whatever the slip ratio.

Concerning the carrier frequency, one observes difficulties
for the “self-adjoint” method in reconstructing it accurately,
even for the slip ratior1 = 0.5. The frequency distinctly ap-
pears on the spectrum, but only 80% of the target amplitude
is recovered. The decreasing of the slip ratio deteriorates, for
both methods, the identification off0. In the caser3 = 0.005,
the full adjoint method recovers 70% of the target amplitude
where the “self-adjoint” method recovers 50%.

4.1.2 Rapid sliding

Again, low frequenciesf0 andf1 are well retrieved with the
full adjoint method for every noise level. The carrier wave
reconstruction is nevertheless diminished (around 80% of
the target amplitude) compared to the moderate sliding situa-
tion r1 = 0.5 but is stable with the increasing ofr. Similarly,
frequencyf1 is rather well represented by the full adjoint
method for all the situations despite a certain degradation
with increasingr. However, frequencyf2 does not appear
in any spectrum, irrespective of both slip ratio and method,
contrary to the moderate sliding situations. Again, frequency
f3 is never captured. A small but noticeable noise appears
for the caser = 500 for the full adjoint method, particularly
whenδ = 0.01%.

The “self-adjoint” method shows a relatively good recon-
struction off0 andf1 for the caser = 5 but introduces noise
between frequenciesf1 and f2. A strong deterioration of
the reconstruction occurs whenr increases; for a noise level
δ = 0.1%, the “self-adjoint” identification is almost unable
to recover the signal forr ≥ 50.
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Fig. 7.Discrete Fourier transform of the inferred friction coefficientsβf andβs and of the target friction coefficientβr. Moderate sliding.

4.1.3 Assessments

From these observations, we draw the following conclusions.
Firstly, the degree of slip of the target plays a strong role for
the limit of identifiability of the friction coefficient in terms
of frequencies; a smaller slip ratio induces a lower sensitiv-
ity of the flow to the friction coefficient and consequently a
higher filtering of the transmission of information from the
bedrock to the surface.

A strong friction induces a vertical velocity profile that is
rather convex with velocity gradients (shearing) mostly con-
centrated close to the bottom leading to a weaker transmis-
sion of the information from the bottom to the surface. A

similar observation can be made from the sensitivity of the
model to the rheological constantη0: the high-sensitivity ar-
eas are strongly correlated with the areas of high shearing.

Similar to strong frictions, low frictions also reduce the
quality of the reconstruction. This again comes from a re-
duced sensitivity of the flow to the friction coefficient when
rapid sliding occurs; however, this lower sensitivity appears
for different reasons. Intuitively, the case of a very low fric-
tion leads to lower local topographical effects and the resis-
tance to the ice flow acts through an equivalent global to-
pography at a larger scale. This characteristic appears in the
explicit solution of the uniform flow (8): in order for the

www.the-cryosphere.net/8/721/2014/ The Cryosphere, 8, 721–741, 2014



732 N. Martin and J. Monnier: Adjoint accuracy for the full Stokes ice flow model

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de

f 0

f 1

f 2
f 3

Single-Sided Amplitude Spectrum

β̂ r

β̂ f

β̂s

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de

f 0

f 1

f 2
f 3

Single-Sided Amplitude Spectrum

β̂ r

β̂ f

β̂s

0 5 10 15 20 250

0.05

0.1

0.15

0.2

A
m

pl
itu

de

f 0

f 1

f 2
f 3

Single-Sided Amplitude Spectrum

β̂ r

β̂ f

β̂s

0 5 10 15 20 250

0.05

0.1

0.15

0.2

A
m

pl
itu

de

f 0

f 1

f 2
f 3

Single-Sided Amplitude Spectrum

β̂ r

β̂ f

β̂s

0 5 10 15 20 250

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
m

pl
itu

de

f 0

f 1
f 2 f 3

Single-Sided Amplitude Spectrum

β̂ r

β̂ f

β̂s

0 5 10 15 20 250

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
m

pl
itu

de

f 0

f 1
f 2 f 3

Single-Sided Amplitude Spectrum

β̂ r

β̂ f

β̂s

(a)-Slip-rat io:- r1 = 5, δ = 0.1s (b)-Slip-rat io: r1 = 5, δ = 0.01s

(c)-Slip-rat io: r2 = 50, δ = 0.1s (d)-Slip-rat io: r2 = 50, δ = 0.01s

(e)-Slip-rat io: r3 = 500, δ = 0.1s (f)-Slip-rat io: r3 = 500, δ = 0.01s

Wavenumber-(m-1) Wavenumber-(m-1)

Wavenumber-(m-1) Wavenumber-(m-1)

Wavenumber-(m-1) Wavenumber-(m-1)

Fig. 8.Discrete Fourier transform of the inferred friction coefficientsβf andβs and of the target friction coefficientβr. Rapid sliding.

mathematical expression to make sense whenβ tends to 0,
it requires the slope parameterθ to tend to 0 as well. This
phenomenon is physically observed: in the presence of an ex-
tended sub-glacial lake, one observes a signature of this lake
at the surface as a very flat surface topography over the lake.
This interpretation is retrieved in the normalized sensitivities
plotted in Fig.13.

These two observations support the existence of a numer-
ical identifiability maximum for the friction coefficient us-
ing the adjoint-based method; the best situation to carry out
identifications corresponds to the intermediate friction range
where sliding effects and deformation effects on the dynam-

ics are balanced (typically 0.5 < r < 5). The low accuracy of
the “self-adjoint” gradient appears to be a strong limitation
in the case of rapid sliding (r > 5).

For the current quasi-uniform flow, for a noise levelδ =

0.1%, a limit on identifiable wavelength using the full adjoint
method, for any degree of slip, is 2h, whereh is the thickness
of the domain. More accurate data could allow us to infer
higher frequencies in the case of moderate sliding (r ≥ 0.5).

For the “self-adjoint” method, for a slip ratior ≤ 5, a
wavelength of 4h is well inferred and a wavelength of 2h

is captured forr = 0.5 andr = 5. For a slip ratior > 5, the
frequencies considered in the experiment are inappropriate.
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In other respects, a tendency for the “self-adjoint” method
to introduce non-physical interferences within the inferred
coefficient for very low noise appears. This non-desirable
phenomenon increases when the slip ratio takes on extreme
values. Beyond the approximation aspect, one can deduce
a lack of robustness of the “self-adjoint” method for very
low noises. It seems coherent with regards to the low pre-
cision the “self-adjoint” gradient provides. On the contrary,
the full adjoint method provides a less accurate identification
when the slip ratio goes away from 1 without introducing
non-physical effects in the inferred parameter.

It is of interest to notice that the inability to recover fre-
quencyf3 is not a numerical limitation but a limitation due to
the noise on the data. For sufficiently accurate data, it is also
identifiable using the second-order exact adjoint method.

Similar experiments are performed in the next section for
a pseudo-realistic flow run on a radar vertical profile of the
grounded part of the Mertz glacier in Antarctica for surface
velocity data with different densities and a 1% noise.

4.2 Real topography flow: the Mertz glacier

The flow considered in this section is identical to the one pre-
sented in Sect.2.1. The computational domain is built from
real field data; the topography of the bedrock and of the sur-
face are bidimensional radar-sensed layers of theMertz ice
tonguein eastern Antarctica. These layers have been mea-
sured along a flowline of this outlet glacier (American pro-
gram ICECAP 2010, seeGreenbaum et al., 2010). Our study
focuses on the grounded part of the glacier. The computa-
tional domain is plotted in Fig.9.

Synthetic data are obtained using the following friction co-
efficient:

βN
r (x) = a +

a

2
sin

(
2πx

50dx

)
+

a

5

N∑
i=1

fi(x) (31)

with

fi(x) = sin

(
2πx

widx

)
with w1 = 20, w2 = 10, w3 = 5,

(32)

and by extension, we set

f0(x) = sin

(
2πx

w0dx

)
with w0 = 50. (33)

The quantitya is the average friction coefficient anddx =

100 m is the bedrock edge length. The context of a non-
uniform flow on a complex topography allows us to carry
out the comparison between both methods in the case of a
realistic flow simulation. We can then draw practical conclu-
sions on the validity of using the “self-adjoint” approxima-
tion. Frequencyf0 is a carrier wave with 50dx wavelength
corresponding to 5h, whereh ∼ 1 km is the average thick-
ness of the domain. Frequenciesf1, f2 andf3 correspond

then to wavelengths of 2h, h andh/2 respectively, providing
a situation similar to the inclined slab test case (see Table2).

In the present case of a non-uniform flow with complex
topography, it is not feasible to simulate an average slip ratio
r = 500. Given the important spatial variability, we are able
to achieve a maximum average slip ratior = 50. In the fol-
lowing identification, we consider only five slip ratios rang-
ing from r = 0.005 tor = 50. The synthetic horizontal sur-
face velocity perturbed with a 1% noise is plotted in Fig.10
for the caser = 5.

Morozov’s discrepancy principle applied to these five sit-
uations is plotted in Fig.11.

The observed behaviour is similar to the one previously
noted (but not plotted) for the idealized situation. Both meth-
ods behave identically in terms of cost decreasing for a 1%
noise level on the data. In all cases, they demonstrate a robust
behaviour that provides an optimal discrepancy (according
to Morozov). The expected behaviour of over-fitting (i.e. to
reach a final misfit smaller than the one computed from the
target friction coefficient with perturbed data) forγ small
enough suggests that the gradient provided by both methods
is a priori accurate enough with regards to the noise level (un-
like the slab case with smaller noise; see Fig.6). The peculiar
behaviour for the caser = 50 where the discrepancy remains
lower than the optimal one regardless of the regularization
parameterγ is detailed hereafter.

Figure12plots the DFT of the friction coefficients inferred
by both methods and of the target coefficient (27) for a noise
level of 1% on the data and for the five slip ratiosr.

While the wavelengths considered in the friction coeffi-
cient (27) are similar (in terms of thickness ratio) to those
considered for the quasi-uniform test case, the use of a higher
noise on a non-uniform flow deteriorated the reconstruction
at all levels. The carrier frequency amplitude (of wavelength
5h) is never fully recovered by any method, but clearly ap-
pears forr ≤ 5. Likewise, frequencyf1 (of wavelength 2h),
well captured in previous simulations by the full adjoint
method, is fairly well reconstructed only for 0.05≤ r ≤ 5.
Again, the “self-adjoint” method is able to recover it only
partially. However, the interferences introduced by the “self-
adjoint” method within the inferred friction coefficient do not
appear anymore for this level of noise on the surface data.
It therefore seems coherent with the limited accuracy of the
gradient provided by this method.

As a consequence, the chosen frequencies for these sim-
ulations are too high to be recovered in this non-uniform
flow with realistic data. Numerical experiments using higher
wavelengths in the friction coefficient show that an accurate
reconstruction for any slip ratio can be obtained, for the full
adjoint method, for a carrier wave of wavelength 10h and a
perturbation of wavelength 5h; shorter wavelengths are not
accessible.

What is of further interest is that the full adjoint
method brings, in all cases, an enhanced and more faithful

www.the-cryosphere.net/8/721/2014/ The Cryosphere, 8, 721–741, 2014



734 N. Martin and J. Monnier: Adjoint accuracy for the full Stokes ice flow model

0 0.5 1 1.5 2 2.5 3
x 104

−500

0

500

Computational domain

Length

H
ei

gh
t

(m)

(m
)

Fig. 9.Vertical cut of the Mertz outlet glacier, Antarctica (topography profile from ICECAP 2010 within IceBridge, provided by B. Legrésy,
LEGOS, France),x scale= 2/5.

Table 2.Characteristics of signalβ given by Eq. (31).

f0 f1 f2 f3

Wavelength w.r.t.h = 1 km (thickness) 5h 2h h 0.5h

Wavelength w.r.t. dx = 100 m (edge
length)

50dx 20dx 10dx 5dx

Wavenumber w.r.t.L = 33.3 km (domain
length)

6.6 m−1 16.6 m−1 33.3 m−1 66.6m−1

reconstruction of the friction coefficient for both the carrier
wave and the first perturbation.

The pattern of behaviour of the rapid sliding case (r = 50)
is different compared to the other cases. The full adjoint
method retrieves roughly the carrier frequency with very high
interferences (including one low-frequency, high-amplitude
interference) and the “self-adjoint” method does not capture
any information of the target signal in addition to the initial
guess.

In order to understand this phenomenon, we plot in Fig.13
the gradients∂j/∂β(β0) with β defined by Eq. (31) for sev-
eral average valuesa of the friction coefficient, described in
terms of the slip ratior. The computed gradients are evalu-
ated aroundβ0 = a.

Increasing the slip ratio has a very clear effect on the sensi-
tivities. For slip ratiosr < 1, the sensitivities include the local
effects of the high frequencies contained inβ, thus providing
a highly variable gradient around an average behaviour. The
fact that the sensitivity decreases withr, due to poorer in-
formation transmission between the bottom and the surface,
is recovered. It follows that, in the casesr < 1, the limita-
tions in the identification of all the frequencies of the friction
coefficient come from the precision on the data.

The situationsr > 1 bring significantly smoother gradi-
ents. The casesr = 6 andr = 13, which still represent mod-
erate slip ratios, contain a certain local variability, but their
rather smooth appearance shows a strong correlation with
the global topography (or similarly the surface velocities;
see Fig.9 and Fig.10) and the high frequencies ofβ seem
already erased from the gradient. In these situations, the
main component resisting the flow is more the large-scale
(or equivalent) topography than the friction itself.

For higher slip ratios, the topographical effects seem to
vanish as well, and the gradient only grows from the inflow
boundary to the outflow boundary to reach a maximum value
close to the right border. In the present case, one can deduce
that the only effect resisting the flow is the cryostatic pressure
considered on the right boundary.

A global decreasing of the sensitivity with increasingr is
also observed, reinforcing the existence of a sensitivity peak
for in-betweenr. For r > 1, it is not the quality of the data
that prevents an accurate reconstruction ofβ but the non-
local behaviour of the flow. When basal friction vanishes, it
does not embody more than a small fraction of the global re-
sistance to the flow. An extreme example is the progress of
an ice shelf on water where the friction resistance is close to
zero. In the case of a tridimensional solution, stresses would
be taken over by lateral shearing. In our case, these effects do
not exist and it is the hydrostatic pressure boundary condition
that resists the flow. These clearly non-local effects suggest
than the flow can only be globally controlled, thus limiting
the range of identifiable frequencies, regardless of data accu-
racy. Let us recall that, in terms of absolute errors, a higher
slip ratio leads to a smaller absolute value of the friction co-
efficient and thus to a smaller amplitude of errors. We also
point out that the vanishing of the sensitivities close to the
left boundary is due to the Dirichlet boundary condition.

These phenomena imply a strong equifinality for friction
coefficients lower than a certain value. This observation ap-
pears in the Morozov curves (see Fig.11) for the caser = 50.
Indeed, the discrepancies for both methods are smaller than
the theoretical optimal one, even for very strong regulariza-
tion (γ large), providing almost constantβ aroundβ0. The
initial cost itself, evaluated for a constantβ equal to the
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Fig. 10.Horizontal surface velocities used as synthetic data in the caser = 5 perturbed with a 1 % noise.
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average value, is barely higher than the theoretical optimal
cost. The associated minimization problem is ill-posed and
the Tikhonov regularization on the gradient ofβ does not al-
low us to overcome this problem.

For the caser = 50 and a regularization small enough
(considering that Morozov’s principle does not allow the op-
timal γ value to be selected) it is noticeable that the full ad-
joint method is able to retrieve a small quantity of informa-
tion, along with a large noise (optimal control problem obvi-
ously ill-posed), whereas the “self-adjoint” method does not
provide anything else other than the initial guess, irrespective
of the value ofγ .

5 Density of the data

The previous simulations have been performed using quite
dense surface velocity data (one measurement everydx).
This section deals with test cases identical to the previous
section but using sparser (one measure point every 1 km)
and thus more realistic data (corresponding to one ice thick-

ness; see e.g.Gudmundsson and Raymond, 2008). This den-
sity corresponds to approximately 10 times less measurement
points than the previous case. We consider hereafter the fol-
lowing friction coefficient for the synthetic data:

βN
r (x) = a +

a

2
sin

(
2πx

200dx

)
+

a

5

N∑
i=1

fi(x) (34)

with

fi(x) = sin

(
2πx

widx

)
with w1 = 100, w2 = 50, w3 = 20,

(35)

and by extension, we set

f0(x) = sin

(
2πx

w0dx

)
with w0 = 200. (36)

The friction coefficient chosen for these simulation con-
tains lower frequencies than the previous one, simulating a
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Fig. 12.Discrete Fourier transform for inferred friction coefficientsβf andβs and for the target oneβr. Frequencyf3 is never captured by
any method and is thus not plotted on the curves. A noise levelδ = 1% is used in all the situations.

carrier wave of wavelength 20h perturbed by high frequen-
cies of wavelengths 10h, 5h and 2h. These characteristics
are summarized in Table3. Results are plotted in Fig.14 for
a noise level of 1%.

As a consequence, the level of identifiability assessed for
dense data in the previous section is no longer valid. How-
ever, considering that one out of ten points has been retained,
the results seem rather convincing. The full adjoint method is
able to recover frequencies of wavelengths 20h and 10h (cor-
responding tof0 andf1) accurately for all degrees of slip.
The “self-adjoint” method recovers the carrier wave quite
well, although a stronger friction (r ≤ 0.05) significantly de-
grades the reconstruction of the amplitude. Frequencyf1
is well captured for propitious situations (0.5 ≤ r ≤ 5). Fre-
quencyf2 (of wavelength 5h, the lowest frequency consid-
ered in the dense data situation) is partially reconstructed by

the full adjoint method forr ≤ 5 and never captured by the
“self-adjoint” method.

The caser = 50 is a lot less problematic than previously
found, due to lower frequencies and subsequently less local
effects regarding the sharpness of the bed discretization. A
pronounced difficulty appears for the identification of fre-
quencyf1 (of wavelength 10h). The caser = 50 is the only
one where frequencyf2 does not appear in the spectrum of
β̂f (consistent with the previous simulations).

6 Conclusions

The significant time saving brought by the “self-adjoint”
method due to its straightforward implementation is a
favourable asset. However, its reliability is questionable and
it seems important to know its limitations in order to perform
realistic experiments.
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Table 3.Characteristics of signalβ given by (34).

f0 f1 f2 f3

Wavelength w.r.t.h = 1 km (thickness) 20h 10h 5h 2h

Wavelength w.r.t. dx = 100 m (edge
length)

200dx 100dx 50dx 20dx

Wavenumber w.r.t.L = 33.3 km (domain
length)

1.66 m−1 3.33 m−1 6.66 m−1 16.6 m−1

The realistic simulation (low-density data, 1% noise, real
topography, non-linear friction) allows us to assess the full
adjoint method’s ability to identify accurately wavelengths
greater or equal to 10 ice thicknesses and to capture effects of
wavelengths of up to 5 thicknesses for a slip ratio lower than
5. These bounds are defined by the level of noise considered
on the data, and a higher accuracy on the data would allow
us to identify higher frequencies.

The “self-adjoint” method, based on second-order numeri-
cal schemes, while providing an incorrect gradient, is able to
reconstruct wavelengths greater than 20 ice thicknesses (with
noticeable difficulties for strong friction). Wavelengths of 10
ice thicknesses can be captured in propitious situations of in-
termediate sliding (0.5 ≤ r ≤ 5). These bounds are strict and
a lower noise would not allow the limited precision of the
“self-adjoint” gradient to be overcome.

The results provided by the full adjoint method are signif-
icantly better than those given byPetra et al.(2012) (who
assess a limit of 20 ice thicknesses for a non-linear rheol-
ogy). It is difficult to compare considering that the authors
provide neither their slip ratio nor the density of the data. In
addition, the authors ofPetra et al.(2012) consider a linear
friction law.

The use of a non-linear friction allows us to simulate com-
plex behaviours of the ice–bedrock interaction. This type of

law can describe a non-linear deformation of the basal sub-
strate or a non-linear response of the sliding velocity to the
water pressure of sub-glacial cavities. The former reconstruc-
tions focus on the identification of a genericβ. However,
one may confidently generalize these results to more com-
plex sliding laws whereβ would be identified through its
parameterization (by a water pressure, a contact surface with
sub-glacial cavities, a sedimentary roughness, a geothermal
flux, etc.). It is important to recall that an identical costj does
not mean an identical results due to the equifinality aspect
and that over-parameterization is hardly ever in favour of an
accurate identification; the identification of several parame-
ters simultaneously would strongly reinforce the problem of
equifinality (i.e. the ill-posedness of the inverse problem).

In other respect, we recall that the use of a “self-adjoint”
gradient in the case of a non-linear friction law leads one to
ignore an important extra contribution (compared to the case
of a linear friction; see Sect.3.2) in the gradient computation
(see Eq.23), which adds even more discrepancy to the adjoint
problem.

This work focuses on the identification of the friction coef-
ficient that plays a major role in controlling the flow (i.e. the
model shows great sensitivity to the friction). The identifica-
tion of a parameter such as the consistencyη0, for which the
model sensitivity is significantly lower, needs to be done with
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Fig. 14.Discrete Fourier transform for inferred friction coefficientsβf andβs and for the target oneβr for sparse data (a 1% noise level).

caution for the full adjoint method (see e.g.Martin and Mon-
nier, 2014b) and thus with increased caution for the “self-
adjoint” method.

Finally, the adjoint obtained from source-to-source algo-
rithmic differentiation allows us to simulate every level of
the needed precision between the best precision of the ex-
act adjoint to the lowest one of the “self-adjoint” approxi-
mation. This leads to the consideration of anincomplete ad-
joint methodology where the approximation is completely
adjustable, thus allowing the right compromise between CPU
time, memory burden and required accuracy to be achieved.
Numerical experiments show that the retention of the last two
states of the forward iterative loop (or equivalently the first
two states of the reverse accumulation loop) within the gra-
dient computation significantly improves its precision while
maintaining a quite small computational burden. Let us recall
that such an approach should be combined with an accurate
solution for the forward problem.
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Fig. A1. Direct routine scheme.

Appendix A

Adjoint of a linear solver

This appendix describes how to generate the adjoint of a
generic routine containing a call to a linear solver whose con-
tents are a priori unknown.

The direct routine

A general direct routine can be described as follows. Letc

andd be two given input parameters such that(
A

b

)
= f (c,d) =

(
f1(c,d)

f2(c,d)

)
,

with A a matrix andb a vector. Letx be the solution of the
linear systemAx = b andj define a cost function evaluated
atx. FigureA1 illustrates the direct routines dependencies.

The linear tangent routine

The linear tangent routineassociated with the direct routine
described before is then written as(

Ȧ

ḃ

)
= df (c,d) ·

(
ċ

ḋ

)
,

wheredf is the linear tangent model anḋc and ḋ are the
tangent variables corresponding to parametersc andd. They
serve as input parameters for the linear tangent model in or-
der to computeȦ andḃ. We can now differentiate the linear
system operationAx = b to obtain the followinglinear tan-
gent system:

Aẋ = ḃ − Ȧx.

The matrixA and the vectorx are provided by the direct
routine and the quantitieṡA and ḃ are given by the tangent
linear routine. The linear solver is finally called, as a black
box, to solve this equation and to obtain the linear tangent
unknown ẋ where the gradient of the costj̇ can be evalu-
ated. The quantitẏx represents the derivative value ofx at
(c,d) in a given direction(ċ, ḋ). The linear tangent routine is
illustrated in Fig.A2.

The generated adjoint routines

Let us recall that the adjoint code corresponds to the linear
tangent code in reverse order. It follows that the output vari-
ables of the the linear tangent routine are input variables for

c

d b

A

with Aẋ = ḃ− Ȧx

ḋ

ċ

x ẋ

Ȧ

ḃ

j̇

Fig. A2. Linear tangent routine scheme.

the adjoint routine. Therefore, the output variables of the ad-
joint routine arēc andd̄ and represent the adjoint variables of
(c,d) (and are consequently of the same type and size). The
adjoint costj̄ is the input variable of the adjoint cost function
and similarly, the adjoint statēx is the input variable of the
adjoint linear system.

The computation of the adjoint state can be split into three
steps (see Fig.A2):

1. From j̄ , obtain x̄ (generally provided by an indepen-
dent routine called the adjoint cost function).

2. From x̄, obtainĀ andb̄.

3. FromĀ andb̄, obtainc̄ andd̄ using the adjoint model
df ∗ such that(

c̄

d̄

)
= df ∗(c,d) ·

(
Ā

b̄

)
.

The adjoint of the linear system

The linear solver call occurs in the second step. The input
variable isx̄ and the output variables arēA and b̄. In the
linear tangent code, we haveAẋ = ḃ − Ȧx or, if one splits it
into two steps,

2a. ḃ′
= ḃ − Ȧx,

2b. Aẋ = ḃ′.

An adjoint calculation being performed in the reverse or-
der, the adjoint of this procedure starts with instruction 2b,
which can be written as follows:(

ẋ

ḃ′

)
=

(
0 A−1

0 1

)
×

(
ẋ

ḃ′

)
.

Sinceḃ′ is the input variable for the instruction 2b, its adjoint
counterpart̄b′ is the output of the adjoint instruction of 2b (by
convention, the adjoint output variables are set to 0 before
entering the adjoint routine). Similarly, sinceẋ is the output
variable, its adjoint counterpartx̄ is an input one. The adjoint
instructions of step 2b are then written:(

x̄

b̄′

)
=

(
0 0

A−T 1

)
×

(
x̄

b̄′

)
.
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xĀd̄

c̄ x̄

A

b̄ j̄

Fig. A3. Adjoint routine representation.

The variableb̄′ is an output variable, hence set to 0 be-
fore entering the adjoint routine. This operation corresponds
to solving the linear systemAT b̄′

= x̄ in order to obtainb̄′

(using the linear solver).
Onceb̄′ has been computed, one has to perform the adjoint

of the instruction 2a. This instruction can be written as the
following linear operation:

(ḃ′, ḃ, Ȧ) = (ḃ′, ḃ, Ȧ) ×

 0 0 0
1 1 0

−x 0 1

 .

The corresponding adjoint instruction is written as

(b̄′, b̄, Ā) = (b̄′, b̄, Ā) ×

0 1 −xT

0 1 0
0 0 1

 ,

which leads, in reverse order, to the following operations be-
ing performed:{

b̄ = b̄′,

Ā = −b̄xT .

The variablesĀ andb̄ are output variables, hence set to 0
before entering the adjoint routine andb̄′ has been obtained
from the previous step (the adjoint of step 2b).

In summary, the adjoint of the tangent linear instructions
Aẋ = ḃ − Ȧx (referred to as step 2) can be written:AT b̄ = x̄,

Ā = −b̄xT ,

x̄ = 0,

where(c̄, d̄) are the components of the gradient with respect
to (c,d) obtained from the adjoint modeldf ∗. The first in-
struction can then be solved using the same linear solver as
the one used in the direct routine. The second instruction is
written asĀij = −b̄ixj .

Let us point out that the matrix̄A is of the same type as
A with the same sparse profile (even if−b̄xT is a priori a
full matrix). Therefore, only the adjoint values of coefficients
Ai,j are required.

The steps of the adjoint routine are illustrated in Fig.A3.
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