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Abstract. Many mountain belts sustain prolonged snow
cover for parts of the year, although enquiries into rates
of erosion in these landscapes have focused almost exclu-
sively on the snow-free periods. This raises the question of
whether annual snow cover contributes significantly to mod-
ulating rates of erosion in high-relief terrain. In this context,
the sudden release of snow avalanches is a frequent and po-
tentially relevant process, judging from the physical dam-
age to subalpine forest ecosystems, and the amount of de-
bris contained in avalanche deposits. To quantitatively con-
strain this visual impression and to expand the sparse liter-
ature, we sampled sediment concentrations ofn = 28 river-
spanning snow-avalanche deposits (snow bridges) in the area
around Davos, eastern Swiss Alps, and inferred an orders-
of-magnitude variability in specific fine sediment and or-
ganic carbon yields (1.8 to 830 t km−2 yr−1, and 0.04 to
131 t C km−2 yr−1, respectively). A Monte Carlo simulation
demonstrates that, with a minimum of free parameters, such
variability is inherent to the geometric scaling used for com-
puting specific yields. Moreover, the widely applied method
of linearly extrapolating plot scale sample data may be prone
to substantial under- or overestimates. A comparison of our
inferred yields with previously published work demonstrates
the relevance of wet snow avalanches as prominent agents of
soil erosion and transporters of biogeochemical constituents
to mountain rivers. Given that a number of snow bridges per-
sisted below the insulating debris cover well into the summer
months, snow-avalanche deposits also contribute to regulat-
ing in-channel sediment and organic debris storage on sea-
sonal timescales. Finally, our results underline the potential
shortcomings of neglecting erosional processes in the win-
ter and spring months in mountainous terrain subjected to
prominent snow cover.

1 Introduction

Snow cover is a key visual and hydrological characteristic
of many mountain belts during the winter months. Never-
theless, the plethora of studies dedicated to quantifying rates
of erosion and sediment transport in steeplands has largely
neglected the role of snow cover in potentially modulating
these rates (Stanchi et al., 2014). Snow avalanching in par-
ticular is an important and seasonally recurring process in
many high-altitude and high-latitude regions. Most research
on snow avalanches has focused on mechanisms of their for-
mation, runout, and consequent hazards to lives, buildings,
and infrastructure (e.g. Schweizer et al., 2003; Sovilla et al.,
2006). The role of snow avalanches as transporters of sed-
iment and biogeochemical constituents has been acknowl-
edged and attested to (e.g. Luckman, 1977, 1978; Gardner,
1983; Ward, 1985; Nyberg, 1989; Decaulne and Saemunds-
son, 2006), but received comparatively scarce attention from
a quantitative view. Hence, compared to other processes of
hillslope mass wasting such as rockfalls or debris flows, lit-
tle is known about the geomorphic and ecological impacts
of snow avalanches (Fig. 1). Yet this knowledge is vital
to understanding comprehensive mass budgets in subalpine,
alpine, and circumpolar regions, where snow cover is dom-
inant for a significant fraction of the hydrological year. Ne-
glecting the erosion, transport, and deposition potential by
snow avalanches may thus underestimate rates of sediment
and nutrient cycling in areas with steep slopes and high to-
pographic relief.

A number of studies indicate that snow avalanches may
mobilize rockfall debris and significant amounts of large
woody debris (LWD), ultimately creating distinct landforms
such as avalanche cones, protalus ramparts, impact ponds or
plunge pools (Huber, 1982; André, 1990; Luckman et al.,
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Fig. 1. Relevance of snow cover and avalanche erosion in mountainous terrain:(A) large avalanche chutes in the eastern Swiss Alps.
(B) Sediment-rich avalanche debris below steep bedrock sluice, Matukituki Valley, Southern Alps, New Zealand; note person for scale.
(C) Eroded snow-avalanche bridge with thick cover of organic debris, Flüelabach, eastern Swiss Alps (this study).(D) Remnants of snow-
avalanche bridge, Zügenschlucht, eastern Swiss Alps (this study).

1994; Blikra and Selvik, 1998; Jomelli, 1999; de Scally et al.,
2001). Snow avalanches are an important nourishing agent
for large valley glaciers and rock glaciers (Humlum et al.,
2007), but may also modulate ecological diversity in sub-
alpine areas (Butler, 2001). Disturbance through avalanches
has been shown to increase plant and animal diversity at the
hillslope scale (Rixen et al., 2007; Bebi et al., 2009; Ku-
lakowski et al., 2011). From the bulk of empirical studies,
only a few have attempted to quantify erosion and sediment
transport by snow avalanches (Ackroyd, 1987; Bell et al.,
1990; Heckmann et al., 2002, 2005; Sass et al., 2010); even
fewer have begun addressing the effect of snow avalanches
on soil erosion and the concomitant cycling of biogeochemi-
cal constituents such as organic carbon or nitrogen (Freppaz
et al., 2010; Ceaglio et al., 2012; Confortola et al., 2012).

Here we contribute to closing this knowledge gap. Guided
by multiple visual field checks, we hypothesize that snow
avalanches may transport significant amounts of sediment
and particulate organic carbon. Our objective is to quantita-
tively estimate to the first order the mobilization and export
of sediment and organic carbon by wet snow avalanches. Us-
ing field sampling, we focus on the fine fractions of sedi-
ment and organic carbon entrained in those avalanches that
formed snow bridges in the area around Davos, eastern Swiss
Alps. Melt-out of these snow bridges delivers fine material to
steep mountain-river channels, thus warranting instantaneous
fluvial transport of sediment and particulate organic carbon
(POC) away from the study sites. Ultimately, we point to the
question of whether the end of the snow-cover season is a pe-

riod of enhanced mobilization of sediment and biogeochem-
ical constituents.

2 Methods

We sampledn = 28 deposits of snow avalanches that oc-
curred during the 2007/2008 winter and spring season in the
headwaters of the Landquart and Landwasser rivers in the
eastern Swiss Alps (Fig. 2). All of the deposits were > 100 m2

in surface area, had entered steep mountain-river channels,
and formed ephemeral or partly collapsed snow bridges, lo-
cally exposing the full avalanche-snow profile. Clearly vis-
ible and local decimetre-thick patches of sediment and or-
ganic detritus had accumulated on the deposit surfaces, mak-
ing them amenable targets for field sampling. Assuming that
this sediment did not undergo any significant sorting dur-
ing transport (Jomelli and Bertran, 2001), we took 100 point
samples of debris-cover thickness per deposit using a ruler at
an estimated accuracy to the nearest centimetre with an esti-
mated sampling error of±20 %. Our measurements also in-
cluded irregular bare snow surfaces. We selected these sam-
ple points blindfolded and at random while moving across
the deposits as to exclude potential bias by spatial autocorre-
lation. Exposures of dissected or collapsed snow-bridge de-
posits revealed further thin (< cm-scale) and discontinuous
bands of sediment within the snow column, but none dis-
played significant sediment content below the upper 10 cm
and therefore the snow below was largely clean.
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Fig. 2. Map of study area and locations of then = 28 sampled
wet snow-avalanche deposits in the eastern Swiss Alps, canton of
Grisons.

We also collected cover sediment and organic detritus
from 1 m2 square-shaped plots that we selected randomly
on the snow-avalanche deposits by throwing a marker onto
the deposit while blindfolded. We avoided unrepresentative
patches of snow that were either nearly devoid of sediment or
covered with sediment > 10 cm. Thus retrievedn = 28 sam-
ples comprised > 340 kg of surface material that was dried
at room temperature and prepared for particle-size analysis
and loss on ignition in the laboratory. For the particle-size
analysis, we separately recorded any hand-picked LWD, or
individual clasts exceeding gravel size (> 63 mm). Samples
were separated and sieved into the following size fractions:
coarse organic material, coarse inorganic material, > 63 mm,
> 45 mm, > 32 mm, > 20 mm, > 10 mm, and < 10 mm. For the
loss-on-ignition analysis, a representative subsample of 1 kg
per sample was sieved to retrieve the fine fraction (< 2 mm).
Approximately 7 g of both fractions (< 2 mm and 2–10 mm)
were then heated at 550◦C for 2 hours to burn the organic
material. The deposits were predominantly of crystalline ori-
gin; hence we did not differentiate between crystalline and

carbonate deposits in order to potentially exclude the inor-
ganic carbon fraction in the sediment.

In order to gauge the variability of specific sediment and
organic carbon yields from snow avalanches, we conducted
a Monte Carlo simulation that combined our field data with
geometric scaling properties of snow avalanches. Assuming
that snow-avalanche deposit areaA has an inverse power-
law scaling of the formp(A) ∝ A−α, where smaller events
occur systematically more frequently than larger ones (e.g.
Birkeland and Landry, 2002), we estimated the scaling ex-
ponentα from simple bootstrapping (n = 105 iterations) of
our field-based measurements ofA to which we added a uni-
formly distributed estimation error of±20 % for each iter-
ation. We approximated the resulting density function ofα

with a normal distributionN(µ = 1.7, σ = 0.1), which we
then used to subsequently draw random values ofαi to gen-
erate power-law distributed valuesAiε [Amin, AC], where
Amin is an arbitrarily set minimum avalanche-deposit area
covered by debris [m2], andAC is the maximum contribut-
ing drainage-basin area [m2], which we assumed as an ap-
proximate upper limit to the avalanche-deposit area in order
to make our calculations objective and replicable. We then
multiplied these simulated avalanche-deposit areasAi with
debris-cover thickness per 0.01 m2 of deposit area that we
randomly sampled from histograms of our field-derived data,
using the individual bin counts as weights in the sampling
process. We repeated this exercise using both site-specific
and a pooled histogram of debris-cover depths, thus creat-
ing n = 1000 simulated debris volumes per avalanche cone.
We obtained specific yields [t km−2 yr−1] by dividing these
simulated volumes byAC, and multiplying by the fraction
of organic debris obtained from the square plots, simplisti-
cally assuming a bulk debris density of 1.8 t m−3, and that
the debris content surveyed in the field amounted to a full
year’s yield. Finally, we obtained the more traditional esti-
mates of sediment and organic carbon yields by multiply-
ing the average debris contents from the sample plots by the
field-estimated deposit areas.

3 Results

We find that the mean thickness of surface sediment and or-
ganic detritus on the snow-avalanche deposits is highly vari-
able, ranging from next to nil for patches of clear snow or sur-
face ice to > 1 m in the case of boulder-sized rock fragments,
tree logs, or thick nests of large woody debris (Fig. 1c). We
recorded a maximum boulder size of 3.5 m at one location; at
selected sites, we estimated the median of the largest hand-
picked clast diametersD50 at 0.35 to 0.47 m. Continuous
debris thickness measured in the field is distinctly skewed
with 90 % of all data < 6 cm with an interquartile range of
2 cm (Fig. 3). We estimate the fraction of cover at 75–80 %
per unit area on average. The sampled surface concentra-
tion of sediment varied from 1.1 to 42.7 kg m−2 (Fig. 3).
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Fig. 3. Characteristics of debris cover on the surface ofn = 28
wet snow-avalanche deposits.(A) Grain-size characteristics and
surface concentration of debris cover fromn = 28 snow-avalanche
cones. Most organic content is contained in the size fraction < 2 mm.
(B) Histogram of debris-cover thickness measured blindfolded and
randomly on all avalanche surfaces (n = 2800 point measurements).

The median fraction of organic material in these surface de-
posits was nearly twice as high, i.e.∼ 30 %, in the grain-
size fractions < 2 mm, compared to coarse (> 2 mm) material
(∼ 17 %; Fig. 3a). The median fraction of organic carbon in
coarse leaf litter, small branches, etc. was∼ 6 %. Overall, we
measured surface concentrations of 0.02 to 5.7 kg C m−2.

Linear interpolation of these plot-derived concentrations
results in specific sediment yields of 1.8 to 830 t km−2 yr−1,
depending on study site, for this particular season (red curve;
Fig. 4). The corresponding estimates of specific yields of
organic carbon amount to 0.04 to 131 t C km−2 yr−1. The
Monte Carlo simulation reveals that power-law distributed
avalanche-deposit areas multiplied by abundance-weighted
debris cover result in a variability of specific yields that spans
over three and two orders of magnitude for sediment and or-
ganic carbon, respectively. By design, the range of these sim-
ulated estimates depends on the arbitrary minimum snow-
avalanche areaAmin (Fig. 4). Using the pooled histogram of
debris-cover thickness causes some slightly higher values, al-
though the resulting distributions remain similar in shape.

The variation of these specific yields between individ-
ual sites is about two orders of magnitude with respect
to the median values (Fig. 5). The majority of avalanche
tracks have given rise to specific sediment yields of 101 to
102 t km−2 yr−1, whereas the specific carbon yields range
mostly from 100 to 101 t km−2 yr−1, which is consistent with
the distribution of the fraction of organic carbon in the indi-
vidual samples.

Fig. 4. Probability-density estimates of simulated and field-derived
log10-transformed specific sediment and organic yields from wet
snow avalanches in the area around Davos, eastern Swiss Alps.
Simulations assumed power-law distributed avalanche-deposit ar-
eas with varying arbitrary minimum debris-covered areasAmin, and
randomly sampled deposit thicknesses based on field measurements
(each thick line represents one avalanche cone; dashed lines are
pooled for all sites; see text for details). Thick red lines are esti-
mates derived from linear interpolation of debris content measured
from 1 m2 sample squares. More than 90 % of the estimated sed-
iment and carbon yields are spread over three and four orders of
magnitude, respectively.

4 Discussion

We provide some of the first quantitative estimates of specific
yields of avalanche-borne sediment and organic carbon from
the eastern Swiss Alps. Before discussing these yields fur-
ther, we emphasize that our results are first-order estimates
and subject to a number of caveats. Most importantly, our
yield estimates are based on a novel approach of statisti-
cally extrapolating randomly selected plot samples. While
it has been practice in previous studies on sediment trans-
port to extrapolate such plot data to the full snow-avalanche
deposit area in order to obtain estimates of sediment yield,
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Fig. 5. Box-and-whisker plots for simulated specific sediment and
organic carbon yields fromn = 21 snow-avalanche cones in the
area around Davos, eastern Swiss Alps. Boxes enclose interquar-
tile range (thick vertical lines are median values); whiskers cover
1.5 times the interquartile range; circles are outliers. Simulated data
from the method outlined in the text assuming a power-law dis-
tributed deposit area with minimumAmin = 100 m2. Plot highlights
the spatial (= between-site) variability of specific sediment and car-
bon yields, which for a given median, spans two orders of magni-
tude.

our Monte Carlo simulations underline the minimum vari-
ability of rate estimates that may be encountered for a given
study area if allowing avalanche-deposit area to vary with
the sampled distribution of debris-cover thickness (Fig. 4).
Even if simplistically assuming a fixed bulk density, the dis-
crepancy between using a linear extrapolation from the plot
scale and an extrapolation that uses weighted re-sampling of
randomly field-measured debris-cover thickness may be sub-
stantial (Fig. 6).

The recognition that estimates of specific sediment yields
from snow avalanches may be subject to substantial variabil-
ity is not novel, and has been stressed before (Heckmann et
al., 2002, 2005). This variability appears to be a key property
of specific sediment yields tied to mass-wasting processes in
general (Korup, 2012), and is not necessarily an exclusive
characteristic of snow avalanches. Moreover, our rate esti-
mates are interpolated over a single year, and should not be
taken as representative of the long term. Nevertheless, we
have obtained a large number of random samples from dif-
ferent snow-avalanche deposits that highlight the potential
variance in the geomorphic and biogeochemical efficacy of
snow avalanches during a single snowmelt season, if substi-
tuting space for time. While previous authors preferred es-
timates based on individual snow avalanches, we could not
clearly distinguish between single events in our study area.
Thus our estimated specific yields may encompass multi-
ple superimposed avalanche deposits locally, although few
of the dissected deposits showed any clear evidence of lay-

Fig. 6.Comparison of published estimates of specific sediment and
particulate organic carbon (POC) yields.(A) Probability density es-
timates of multi-year specific sediment yields reported from moun-
tain rivers throughout the world (Korup, 2012); attributed to snow
avalanches mainly in the European Alps, and the Karakoram; and
this study (MC represents a Monte Carlo-based simulation; linear
represents the simple product of deposit area and mean debris-
cover thickness).(B) Probability density estimates of multi-year
POC yields in large rivers worldwide (Beusen et al., 2005); moun-
tain rivers in New Zealand (Carey et al., 2005; no reliable density
estimate because of low sample size); large woody debris (LWD)
fluxes in Japanese mountain rivers (Seo et al., 2008); and this study.

ering or buried debris. Moreover, we regard the potential
bias towards clearly visible sediment and organic detritus on
snow-avalanche deposits to be minimal, and our results from
particle-size analysis to be accurate to first order.

Overall, our rate estimates are consistent with previous
work on sediment transport by snow avalanches in the
European Alps and elsewhere, as far as the high docu-
mented variability of yields, particularly during the snowmelt
season (e.g. Iida et al., 2012), is concerned (Fig. 6).
Most of our estimated specific sediment yields are be-
tween 101 and 102 t km−2 yr−1, and thus in the upper
range of reported yields for avalanches elsewhere. Trans-
lated into density-corrected catchment-wide surface low-
ering (soil erosion), the highest specific sediment yield
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from snow avalanches would have attained∼ 0.5 mm yr−1.
Whether this involves significant amounts of bedrock ero-
sion remains open for future research: Moore et al. (2013)
estimated that snow avalanches had eroded bedrock chan-
nels at 0.01–0.05 mm yr−1 from a 4-year record in a small
catchment in the Matter Valley, Swiss Alps. Soil erosion
by snow avalanches may be as important as comparable
processes in the summer season, if not more important
locally. Plot-scale experiments with sediment traps indi-
cate that summer sheet erosion in the Alps may range be-
tween 0.05 and 10 t km−2 yr−1, at least (Merz et al., 2009;
Schindler Wildhaber et al., 2012). Analyses of the total ero-
sion with137caesium tracers and modelling approaches, how-
ever, yielded much higher values of > 103 t km−2 yr−1 (Konz
et al., 2009). These high rates may be explained by the longer
integration times of this method, thus likely also covering ex-
treme events, including snow avalanches that may be signif-
icant erosional counterparts to summer sheet erosion. In this
context, shallow landslides are additional erosion processes
that deserve better quantification in order to more objectively
gauge the contribution of snow avalanches.

Given that we measured sediment and organic carbon con-
centrations on snow bridges, most of the material is likely
to be readily flushed downstream and exported from the
drainage basins. Hence, we interpret our inferred specific
yields as direct contributions to the fluvial export of sed-
iment and organic carbon. Compared to current estimates
of contemporary fluvial sediment yields, which in the east-
ern Swiss Alps may exceed 103 t km−2 yr−1 (Hinderer et al.,
2013), our rates indicate a substantial contribution of snow
avalanching at least concerning small headwater catchments.
Surprisingly, our POC yield estimates clearly surpass the ma-
jority of reported POC and LWD fluxes in rivers worldwide
by up to an order of magnitude (Beusen et al., 2005; Seo et
al., 2008; Fig. 6b). We note that our study areas are much
smaller (< 1 km2) than in those studies, and expect that these
large (� 1000 km2) river systems take in many point sources
of organic carbon, as well as significant areas of little or no
POC contribution that depress the overall estimates. Con-
versely, POC yields from smaller mountainous catchments
may exceed 101 t km−2 yr−1 (e.g. Carey et al., 2005; Leithold
et al., 2006), and thus our maximum probability density es-
timate (Fig. 6b). We suspect that the ratio of POC source ar-
eas to overall catchment areas may be decisive for the over-
all POC yields in rivers. The LWD fluxes from Japan (Seo
et al., 2008) are also from mountainous catchments (with
areas between 6 and 2600 km2), but are likely to be much
higher given that biogenic carbon from sources other than
LWD had not been included. While we caution against over-
interpreting this finding because of differing observation pe-
riods and field methods, we note that our focus on fine (soil)
sediment clearly remains an underestimate with respect to
both sediment and POC delivery by snow avalanches.

5 Conclusions

Field sampling ofn = 28 wet snow-avalanche deposits in the
eastern Swiss Alps revealed an orders-of-magnitude variabil-
ity of inferred specific sediment and organic carbon yields
(1.8 to 830 t km−2 yr−1, and 0.04 to 131 t C km−2 yr−1, re-
spectively). This supports similar findings elsewhere, and
underlines the importance of a well-laid-out sampling strat-
egy when attempting to quantify sediment and carbon fluxes
associated with snow avalanches. The bulk of organic con-
tent was found in the fine fraction of detritus (< 2 mm) that
we largely attribute to soil erosion in the runout path. Our
Monte Carlo simulation highlights that with a minimum of
free parameters such variability is inherent to the geomet-
ric scaling when computing specific yields. The hitherto
used standard method of linearly extrapolating plot-sample
data may be prone to substantial under- or overestimates.
Despite these caveats, the range of inferred yields points
to wet snow avalanches as potentially important agents of
localized soil erosion and transporters of biogeochemical
constituents, given that the measured detrital concentrations
were located on ephemeral snow bridges prone to collapse
and fluvial entrainment, and thus rapid export from these
mountain drainage basins. While the inferred sediment yields
are consistent with data on fluvial sediment flux in the eastern
Alps, the POC yields are surprisingly high by global stan-
dards. Our results underline the relevance of erosional pro-
cesses in winter and spring seasons in a mountainous area
subjected to several months of snow cover each year. How-
ever, given that a number of snow bridges persisted below the
insulating debris cover well into the summer months, snow-
avalanche deposits may also be important regulators of in-
channel sediment and carbon storage on seasonal timescales.
In summary, we strongly encourage further work on the geo-
morphic and biogeochemical efficiency of snow avalanches,
as current budgets may lack a considerable fraction of sedi-
ment and POC fluxes in the snowmelt season.
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