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Abstract. This work focuses on the numerical assessmentparameter in terms of controlling ice flows. This raises ques-
of the accuracy of an adjoint-based gradient in the perspections about, on one hand, whether the surface can provide
tive of variational data assimilation and parameter identifica-the necessary information about basal conditions and, on the
tion in glaciology. Using noisy synthetic data, we quantify other hand, whether inverse methods can adequately recover
the ability to identify the friction coefficient for such meth- this information.
ods with a non-linear friction law. The exact adjoint problem  Many authors have addressed the first question by inves-
is solved, based on second-order numerical schemes, andtigating how bedrock topography affects the surf&alise
comparison with the so-called “self-adjoint” approximation, and Raymond1985 conducted one of the earliest studies
neglecting the viscosity dependence on the velocity (leadingoncerning the transmission of fluctuations in basal slip to
to an incorrect gradient), common in glaciology, is carried the surface for a Newtonian fluid, using perturbation meth-
out. For data with a noise of 1%, a lower bound of identifi- ods. The non-local aspect of the transmission of the varia-
able wavelengths of 10 ice thicknesses in the friction coef-tions of the friction coefficient at the surface is established
ficient is established, when using the exact adjoint methodpy Raymond(1996, where it is dependent upon the slip ra-
while the “self-adjoint” method is limited, even for lower tio (the ratio between mean sliding velocities and mean ice
noise, to a minimum of 20 ice thickness wavelengths. Thedeformation velocities). These queries are extende8llid-
second-order exact gradient method therefore provides romundsson(2003, still under the Newtonian hypothesis us-
bustness and reliability for the parameter identification pro-ing perturbation methods. In these studies, one of the main
cess. In another respect, the derivation of the adjoint modetonclusions is that the transmission of basal variability at the
using algorithmic differentiation leads to the formulation of surface increases with increased sliding.
a generalization of the “self-adjoint” approximation towards The question of the representability of the friction coef-
an incomplete adjoint methoddjustable in precision and ficient through surface velocity observations (horizontal and
computational burden. vertical) using an inverse method is studied®ydmunds-
son and Raymon(2008. The method, based on a Bayesian
approach, is used to study the effect of density and quality
of surface velocity data on the estimation of the friction co-
1 Introduction efficient for a Newtonian fluid and a linear sliding law. In
the reconstruction of small amplitude variations of the fric-
The main available observations of the cryosphere are genjon coefficient, a wavelength limit of around 50 times the
erally obtained from remote-sensed techniques and are thyge thickness is found. A similar method in the case of a non-
essentially surface observations. However, ice dynamics i§\ewtonian fluid and a non-linear sliding law is developed in
known to be highly sensitive to the state of the bed (a”dRaymond and Gudmundss@2009.
therefore to how the bed is modelled; see €gffey and In other respects, the identification method based on

servable. The friction coefficient is consequently a critical
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2005 Joughin et a].2004 Morlighem et al, 2010 makes the
assumption that viscosity is independent of the velocity, and

limited attention has been paid to the quality of the resulting divw)= 0 ingQ, (1)
estimations in terms of spatial variability of the friction co-  —div(2y(u)D) +Vp = pg in Q, (2)
efficient (seeGudmundsson and RaymarzD08. Compar- 1-n

isons with the “self-adjoint” method and the use of an exact n@) =nol DIz 3

adjoint are made bgoldberg and Sergienk@011), based
on a vertically integrated approximation and fprlighem
et al. (2013 based on the higher-order model. Limitations

for the minimizi highlight I
or the minimizing process are highlighted Bpldberg and power-law exponentD the strain rate tensoy = (u,,u;)

Sergienko(2011) when using the “self-adjoint” method. To o . ) .
the best of our knowledge, the use of an exact adjoint in athe velocity field defined in the Cartesian frataez), p the

glaciological context for the full Stokes problem has been pressure fieldp the ice d.enS|tyg the gravity and||Q||12¢ -
made only byPetra et al(2012. A comparison between their D: D the Frobenius ma_trl_x nhorm.. .
results and the results Gudmundsson and Raymo(2D08 A Weertman-type. sliding law is then prescribed at the
on an academic problem allowed us then to conclude that thgedrock boundarys:
exact adjoint is able to recover wavelengths in the friction |, m-1; — gy .¢ onry, (4)
coefficient of approximately 20 times the ice thickness in the
. L u-n= 0 only, (5)

case of a linear sliding law.

The purpose of this study is the numerical evaluation ofwhereg = g(x) is a spatially variable parameter and where
the limitations of the “self-adjoint” method compared to the (¢, n), the tangent-normal pair of unit vectors, is such that
method using the exact adjoint solution, referred as the full
adjoint method in what follows hereafter. The “self-adjoint” o = (o -n)n + (o - t)t (6)
approximation for the full Stokes problem is detailed in
terms of equations and presented as a limited case of thand
reverse accumulation method used to compute the adjoint
when obtained using source-to-source automatic differentiZ % = Onnlt +0Onil, 0 -t =0mn + 0oyl @)
ation. From a strictly numerical perspective, tests on the ac-
curacy reached by the gradients for both methods are pe
formed, demonstrating an important limitation for the gradi-
ent computed by the “self-adjoint” method. We then study

the identifiability, for a non-linear sliding law, of high fre- This solutionz — (s, u=), expressed in the “mean slope”

quencies in the friction coefficient depending on the level of _ . . )
noise considered on synthetic data. The quality of the esti_reference framex, 2), is written (see e.gviartin, 2013:

whereo = n(u)D — pld represents the Cauchy stress ten-
sor (with Id the second-order two-dimension identity ten-
sor),n(u) the viscosityyo the consistency of the fluid, the

- A velocity profile corresponding to the solution of the

Stokes problem for a uniform steady flow of a parallel-sided
slab on an inclined bed with non-linear friction defined by
Eq. @) at the bottom is prescribed on the inflow boundary.

mations provided by both methods is compared in the case _ (—pgsin@)h)™
of dense horizontal surface velocity observations for a quasi- ux(z) = - 5
uniform flow and then for a realistic flow presenting an im- 1 . . noolin — dm ®)
portant spatial variability. The realistic case is then applied 75, (210) " (P& SINE)" (A7 — (H =2)™7),
for less dense data.
Uz = 0, (9)

2 Forward and adjoint model

In this section, we briefly present what shall be referred to
hereafte_r as the forward model and _describe the_dgrivation of,(2) = pgcos(O)(H —7), (10)
the adjoint model and the computation of the adjoint state.
with 6 defining the slope of the slali# the height of the

2.1 Forward model upper surface and the thickness.

A hydrostatic pressure is considered on the outflow. All
the simulations are performed with an exponent 3 for
the sliding law. The domain is discretized using triangular
Taylor—Hood finite elements and the solution of the continu-
ous forward problem is obtained using a classical fixed point
algorithm. The geometry and notations of the problem are
plotted in Fig.1.

The flow model considered here is the bidimensional flow-
line power-law Stokes model applied to a gravity-driven flow
(see e.gCuffey and Patersqr2010 and solved on a given
domaing of horizontal extent. (see Figl):
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where the dataZPSare synthetic horizontal surface velocities

""""" B ool surtace [ "L obtained using a given friction coefficieft and perturbed
iy with a random Gaussian noise of varying legelThe term
My S Flowing ice |o D 7T (B’) called Tikhonov's regularization controls the oscilla-
7 T <Spzme tions of the control variable gradiept. It is defined by
= [T SO T n_ , zd 13
Bedrock . B) = 18°1I5 ds, (13)
t g [0,L]

Fig. 1. Geometry, boundary conditions and notations of the prob-

lem whereL is the length of the domain. The parametequan-

tifies the strength of the imposed smoothness. This term reg-
ularizes the function to be minimized and introduces a bias
The sensitivities and identifications carried out in this toward a smoothly varying field. The tuning of these weights
work use adjoint-based computation and thus require the socan be achieved from various considerations generally re-
lution of the adjoint problem associated with the full Stokes lated to the quality of the data (or the noise level) and the
model. degree of smoothness sought on the control variable. A clas-
All the computations are performed using the DassFlowsical approach, referred to as Morozov’s discrepancy princi-
software DassFlow Software2007). The fixed point algo-  ple (see e.gVogel, 2002, consists of choosing such that
rithm is used here as a typical iterative method for solving of j (8; ¥) = j (B:; 0), i.e. when the final cost matches the noise
the full Stokes problem, but the assessments of the precisiol¢vel on the data. The methodology that consists of using
and efficiency of the adjoint-based inverse problems shouldoisy synthetic data in order to retrieve a set of reference
be valid for any iterative algorithm. The details of the dif- parameters (here defined g9 known a priori is called a
ferent approaches used in DassFlow for the solution of théwin experiment. The gradient of the cost function is given

power-law Stokes problem can be foundMartin and Mon- by solving the adjoint problem and used by the algorithm to
nier (20143. compute at each iteration a new set of parameters in order to
make the cosj decrease until convergence.
2.2 The basic principles of the adjoint model
2.4 Derivation of the adjoint model
The output of the forward model is represented by a scalar-
valued function; called acost function which depends on In order to compute all partial derivatives of a cost function
the parameters of the model and represents a quantity to bg(k) efficiently with respect to the components ofcan-
minimized. In the presence of observations, part of the costrol vectork, we introduce the adjoint model (see d.inns,
measures the discrepancy (the misfit) between the computet971).
state and an observed state (through any type of data). In the DassFlow software, the adjoint model is obtained
The parameters of interest are calteshtrol variablesand by using algorithmic differentiation of the source code (see
constitute a control vectdr. The minimizing procedure op- Honnoraf 2007, Honnorat et al.2007, DassFlow Software
erates on this control vector to generate a set of parametei2007). This last approach ensures a better consistency be-
which allows a computed state closer to the observations tdween the computed cost function and its gradient, since it
be obtained. In the following the control vector includes only is the computed cost function that is differentiated. A large
the friction coefficient fielg (x). The corresponding optimal part of this extensive task can be automated using auto-

control problem can be written as matic differentiation (se&riewank 1989. In the case of
o DassFlow-Ice, the direct code is written in Fortran 95 and
Mkln J (k). (11) is derived using the Tapenade automatic differentiation tool

(seeHascoét and Pascu&004. The linear solver used is
This optimization problem is solved numerically by a de- MUMPS (Amestoy et al.2001) and the differentiation of the
scentalgorithm. Thus, we need to compute the gradient of théinear system solving process is achieved using a “bypass”
cost function. This is done by introducing the adjoint model. approach which considers the linear solver as an unknown
_ _ . black box (see Appendii). This approach is similar to the
2.3 Cost function, twin experiments and Morozov'’s one used bysoldberg and Heimbac2013.
discrepancy principle Let K be the space of control variables ayidhe space of
the forward code response. In the present case, we have
The cost function used for the identification is defined by P P
: [ obe ) / k=(p)andY = (y.)’,
JBy)= 5/ lug (Br) —us(B)ll5 dx+yT(B), (12)
I whereg is defined by Eq.4).
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Optimal values
of control variables

control variables ‘

Let us point out that we include both the state and the cost
function in the response of the forward code. The direct code
can be represented as an operdtor. £ —> ) such that

Y =M(K).

(I
| if converged

The tangent model becoméﬁ’—‘(k) : K — Y. Asanin-
put variable, it takes a perturbation of the control vector | Forward code _ Optimization
dk € KC; it then gives the variatiodY € ) as its output vari- 5 gnear .

ble: 43 routine
able: 5
oM = Adjoint code search

dY = W(k) . dk . v Descent algorithm

The adjoint model is defined as the adjoint operator of the i

tangent model. This can be represented as follows:

cost function and
oM * its gradients
—(k)) Y — K.
( ok Fig. 2. Principle of a 3D-Var type variational data assimilation al-

It takesdY* € )’ as an input variable and provides the ad- gorithm.
joint variabledk™ € K’ at output:

Ji — <8M(k))* . 2.5 The gradient test
“ ek )T

) o The gradient test is a classical adjoint code validation test
Now, 'S} us make the link between the adjoint code and the, g js ysed hereafter in order to assess the precision of the
grad|entﬁ we seek to compute. By definition of the adjoint, «gg|t_adjoint” approximation. The test aims to verify that the
we have: partial derivatives of the cost function are correctly computed
<<%—/}(")*.dY*, dk> _ <dY*, (a()_/):l) .dk> . (14) by comparing it with a finite differepce approximation (see
K< V'xy e.g.Honnorat et a].2007for the detailed test procedures).
It reads, using the relations presented above: Let us consider the following order two central finite dif-
ference approximation of the gradient:
(K", dR),, = (dY*, dY),, ., (15) PP 9
jk+ask)— j(k—ask) dj
If we setdY* = (0,1)7 and by denoting the perturbation = 0k+0 (0623"3) (18)

. 2 ok
vectordk = (88), we obtain _ * _ _
with dk = adk. This scheme leads us to define

<<1 4" )|y ok L= (19)

Furthermore, we have by definition:
. According to Eq. 18), one must have lini, = 1. The gra-
dj = - sp. 16) i i ing this Drone
Y ient test consists of verifying this property.
Therefore, the adjoint variablék™ (output of the adjoint
code withdY* = (0,1)7) corresponds to the partial deriva- 3 “Self-adjoint” approximation, full adjoint and

tives of the cost function: reverse accumulation
a_J(k) = B*. (17)  The model considered here has been obtained using algorith-
B mic (or automatic) differentiation of the source code. Auto-

A single integration of the forward model followed by a matic differentiation of a fixed point type iterative routine of
single integration of the adjoint model allow us to compute the formy = ®(y, u) (such as the solution of the non-linear
all components of the gradient of the cost function. Stokes problem using a Picard method) is carried out by re-

The optimal control probleml{l) is solved using a lo- verse accumulation (seBriewank 1989 Griewank et al.
cal descent algorithm, more precisely the L-BFGS algorithm1993. The reverse accumulation technique consists of build-
(a quasi-Newton method), implemented in the M1QN3 rou-ing a computational graph for the function evaluation where
tine (seeGilbert and Lemaréchal989. Thus, these partial the nodes of the graph represent every value taken by the
derivatives are used as input to the minimization algorithmfunction. An adjoint quantity containing the gradient of the
M1QN3. The global optimization process is represented infunction ® with respect to the node is associated with every
Fig. 2. node.
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The adjoint values are computed in reverse order. The fi-3.2 The continuous adjoint system
nal value of the gradient is given by the sum of the patrtial
derivatives of the function of the nodes of the computationalBefore the numerical assessment of the “self-adjoint” ap-
graph. This result is a consequence of the chain rule. Thiroximation it seems relevant to look into the continuous
process a priori requires the storing of as many states of th@djoint equation system in order to highlight the terms that
system as iterations performed by the forward solver to reacl@re being ignored by the approximation and to estimate their
the converged state. weight in the complete adjoint system.

It is shown byChristianson(1994 that, in the case of a Omitting the lateral boundaries, the adjoint system of the
forward computation carried out by a fixed point method, thefull Stokes problemX)—(5) is (see e.gPetra et al.2012):
adjoint quantity also satisfies a fixed point problem whose

rate of convergence is at least equal to the rate of conver- div(z) =0ing, (20)
gence of the forward fixed point. Based on this result, itisa  div(») =0in &, (21)
priori necessary to retain every iteration of the forward run Xn = ugbs_ uonrls, (22)
to evaluate the gradient. In practice, as further detailed in _ alm l-m

Sect.3.4, the number of reverse iterations required to obtain =P (luf| " vt

an adjoint state with the same precision of the forward state (m — 1)|ur|%(ur ® uf)vr) onTy, (23)
can be adjusted depending on the convergence speed of the

direct construction. v-n=00nT, (24)

wherev denotes the adjoint velocity arkithe adjoint stress

tensor. The quantity,; is defined in the same way as;

The “self-adjoint” method in glaciology, applied to (see Eq7). The adjoint stress tensor is written as

the shelfy-stream approximation, has been proposed by

MacAyeal (1993. The approximation consists of deriving 5 =25 (I N 2(1—n) D) ®D("))Q(v) _ldg. (25)

the adjoint equation system without taking into account the n ||Q(u)||12p

explicit dependence of the viscosityon the velocity field

u. Let us recall that the terminologself-adjointonly makes ~ with ¢ denoting the adjoint pressutiethe fourth-order iden-

sense in the Newtonian case=£ 1). It is important to make  tity tensor applied to order two tensoid, the second-order

clear that the gradient resulting from this procedure is thereidentity tensor and®’ the tensor product.

fore an incorrect gradient. By construction, this problem is a linear problenwiand
For the full Stokes case, the adjoint system consideredlepends on the forward velocily The method to derive the

under this approximation is the adjoint associated with theadjoint system associated with any non-linear elliptic prob-

3.1 The “self-adjoint” approximation

forward problem 1)—(2) using a viscosity fieldn(uo) = lem can be found in e.ddonnier(2013.
2n0|ID(uo)|| r for a givenug. This problem is indeed a “self- First, the non-linearity of the forward problem appears in
adjoint” problem (the underlying operator is linear and sym- the definition of the adjoint stress given in EQ5|. The
metrical with respect ta). norm of the tern%}) is simply one (sincéD ® D|| =

= F

. In gqura_l, the procedure consists of calculgtlng amechan”D”F « DI+ given a consistent choice of the fourth-order
ical equilibrium based on the complete non-linear system tgngor norm with the Frobenius matrix norm), and the norm
obtain a convergedo and the gradient is then obtained by ¢ the jdentity tensor is known to be greater or equal to
simply transposing the final computed state. This method aPpne (and typically equal to one for tiseipnorm). The lin-

plied to the full Stokes problem can be found\torlighem ¢4ty assumption of the “self-adjoint” method leads to set

etal.(2010. o . , . n=m=1in the adjoint system20)—(24). It then leads to
In the automatic differentiation context, this approxima- {,o dropping of a term that is comparable to the one that is
tion is equivalent to retaining, in the reverse accumulationkept fori=" close to one (23 forn = 3). It logically follows
’ n - .

process, only the gradient computed from the final evaluay i the greater the non-linearity (the valuefthe greater
tion of the functiond. The quality of such an approximation  the non.linear contribution, and the coarser the “self-adjoint”
is thus questionable and will strongly depend on the prOble”hpproximation.

one considgrs and t.he requir(_ad accuracy on the gradient. The other non-linearity comes from the non-linear friction
The quality of this approximation (compared to the ex- |5y and appears in Eq28). A similar calculation leads to a
act adjoint state) for parameter identification is assessed b¥;milar conclusion: forn > 1. the norm of the terms that are

Goldberg and SergienK@011) for depth-integrated shallow- being dropped by the “self-adjoint” approximation is compa-
ice type equations, but has never been treated for the full pic to the one being kept.

Stokes equations. Let us point out that, in Eq.2@), for larger values ofn

(representing hard-rock sliding or mimicking Coulomb fric-
tion), the non-linear contribution is no longer comparable

www.the-cryosphere.net/8/721/2014/ The Cryosphere, 8, 72744, 2014
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to the linear part and becomes dominant due to the factodirect solver precision (and thus, only one gradient test
(m — 1), and to neglect the non-linear terms is most certainlycurve is plotted in Fig3, for the caser = 108, v being the
unsuited. precision of the forward solution).

These observations are clearly retrieved numerically in the The “self-adjoint” approximation used within a parameter
gradient test performed hereafter (see Bjgwhich shows a identification process is thus not able to compute an accurate
relative error around 1 for the “self-adjoint” approximation. gradient. However, as further discussed hereafter, numerical

tests demonstrate a certain ability for this approximation to
3.3 Numerical evaluation of the “self-adjoint” reconstruct the friction coefficient partially (for a computa-
approximation tional cost well below the one of the full adjoint method in

. . . o the automatic differentiation context). Nevertheless, signifi-
We consider the flow described in Se2il. The domainisa  .4nt weaknesses in the reconstruction of high frequencies as

parallel-sided slab on an inclined bed with an aspect ratio of || a5 the reconstruction of the main frequency of the fric-
1/10 on a 10% slope. The friction condition at the bottom is i, coefficient signal, specifically for extreme situations of

given by Eq. 4) with a constanp and an exponent: = 3. gjiging (very slow or very fast), are brought to the forefront.
A stationary free surface flow, uniform with respectitois

thus obtained.
The cost functionj used here corresponds to the one de-
fined by Eqg. 12) without regularization:

3.4 Adjustable adjoint accuracy and truncation of the
reverse accumulation

1 2 This section focuses on the effect of a truncation of the re-
J=JjB;0) = Ef u(B,7) —ud dx, (26)  verse accumulation process. Figdr@lots gradient test re-
I's sults obtained for a truncated evaluation of the adjoint state.
To do so, the number of iterations of the adjoint loop is trun-
where the observations®®s are the horizontal velocities at cated from one tdV, the total number of iterations performed
the surfacel’s, (x,7) designates the mean-slope frame andby the direct solver. We thus obtai gradient tests, pro-
the control variable is the discrete friction coefficient figld  viding every level of precision for each intermediary adjoint

The gradient tests carried out for the “self-adjoint” and states between the exact adjoiM iferations) and the “self-
full adjoint methods, using cost functio26), are plotted in  adjoint” approximation. This test is carried out for various
Fig. 3. The tests are performed for various levels of preci- levels of precision of the direct solver. The number of iter-
sion of the forward problem = |luz11 — ui||/llux|l in order  ationsN performed by the direct solver to reach the required
to quantify the best attainable precision by the adjoint prob-accuracy depends on this precision.
lem with respect te. This precision is explicitly given to the The results concerning the precision of the gradient pre-
direct solver through a convergence threshold for the nonsented previously are well recovered (see Big.The low-
linear loop but can be seen as the available accuracy on thest precision, identical for eveny and equal to ®, is ob-
datau®?S, a direct solution accuracy of= 104 mimics data  tained from the “self-adjoint” approximation (corresponding
presenting a noise of.@1%. The use of unnoisy data helps to 1 reverse iteration) and the highest precision is reached
to preserve the theoretical constant rate decreasing error dfy the full adjoint method (corresponding to the last point of
the gradient test, thus validating the method. each curve).

The gradient test compares the gradient computed by the A linear decrease in the error (in logarithmic scale) result-
adjoint code to a reference gradient. For these tests, the refng in a slope of 3 is observed. This behaviour of the error
erence gradient is obtained using a centered finite differencé coherent with the result @hristiansor(1994), who states
approximation (of order 2) computed for a precision on thethat the computation of the adjoint state by reverse accumula-
function evaluation of 102, This precision being consid- tion is equivalent to a fixed point computation. In the present
erably higher than those considered for the solution of thecase, we have a reverse accumulation algorithm presenting
forward problem, the finite difference gradient plays the rolea rate of convergence of B Yet, the convergence speed of
of an “exact” value (see Se@.5). the forward fixed point (not plotted here) leads to a slope of

The full adjoint method shows the expected theoretical be-3. The convergence of the adjoint state computation is there-
haviour. We recover the slope of 2 (in logarithmic scale) as-fore higher than the one of the direct state computation. This
sociated with the order of convergence of the finite differenceresult explains th@lateauobserved for the final iterations;
approximation 18). Figure3 thus shows that the precision of indeed, a faster convergence of the reverse accumulation al-
the adjoint state is of the same order as the one of the direajorithm allows us to reach the converged adjoint state with
solver. fewer iterations.

On the contrary, the precision of the gradient provided by Again, the accuracy of the “self-adjoint” approximation
the “self-adjoint” approximation is rather limited. The best appears strongly limited and the possibility of an incomplete
reachable precision, as expected from the continuous adjoinhethod, intermediary between the full adjoint method and
system analysis, is slightly smaller than 1, irrespective of thethe retention of only one iteration could bring an important

The Cryosphere, 8, 721741, 2014 www.the-cryosphere.net/8/721/2014/
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Gradient test for the full adjoint and the self adjoint method for various direct solver accuracy v
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Fig. 3. Gradient test for the full adjoint method and the self adjoint method for various levels of pregisibtine forward solution. The
quantity I, is defined by Eq.X9).

Gradient accuracy for incomplete reverse accumulation for various direct solver accuracy v
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Number of reverse iterations

Fig. 4. Accuracy of the gradient for incomplete reverse accumulation for various levels of precision of the direct solution

gain of precision; taking into account the linearly decreasingFig. 4). These last five iterations correspond to the first five
error (in logarithmic scale) leads to significantly improved iterations carried out by the direct solver. Avoiding the ac-
accuracy for each additional iteration retained during thecumulation of these iterations for the adjoint state evaluation
computation of the adjoint state. amounts to starting the reverse accumulation from a residual
Furthermore, the faster convergence of the reverse accwsn the forward run of A (i.e. a relative variation between
mulation algorithm compared to the direct solver allows us,two successive iterations ofX). This observation, although
in any case, to spare a few iterations during the computatiomlependent on the considered case, can be seen as an empiri-
of the adjoint state without any loss of precision. The numbercal method to define a criterion for the number of direct iter-
of unnecessary iterations is likely to be strongly dependenttions that should be accumulated to obtain the best accuracy
on the situation and must be studied in every case. on the adjoint state. In the present case, it amounts to initi-
For the present test case, we observe that the last five iteating the memory storage of direct iterations once the direct
ations during the reverse accumulation are useless whatevaplver residual is lower thanD.
the level of precision of the forward run (see thlateauin
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In a more general point of view, the threshold imposed on Itis important to point out that the poorer the data (or sim-
the direct solver to limit the accuracy of the computed stateilarly the greater the noise), the stronger the equifinality.
is a quite numerical artifice and should not be seen as a way In what follows, we first consider the idealized case of a
of saving time, regardless of the data precision. A reliablequasi-uniform flow on an inclined parallel-sided slab with
approach for real numerical simulations could be to performvery low and low noise levels in order to highlight the nu-
an accurate direct simulation but a truncated adjoint in adesmerical limits of the “self-adjoint” method.
quation with the level of noise on the data. This adjustment We then perform pseudo-realistic, spatially variable, flow
could be made based on one gradient test which allows foexperiments with a realistic noise for various densities of
the quantification of the rate of convergence of the reversahe surface data. All the identifications presented hereafter
accumulation loop. use, as an initial guess for the friction coefficient, the aver-
age value: of the target coefficient. The optimization proce-
dure stops when the three following criterions are achieved:
a relative variation of the cost smaller than $0a relative
variation of the norm of the gradient smaller tharr4pand
a relative variation of the norm of the inferred friction coef-
ficient smaller than 10°.

4 Friction coefficient identifiability

This section focuses on the practical limits of identifiabil-
ity of the friction coefficient by both the full adjoint and the
“self-adjoint” method.

The main goal is to draw conclusions on the possibility 4 4 Quasi-uniform flow
of using the “self-adjoint” method (which brings important
time and memory saving) and then on the quality of the re-The following experiments are performed on the same in-
sults it provides in the perspective of realistic identification of clined parallel-sided slab as in Se&13. A non-linear friction
the friction coefficient. The quality of the results is evaluated |aw, defined by Eq.4), is considered at the bottom with an
in terms of frequencies and amplitudes of the reconstructeéxponentn = 3. The target friction coefficient, variable in

friction coefficients compared to the target ones. is given by
As presented before, the precision of the “self-adjoint”
gradient is bounded, whatever the level of precision of the a oy a X
direct solverv. This level of precision can be seen as an aff (x) =a+ 55"’1<m> + ngi(X)» (27)
i=1

priori accuracy on the data considered in the cost function.

In view of a thorough analysis of the invertibility capacities with

of an adjoint-based inverse method, only synthetic data are

used in the present work. A Gaussian noise of lévielthus . 27x

added a posteriori to emulate real data. The precision of theli () = Sm(@

exact adjoint gradient depending onand equivalently on

the level of noiseS on the data), we seek to observe which and by extension, we set

value ofv is required to observe the limit of precision of the

self-adjoint method. fox) = sin(
To this end, we consider three noise levélsf 0.01%,

0.1% and 1%, representing very low, low and realistic noise. The quantitya is the average value of the friction coef-

Although a realistic level of noise depends on many aSpeCtSficient in Pasm? anddx = 0.2m denotes the length of a

the use of GPS technigues and INSAR velocity measurementgasal edge or, in other WOI‘d.S the sharpness of the bedrock

can provide this type of precisioKing, 2004 Joughin et al. discretization ' '

201Q Rignot et al, 2011). ’

In all cases, the final cost reached by both methods is not We setpr = the_ friction coefflc!ent resulting from the
- . . - : sum of four frequencies corresponding to wavelengths of 20,
sufficient enough to inform their precision, especially for

noise levels greater or equal to 1% (which is typically the 10,5 :.ind 2, edge length. Thg low frequencyfo r‘epresents
. a carrier wave for the three higher frequencfes € [1, 3].
case for real data). This means that one cannot draw concly- .
) . - o . . n terms of thickness of the domain (here constant and
sions about the quality of the “self-adjoint” approximation : .
. : equal to 1 m, see Tabl#), frequenciesf;,i € [1, 3] corre-
solely based on a comparison of the costs provided by both ;
methods spond to wavelengths ofi4 2k, 0.8h and Q4h respectively.

L v o
On the contrary, the frequency analysis suggests that o e coefficientss,”, N € [1, 3] are plotted in Fig5 for the

identical final cost is not equivalent to an identical inferred caser = 1. These properties are summarized in Table

L - . . The flow is uniform when the friction coefficient is con-
friction coefficient. It demonstrates that this type of inverse ) : A
stant along the domain and can be described as quasi-uniform

problem is ill-posed, which can be seen as an equifinality hen the friction coefficient is given by E®T)
issue (i.e. an ide_ntical _Sta‘?’ and conseql_JentIy an identical We seek to determine the level of spatieil variability of
cost, can be obtained with different sets of input parameters)the friction coefficient the full adjoint and the “self-adjoint”

) with w1 =10, wp =4, w3 =2, (28)

21
; ) with wo = 20. (29)

X
wodx
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Friction coefficient (Pasm™')

0% ) a 6 8 10
Length (m)

Fig. 5. Friction coefficients’, 1 < n < 3 given by Eq. 27) with a = 1.

Table 1. Characteristics of signd given by Eq. 27).

fo f1 f2 /3
Wavelength w.r.hi = 1 m (thickness) A 2h 0.8h 0.4h
Wavelength w.r.tdx = 0.2 m (edge length) 2Dx 10dx Adx 2dx

Wavenumber w.r.tL = 10m (domain lengthy BZm~1 5m1 125m1 25m1

methods can provide through the identification processFig. 6 the application of this method to the identifications
based on surface velocity observations, with respect to th@erformed with both methods (full adjoint and “self-adjoint”)
degree of slip. The degree of slip depends on the value oin the case of an intermediate friction#£ 0.5). The corre-
parameter and will be described hereafter in terms of the sponding curves for other slip ratios are identical and conse-
slip ratio . The slip ratio is a dimensionless quantity that quently not plotted.

quantifies how slippery the bedrock is. It is calculated as the Figure 6 clearly demonstrates the inability, of the “self-
ratio of the mean sliding velocityy, to the difference be- adjoint” method, to provide a gradient for sufficiently low
tween mean surface velociiig and mean basal velocify, noise. For noise levels=0.1% ands = 0.01%, the “self-

(cf. Hindmarsh 2004). It leads to adjoint” gradient does not allow the optimal misfit to be
reached. Therefore, in these situations, the “self-adjoint” ap-
r =up/|us—upl. (30)  proximation is theoretically not valid. However, as we will

) ) o see, the “self-adjoint” method shows a certain ability to re-

A slip ratior = 1 represents a situation where half of the yjeve the target parameter. This observation is independent
surface velocities are attributed to sliding and half are at-4¢ e degree of slip.
tributed to deformation. . _ . In order to study the effects of the approximation on the

We consider six different slip ratios ranging from very g, gient computation, we compare, in the following, the fric-
high friction (close to adherence) to very rapid sliding. The tjon coefficient inferred by both methods k= 0.01% and
slip ratiosr = 0.005,r = 0.05 andr = 0.5 can be described 5 _ 104
as moderate sliding and the slip ratios=5, r =50 and The best inferred friction coefficients (according to Mo-
r=>500 asrapid sliding. ) ___ rozov) are notegp; for the full-adjoint and Bs for the self-

In order to highlight the limitations of the “self-adjoint” ,qigint The quantitiesd: and Bs thus denote their associ-
apprgxmaﬂgn, the identifications @f performed hereafter  4ia4 discrete Fourier transform (DFT). We denotq@byhe
consider noise levels =0.1% ands = 0.01% on the sur- _ DFT associated with the target friction coefficie@). The
face veI00|ty_ data. Let gs_pomt out that the self_-a_djomt single-sided amplitude spectrum of the DFﬁ'S,B\f andﬂAs
method provides very similar re(;c,ults to the full adjoint one gpained for the three small slip ratios (moderate sliding) are
in terms of final cost wheid = 1% (not plotted in Fig6)  piotted in Fig.7 and those obtained for the three high slip ra-
and the Q|stlnctlon between both methods clearly appears fof; g (rapid sliding) are plotted in Fig. The amplitude spec-
lower noises. . . trum plots the modulus of the complex Fourier coefficient

The cost function is defined by EGL2). The tuning of  ytiplied by two, providing the original amplitude of the

the regularization parameteris achieved according to the grequencies of the signal (approximated by the sharpness of
Morozov discrepancy principle (see Se2t3). We plot in
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A A §=0.01%
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— Autoadjoint approximation
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Regularization parameter v

2
Fig. 6. Application of Morozov’s discrepancy principle. Final discrepancy (or migiity frs ‘us(n) —ung(n,)( dx with respect to the

value of the regularization parameter The horizontal line represents the level of noise corresponding to the optimal discrepancy obtained
from the target coefficient.

the sampling frequency). The abscissae have been rescaledConcerning the carrier frequency, one observes difficulties
according to the discretization of the bedra¢k and the  for the “self-adjoint” method in reconstructing it accurately,
length of the domaird in order to directly provide the origi- even for the slip ratiay = 0.5. The frequency distinctly ap-
nal wavenumber of the frequencies. All the signals have beeipears on the spectrum, but only 80% of the target amplitude
centered (to have a zero mean) in order to remove the peais recovered. The decreasing of the slip ratio deteriorates, for
corresponding to the average. Since the zero mean amplitudeoth methods, the identification ¢§. In the cases = 0.005,
spectrum is symmetrical, the single-sided spectrum is plottedhe full adjoint method recovers 70% of the target amplitude
everywhere. The single-sided amplitude spectrum plotted irwhere the “self-adjoint” method recovers 50 %.
Figs.12 and14 are identically defined.

4.1.2 Rapid sliding

4.1.1 Moderate sliding
Again, low frequenciegp and f1 are well retrieved with the

One observes first that frequenci@sand f1 (see Tabld) are  full adjoint method for every noise level. The carrier wave

globally well reproduced by both methods & 0.01%, reconstruction is nevertheless diminished (around 80% of

whatever the slip ratio, namely, the carrier frequerfgyis the target amplitude) compared to the moderate sliding situa-

very well reconstructed by both methods and this propertytion r; = 0.5 but is stable with the increasing afSimilarly,

seems desirable. The full adjoint method shows a greater rofrequency f; is rather well represented by the full adjoint

bustness when identifying these two low frequencies withmethod for all the situations despite a certain degradation

respect to the slip ratio, whereas a noticeable deteriorationvith increasingr. However, frequencyf, does not appear

in the identification of frequencyi occurs for the “self- in any spectrum, irrespective of both slip ratio and method,

adjoint” method when slip ratio decreases. contrary to the moderate sliding situations. Again, frequency
However, frequency> appears correctly captured by the f3 is never captured. A small but noticeable noise appears

full adjoint method, while it does not appear in the spectrumfor the case: = 500 for the full adjoint method, particularly

of the “self-adjoint” one. An increased difficulty in capturing whens = 0.01%.

this frequency occurs with slip ratio increase. The “self-adjoint” method shows a relatively good recon-
Finally, the highest frequencgs does not appear in any of struction of fo and f; for the case- = 5 but introduces noise

the spectrums of both; and8s, whatever the degree of slip. between frequencieg; and f>. A strong deterioration of
For a noise levet = 0.1%, one loses the ability to retrieve the reconstruction occurs whernncreases; for a noise level

frequencyf> using the full adjoint method. The identification § = 0.1%, the “self-adjoint” identification is almost unable

of frequencyfi is accurately obtained for the slip raiip= to recover the signal for > 50.

0.5, but we observe a deterioration in the result when slip

ratio decreases. The “self-adjoint” method captures almost

none of frequencyfi, whatever the slip ratio.
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Fig. 7. Discrete Fourier transform of the inferred friction coefficieftand 8s and of the target friction coefficiey. Moderate sliding.

4.1.3 Assessments similar observation can be made from the sensitivity of the
model to the rheological constamy: the high-sensitivity ar-

From these observations, we draw the following conclusionseas are strongly correlated with the areas of high shearing.
Firstly, the degree of slip of the target plays a strong role for  Similar to strong frictions, low frictions also reduce the
the limit of identifiability of the friction coefficient in terms  quality of the reconstruction. This again comes from a re-
of frequencies; a smaller slip ratio induces a lower sensitiv-duced sensitivity of the flow to the friction coefficient when
ity of the flow to the friction coefficient and consequently a rapid sliding occurs; however, this lower sensitivity appears
higher filtering of the transmission of information from the for different reasons. Intuitively, the case of a very low fric-
bedrock to the surface. tion leads to lower local topographical effects and the resis-

A strong friction induces a vertical velocity profile thatis tance to the ice flow acts through an equivalent global to-
rather convex with velocity gradients (shearing) mostly con-pography at a larger scale. This characteristic appears in the
centrated close to the bottom leading to a weaker transmisexplicit solution of the uniform flow &): in order for the
sion of the information from the bottom to the surface. A
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Fig. 8. Discrete Fourier transform of the inferred friction coefficieftsand 8s and of the target friction coefficief. Rapid sliding.

mathematical expression to make sense whdands to 0, ics are balanced (typically.® < r < 5). The low accuracy of

it requires the slope parameterto tend to 0 as well. This the “self-adjoint” gradient appears to be a strong limitation
phenomenon is physically observed: in the presence of an exn the case of rapid sliding (> 5).

tended sub-glacial lake, one observes a signature of this lake For the current quasi-uniform flow, for a noise levek

at the surface as a very flat surface topography over the lakeéd.1 %, a limit on identifiable wavelength using the full adjoint
This interpretation is retrieved in the normalized sensitivitiesmethod, for any degree of slip, i& 2wherer is the thickness

plotted in Fig.13. of the domain. More accurate data could allow us to infer
These two observations support the existence of a numerigher frequencies in the case of moderate sliding 0.5).
ical identifiability maximum for the friction coefficient us- For the “self-adjoint” method, for a slip ratie <5, a

ing the adjoint-based method; the best situation to carry outvavelength of & is well inferred and a wavelength of:2
identifications corresponds to the intermediate friction rangeis captured forr = 0.5 andr = 5. For a slip ratio- > 5, the
where sliding effects and deformation effects on the dynam4requencies considered in the experiment are inappropriate.
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In other respects, a tendency for the “self-adjoint” methodthen to wavelengths ofi2 » andh /2 respectively, providing
to introduce non-physical interferences within the inferred a situation similar to the inclined slab test case (see Table
coefficient for very low noise appears. This non-desirable In the present case of a non-uniform flow with complex
phenomenon increases when the slip ratio takes on extremtpography, it is not feasible to simulate an average slip ratio
values. Beyond the approximation aspect, one can deduce= 500. Given the important spatial variability, we are able
a lack of robustness of the “self-adjoint” method for very to achieve a maximum average slip ratie- 50. In the fol-
low noises. It seems coherent with regards to the low predowing identification, we consider only five slip ratios rang-
cision the “self-adjoint” gradient provides. On the contrary, ing from r = 0.005 tor = 50. The synthetic horizontal sur-
the full adjoint method provides a less accurate identificationface velocity perturbed with a 1% noise is plotted in Rif.
when the slip ratio goes away from 1 without introducing for the case = 5.
non-physical effects in the inferred parameter. Morozov’s discrepancy principle applied to these five sit-
It is of interest to notice that the inability to recover fre- uations is plotted in Figl1.
quencyfsis not a numerical limitation but a limitationdueto ~ The observed behaviour is similar to the one previously
the noise on the data. For sufficiently accurate data, it is alsmoted (but not plotted) for the idealized situation. Both meth-
identifiable using the second-order exact adjoint method. ods behave identically in terms of cost decreasing for a 1%
Similar experiments are performed in the next section fornoise level on the data. In all cases, they demonstrate a robust
a pseudo-realistic flow run on a radar vertical profile of the behaviour that provides an optimal discrepancy (according
grounded part of the Mertz glacier in Antarctica for surface to Morozov). The expected behaviour of over-fitting (i.e. to

velocity data with different densities and a 1% noise. reach a final misfit smaller than the one computed from the
. target friction coefficient with perturbed data) fer small
4.2 Real topography flow: the Mertz glacier enough suggests that the gradient provided by both methods

. o L , is a priori accurate enough with regards to the noise level (un-
The flow considered in this section is identical to the one pre-jjy o the siab case with smaller noise: see B)gThe peculiar

sentgd in SecR.1 The computational domain is built from  p.poviour for the case—= 50 where the discrepancy remains
real field data; the topography of the bedrock and of the suryqyer than the optimal one regardless of the regularization
face are bidimensional radar-sensed layers ofMleetz ice parametey is detailed hereafter.

tonguein eastern Antarctica. These layers have been mea- Figurel2plots the DFT of the friction coefficients inferred

sured along a flowline of this outlet glacier (American pro- by both methods and of the target coefficie2)(for a noise
gram ICECAP 2010, seBreenbaum et 3l2010. Our study 0| of 194 on the data and for the five slip ratios

focuses on the grounded part of the glacier. The computa- \ypjje the wavelengths considered in the friction coeffi-

tional domain is plotted in Figd. . cient 7) are similar (in terms of thickness ratio) to those
Synthetic data are obtained using the following friction co- considered for the quasi-uniform test case, the use of a higher

efficient: noise on a non-uniform flow deteriorated the reconstruction
a 27 x a N at all levels. The carrier frequency amplitude (of wavelength
Bl (x)=a+ Esm(ﬁ) tz Zfi(X) (31)  5n) is never fully recovered by any method, but clearly ap-
* i=1 pears forr < 5. Likewise, frequencyf; (of wavelength 2),
with well captured in previous simulations by the full adjoint
method, is fairly well reconstructed only for@b < r < 5.
NN . . . . Again, the “self-adjoint” method is able to recover it only
fit) = Sm(widx) with wy = 20, wz =10, ws =S5, partially. However, the interferences introduced by the “self-
(32) adjoint” method within the inferred friction coefficient do not
) appear anymore for this level of noise on the surface data.
and by extension, we set It therefore seems coherent with the limited accuracy of the
2 x gradient provided by this method.
Jolx) = sin( 7 ) with wo = 50. (33) As a consequence, the chosen frequencies for these sim-
wodx ulations are too high to be recovered in this non-uniform
The quantityz is the average friction coefficient and = flow with realistic data. Numerical experiments using higher

100m is the bedrock edge length. The context of a non-wavelengths in the friction coefficient show that an accurate
uniform flow on a complex topography allows us to carry reconstruction for any slip ratio can be obtained, for the full
out the comparison between both methods in the case of adjoint method, for a carrier wave of wavelengthldhd a
realistic flow simulation. We can then draw practical conclu- perturbation of wavelength# shorter wavelengths are not
sions on the validity of using the “self-adjoint” approxima- accessible.

tion. Frequencyfp is a carrier wave with 50 wavelength What is of further interest is that the full adjoint
corresponding to i, whereh ~ 1km is the average thick- method brings, in all cases, an enhanced and more faithful
ness of the domain. Frequencigg f> and f3 correspond
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Fig. 9. Vertical cut of the Mertz outlet glacier, Antarctica (topography profile from ICECAP 2010 within IceBridge, provided by B. Legrésy,
LEGOS, France)y scale= 2/5.

Table 2. Characteristics of signd given by Eq. 81).

Jo f1 f2 f3

Wavelength w.r.th = 1 km (thickness) b 2h h 0.5h
Wavelength w.rt. dx=100m (edge 50dx 20dx 10dx 5dx
length)

Wavenumber w.rtL =333km (domain 66m~1 166m1 333m?1 666m1
length)

reconstruction of the friction coefficient for both the carrier  For higher slip ratios, the topographical effects seem to
wave and the first perturbation. vanish as well, and the gradient only grows from the inflow
The pattern of behaviour of the rapid sliding case-(50) boundary to the outflow boundary to reach a maximum value
is different compared to the other cases. The full adjointclose to the right border. In the present case, one can deduce
method retrieves roughly the carrier frequency with very highthat the only effect resisting the flow is the cryostatic pressure
interferences (including one low-frequency, high-amplitude considered on the right boundary.
interference) and the “self-adjoint” method does not capture A global decreasing of the sensitivity with increasing
any information of the target signal in addition to the initial also observed, reinforcing the existence of a sensitivity peak
guess. for in-betweenr. Forr > 1, it is not the quality of the data
In order to understand this phenomenon, we plot in E&y. that prevents an accurate reconstructiongdbut the non-
the gradients; /08 (Bo) with g defined by Eq. 1) for sev- local behaviour of the flow. When basal friction vanishes, it
eral average valuesof the friction coefficient, described in does not embody more than a small fraction of the global re-
terms of the slip ratio. The computed gradients are evalu- sistance to the flow. An extreme example is the progress of
ated aroungBy = a. an ice shelf on water where the friction resistance is close to
Increasing the slip ratio has a very clear effect on the sensizero. In the case of a tridimensional solution, stresses would
tivities. For slip ratiog < 1, the sensitivities include the local be taken over by lateral shearing. In our case, these effects do
effects of the high frequencies containegBirthus providing  not exist and itis the hydrostatic pressure boundary condition
a highly variable gradient around an average behaviour. Thehat resists the flow. These clearly non-local effects suggest
fact that the sensitivity decreases withdue to poorer in-  than the flow can only be globally controlled, thus limiting
formation transmission between the bottom and the surfacethe range of identifiable frequencies, regardless of data accu-
is recovered. It follows that, in the cases 1, the limita- racy. Let us recall that, in terms of absolute errors, a higher
tions in the identification of all the frequencies of the friction slip ratio leads to a smaller absolute value of the friction co-
coefficient come from the precision on the data. efficient and thus to a smaller amplitude of errors. We also
The situations > 1 bring significantly smoother gradi- point out that the vanishing of the sensitivities close to the
ents. The cases= 6 andr = 13, which still represent mod- left boundary is due to the Dirichlet boundary condition.
erate slip ratios, contain a certain local variability, but their These phenomena imply a strong equifinality for friction
rather smooth appearance shows a strong correlation witkoefficients lower than a certain value. This observation ap-
the global topography (or similarly the surface velocities; pears in the Morozov curves (see Fig) for the case = 50.
see Fig.9 and Fig.10) and the high frequencies @f seem  Indeed, the discrepancies for both methods are smaller than
already erased from the gradient. In these situations, théhe theoretical optimal one, even for very strong regulariza-
main component resisting the flow is more the large-scaldion (y large), providing almost constagtaroundgy. The
(or equivalent) topography than the friction itself. initial cost itself, evaluated for a constafit equal to the
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Fig. 11.Morozov’s discrepancy principle applied to slip ratios: 0.005,r = 0.05,r = 0.5, = 5 andr = 50 on the realistic flow. Absolute
values of the discrepancy correspond to the real values obtained during the simulations. The range of parfaasebeen modified to
remain between 1 and %@or the sake of readability.

average value, is barely higher than the theoretical optimahess; see e.gsudmundsson and RaymarD08. This den-
cost. The associated minimization problem is ill-posed andsity corresponds to approximately 10 times less measurement
the Tikhonov regularization on the gradient®tloes not al-  points than the previous case. We consider hereafter the fol-
low us to overcome this problem. lowing friction coefficient for the synthetic data:

For the case- =50 and a regularization small enough
(considering that Morozov's principle does not allow the op- _ a . 27 x a
timal y value to be selected) it is noticeable that the full ad-r ) =4+ 3 Sm(zo@u) TE Z fi(x) (34)
joint method is able to retrieve a small quantity of informa- =t
tion, along with a large noise (optimal control problem obvi- with
ously ill-posed), whereas the “self-adjoint” method does not
provide anything else other than the initial guess, irrespective
of the value ofy.

2nx \
dx ) with w1 = 100, wy = 50, w3 = 20,
X

1

(%) =sin<

(35)
5 Density of the data and by extension, we set
The previous simulations have been performed using quite C/ 2mx _
dense surface velocity data (one measurement eyeyy  Jfo(x) =Sln<w0dx) with wo = 200, (36)

This section deals with test cases identical to the previous
section but using sparser (one measure point every 1km) The friction coefficient chosen for these simulation con-
and thus more realistic data (corresponding to one ice thicktains lower frequencies than the previous one, simulating a
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Fig. 12. Discrete Fourier transform for inferred friction coefficiemysand 8s and for the target ong;. Frequencyfs is never captured by
any method and is thus not plotted on the curves. A noise fexel % is used in all the situations.

carrier wave of wavelength 20perturbed by high frequen- the full adjoint method for <5 and never captured by the

cies of wavelengths ) 5: and Z:.. These characteristics “self-adjoint” method.

are summarized in Tab® Results are plotted in Fig4 for The case- =50 is a lot less problematic than previously

a noise level of 1%. found, due to lower frequencies and subsequently less local
As a consequence, the level of identifiability assessed foeffects regarding the sharpness of the bed discretization. A

dense data in the previous section is no longer valid. How-pronounced difficulty appears for the identification of fre-

ever, considering that one out of ten points has been retainedjuency f1 (of wavelength 18). The case = 50 is the only

the results seem rather convincing. The full adjoint method isone where frequency> does not appear in the spectrum of

able to recover frequencies of wavelengths 26d 1@ (cor- Br (consistent with the previous simulations).

responding tofp and f1) accurately for all degrees of slip.

The “self-adjoint” method recovers the carrier wave quite

well, although a stronger friction (< 0.05) significantly de-

grades the reconstruction of the amplitude. Frequeficy

is well captured for propitious situations.f0< r < 5). Fre-

quency f> (of wavelength 5, the lowest frequency consid-

ered in the dense data situation) is partially reconstructed b

6 Conclusions

The significant time saving brought by the “self-adjoint”
method due to its straightforward implementation is a
favourable asset. However, its reliability is questionable and
Yt seems important to know its limitations in order to perform
realistic experiments.
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Table 3. Characteristics of signal given by 34).

fo fi f2 f3
Wavelength w.r.th = 1 km (thickness) 20 10n 5h 2h
Wavelength  w.rt. dx =100m (edge 20Qdx 100 x 50dx 20dx
length)
Wavenumber w.r.tL =33.3km (domain 166m1 333m! 666m1 166m1
length)

The realistic simulation (low-density data, 1% noise, reallaw can describe a non-linear deformation of the basal sub-
topography, non-linear friction) allows us to assess the fullstrate or a non-linear response of the sliding velocity to the
adjoint method’s ability to identify accurately wavelengths water pressure of sub-glacial cavities. The former reconstruc-
greater or equal to 10 ice thicknesses and to capture effects dions focus on the identification of a genegc However,
wavelengths of up to 5 thicknesses for a slip ratio lower thanone may confidently generalize these results to more com-
5. These bounds are defined by the level of noise considereplex sliding laws where8 would be identified through its
on the data, and a higher accuracy on the data would allovparameterization (by a water pressure, a contact surface with
us to identify higher frequencies. sub-glacial cavities, a sedimentary roughness, a geothermal

The “self-adjoint” method, based on second-order numeri-flux, etc.). Itis important to recall that an identical cgstoes
cal schemes, while providing an incorrect gradient, is able tonot mean an identical results due to the equifinality aspect
reconstruct wavelengths greater than 20 ice thicknesses (withnd that over-parameterization is hardly ever in favour of an
noticeable difficulties for strong friction). Wavelengths of 10 accurate identification; the identification of several parame-
ice thicknesses can be captured in propitious situations of inters simultaneously would strongly reinforce the problem of
termediate sliding (® < r < 5). These bounds are strict and equifinality (i.e. the ill-posedness of the inverse problem).

a lower noise would not allow the limited precision of the In other respect, we recall that the use of a “self-adjoint”
“self-adjoint” gradient to be overcome. gradient in the case of a non-linear friction law leads one to

The results provided by the full adjoint method are signif- ignore an important extra contribution (compared to the case
icantly better than those given Wetra et al(2012 (who of a linear friction; see Sec3.2) in the gradient computation
assess a limit of 20 ice thicknesses for a non-linear rheol{see Eg23), which adds even more discrepancy to the adjoint
ogy). It is difficult to compare considering that the authors problem.
provide neither their slip ratio nor the density of the data. In  This work focuses on the identification of the friction coef-
addition, the authors dPetra et al(2012 consider a linear ficient that plays a major role in controlling the flow (i.e. the
friction law. model shows great sensitivity to the friction). The identifica-

The use of a non-linear friction allows us to simulate com- tion of a parameter such as the consistemgyfor which the
plex behaviours of the ice—bedrock interaction. This type ofmodel sensitivity is significantly lower, needs to be done with
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Fig. 14.Discrete Fourier transform for inferred friction coefficiegtsand s and for the target ongy for sparse data (a 1% noise level).
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Numerical experiments show that the retention of the last two

states of the forward iterative loop (or equivalently the first

two states of the reverse accumulation loop) within the gra-

dient computation significantly improves its precision while

maintaining a quite small computational burden. Let us recall

that such an approach should be combined with an accurate

solution for the forward problem.
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c X A= filc,d) / J /
d b= fr(c,d) ! ’

fo ¢ A with Az = b — Az
Fig. Al. Direct routine scheme.
d b
Appendix A Fig. A2. Linear tangent routine scheme.

Adjoint of a linear solver - . .
) the adjoint routine. Therefore, the output variables of the ad-

This appendix describes how to generate the adjoint of doint routine are: andd and represent the adjoint variables of
generic routine containing a call to a linear solver whose con-(¢. ) (and are consequently of the same type and size). The

tents are a priori unknown. adjoint costj is the input variable of the adjoint cost function
and similarly, the adjoint state is the input variable of the
The direct routine adjoint linear system.

The computation of the adjoint state can be split into three
A general direct routine can be described as follows.d-et steps (see FigA2):

andd be two given input parameters such that _
1. From j, obtainx (generally provided by an indepen-

AN _ _ ( fale.d) dent routine called the adjoint cost function).
(3)=rea=(5cD) ' :

with A a matrix andb a vector. Letx be the solution of the
linear systemAx = b and j define a cost function evaluated 3. From A andb, obtainé andd using the adjoint model

2. Fromzx, obtainA andb.

atx. FigureAl illustrates the direct routines dependencies. df* such that
The linear tangent routine G A
()=ora(5)

Thelinear tangent routineassociated with the direct routine

described before is then written as . .
The adjoint of the linear system

(3)=areo-(3)

b))~ fe.dy: d)’ The linear solver call occurs in the second step. The input
variable isx and the output variables ae and b. In the
linear tangent code, we havist = b — Ax or, if one splits it
into two steps,

wheredf is the linear tangent model ardandd are the
tangent variables corresponding to parametensdd. They
serve as input parameters for the linear tangent model in or-
der to computei andh. We can now differentiate the linear 2a. b =b— Ax.
system operatiodx = b to obtain the followindinear tan- b Ai — I
gent system ’ ’

Ax = b — Ax. An adjoint calculation being performed in the reverse or-

) ) ) der, the adjoint of this procedure starts with instructién 2
The matrix A and the vector are provided by the direct \ynich can be written as follows:

routine and the quantitied andb are given by the tangent

linear routine. The linear solver is finally called, as a black ( ) _ (0 A_1> y <x )
box, to solve this equation and to obtain the linear tangent\»'/ \0 1 b
unknownx where the gradient of the cogtcan be evalu- .

ated. The quantity represents the derivative value ofat ~ Sinceb’ is the input variable for the instructiorb 2its adjoint
(c,d) in a given direction(¢, d). The linear tangent routine is  counterpard’ is the output of the adjoint instruction ob Zby

illustrated in Fig.A2. convention, the adjoint output variables are set to 0 before
o _ entering the adjoint routine). Similarly, singeis the output
The generated adjoint routines variable, its adjoint counterpattis an input one. The adjoint

instructions of stepRare then written:
Let us recall that the adjoint code corresponds to the linear

tangent code in reverse order. It follows that the output vari- 00 X
ables of the the linear tangent routine are input variables fon 5/ | =\ 4-T 1 b
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¢ b z j which leads, in reverse order, to the following operations be-
ing performed:

ZE:E/’_
A=—bxT.

IS Q
:><
S =i

<

Fig. A3. Adjoint routine representation.

B The variablesA andb are output variables, hence set to 0
The variableb’ is an output variable, hence set to 0 be- before entering the adjoint routine ahthas been obtained
fore entering the adjoint routine. This operation correspondsrom the previous step (the adjoint of stefp) 2
to solving the linear systerA” 4’ = & in order to obtaird’ In summary, the adjoint of the tangent linear instructions
(using the linear solver). Ax = b — Ax (referred to as step 2) can be written:
Onceb’ has been computed, one has to perform the adjoint B
of the instruction 2. This instruction can be written as the [ ATb=x,

following linear operation: A= —bxT,
x =0,
000
(b, b,Ay=(b'b,A)x| 1 10]. where(¢é, d) are the components of the gradient with respect
-x01 to (c,d) obtained from the adjoint modelf*. The first in-
_ o o _ struction can then be solved using the same linear solver as
The corresponding adjoint instruction is written as the one used in the direct routine. The second instruction is

written asA;; = —b;x;.

01—xT / o
& bAy=0bAx|0o1 o |. Lgt us point out that the mgtrm is of_ Eh? same type as
00 1 A with the same sparse profile (even-bx’ is a priori a

full matrix). Therefore, only the adjoint values of coefficients
A; ; are required.
The steps of the adjoint routine are illustrated in FAG.
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