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Abstract. Floating ice shelves can exert a retentive and hence
stabilizing force onto the inland ice sheet of Antarctica. How-
ever, this effect has been observed to diminish by the dy-
namic effects of fracture processes within the protective ice
shelves, leading to accelerated ice flow and hence to a sea-
level contribution. In order to account for the macroscopic ef-
fect of fracture processes on large-scale viscous ice dynamics
(i.e., ice-shelf scale) we apply a continuum representation of
fractures and related fracture growth into the prognostic Par-
allel Ice Sheet Model (PISM) and compare the results to ob-
servations. To this end we introduce a higher order accuracy
advection scheme for the transport of the two-dimensional
fracture density across the regular computational grid. Dy-
namic coupling of fractures and ice flow is attained by a
reduction of effective ice viscosity proportional to the in-
ferred fracture density. This formulation implies the possi-
bility of non-linear threshold behavior due to self-amplified
fracturing in shear regions triggered by small variations in the
fracture-initiation threshold. As a result of prognostic flow
simulations, sharp across-flow velocity gradients appear in
fracture-weakened regions. These modeled gradients com-
pare well in magnitude and location with those in observed
flow patterns. This model framework is in principle expand-
able to grounded ice streams and provides simple means of
investigating climate-induced effects on fracturing (e.g., hy-
dro fracturing) and hence on the ice flow. It further consti-
tutes a physically sound basis for an enhanced fracture-based
calving parameterization.

1 Introduction

The contemporarily observed sea-level change (Cazenave
and Llovel, 2010; Church et al., 2011; Gregory et al., 2012)
as well as the expected long-term sea-level commitment
(Levermann et al., 2013) underpin the role of the contribu-
tions of the large polar ice sheets of Greenland and Antarc-
tica (Van den Broeke et al., 2011; Rignot et al., 2011b; Shep-
herd et al., 2012; Hanna et al., 2013). Reliable and accu-
rate process-based models are required to understand the in-
volved complex processes and to provide confident projec-
tions of future sea-level rise (Bamber and Aspinall, 2013).
Certain aspects of ice flow need a better representation in
these models to account for the potential destabilization of
key regions, such as the West Antarctic ice sheet (Bamber
et al., 2009; Joughin and Alley, 2011). The retentive force
of floating ice shelves that retains the oceanward ice flow
(Dupont and Alley, 2005; Winkelmann et al., 2012; Gud-
mundsson, 2013) is of high relevance in this assessment.
Most models neglect the feedback of fractures, which can
repeal this buttressing effect of ice shelves (Borstad et al.,
2013).

Fracture processes play a fundamental role in the dynam-
ics of ice streams and ice shelves, in addition to ocean melt
(Pritchard et al. 2012; Rignot et al., 2013), but also in in-
teraction with external drivers, such as surface melt induced
by atmospheric warming (MacAyeal and Sergienko, 2013).
Fractures are mostly found as elongated structures of frag-
ments or sequences of troughs and open crevasses, visible at
the ice surface. These fracture bands are aligned along the
ice flow with origin in the wake of topographic features such
as ice rises, ice rumples or along ice stream inlets and usu-
ally extend the whole distance towards the calving front. On
that journey along the stream, prevailing stresses can change

Published by Copernicus Publications on behalf of the European Geosciences Union.



588 T. Albrecht and A. Levermann: Fracture-induced softening in ice dynamics

and activate additional crevasse formation. While approach-
ing the calving front, deep-reaching rifts were observed to
initiate from crevasses and propagate horizontally up to 100-
km-long across flow units (Hulbe et al., 2010; Walker et al.,
2013).

Fractures and ice flow interact in various ways. Consid-
ering the effect of the ice flow on fracture formation first,
we can state, that certain dynamic regimes promote the for-
mation of fractures. More precisely, they form in regions
of strong shear or tensile flow for certain temperature and
ice conditions (Schulson and Duval, 2009). External forces
such as seasonal meltwater drainage can enhance the vertical
propagation of existing surface fractures (Weertman, 1973;
Van der Veen, 1998a), but snow drift, refreezing or recrystal-
lization can cover and heal them. Similar effects underneath
the ice shelf influence the formation and propagation of basal
crevasses, which can reach far upward, producing a trough
at the surface by viscous adjustment (Van der Veen, 1998b;
McGrath et al., 2012b; Luckman et al., 2012; Vaughan et al.,
2012). Generally, the ice-overburden pressure tends to close
open crevasses as opposed to the tensile load (Nye, 1957) and
to water pressure within the crevasse.

Considering the macroscopic feedback of fractures on the
viscous ice flow, we can state that the abundance of fractures
potentially affect the flow regime since horizontal (mem-
brane) stresses cannot be effectively transferred across highly
fractured regions due to the loss of mechanical integrity and
the reduction of its load-bearing capacity (Borstad et al.,
2012, 2013). Inverse modeling provides a snapshot quantifi-
cation of the dynamic activity of mechanically weakened ar-
eas associated with fractures. Between those partly detached
flow units, strong velocity gradients and consequently in-
tense shear is observed, which cannot be reproduced in stan-
dard ice-flow models (discussed inSandhäger et al., 2005;
Humbert et al., 2009). In addition to the effect of fractures
on the flow, the accretion of marine ice underneath similar
ice shelf regions may play a relevant role explaining shear
strain concentrations (Jansen et al., 2013).

Observations of fracture features at the surface provide an
incomplete picture. That is, dynamically active zones such
as highly fragmented shear zones are not necessarily visible
for currently available resolutions and, vise versa, certain ob-
servable surface features may be irrelevant for the dynamics.
Furthermore, the active areas often act as precursor for vis-
ible crevasse and rift formations (Bassis et al., 2008; Hulbe
et al., 2010), which can be identified as mostly transversal
structures often reaching far into undamaged areas. Huge rift
systems can be completely deactivated (i.e., healed) when
filled with mélange (Borstad et al., 2013). These complex
implications questions the robustness of validating the com-
puted dynamic effect of fractures against observed surface
features associated with fractures. Inverse control methods
provide an intelligent validation tool by inferring such ac-
tive zones for a given snapshot of observed surface velocities
(Khazendar et al., 2007; Borstad et al., 2012, 2013; Haber-

mann et al., 2012, available as rheology inversion in PISM).
Yet, controlling factors like ice fabric, marine ice or meltwa-
ter are implicitly included in the inferred result. If running
the forward model, PISM does not distinguish between me-
teoric and marine ice, assuming constant density in the whole
ice column.

Prognostic modeling is needed to understand the causali-
ties and to reveal evolving characteristics of the interaction
of flow and fracture dynamics, for example, investigating
self-amplifying feedback mechanisms that are susceptible to
changes in external conditions (Scambos et al., 2000, 2003;
MacAyeal et al., 2003). Melting and hydro-fracturing causes
enhanced structural weakening of the mechanical integrity in
fractured regions (Scambos et al., 2009; Glasser and Scam-
bos, 2008; Vieli et al., 2007; Khazendar et al., 2007; Van der
Veen, 2007; McGrath et al., 2012a). This reduces the lat-
eral support of the confinement and consequently the but-
tressing. Stronger shear and thinning in turn supports frac-
turing, which ultimately can destabilize the entire ice shelf,
as observed in several cases along the Antarctic Peninsula
(Cook and Vaughan, 2010). The disintegration of large parts
of the ice shelves provokes a more efficient drainage of the
upstream glaciers (Rignot et al., 2004; Rott et al., 2011).

Fracturing of ice represents a key process in the descrip-
tion of the complex ice-flow pattern and plays an important
role in ice-shelf calving (Benn et al., 2007) and abrupt dis-
integration. Particle-flow models may provide a novel and
promising representation of fracture formation and related
iceberg calving (Bassis and Jacobs, 2013). For the initiation
of fractures, different theories have been discussed and ap-
plied in several studies, considering ductile or brittle proper-
ties of the ice on different scales (Schulson and Duval, 2009).
According to the strength-of-material theory, fractures form
if the stress exceeds a material-specific threshold. As an alter-
native, fracture mechanics assume small cracks (of the order
of centimeters), from which fractures initiate, due to stress
concentrations at the crack tips. From there they propagate
either horizontally (Hulbe et al., 2010) or vertically on rather
short timescales (Van der Veen, 1998a, b). An accurate es-
timate of the maximal fracture depth requires accurate data
of the vertical profiles of ice density and other physical pa-
rameters (Rist et al., 2002; Plate et al., 2012), and will not
be further discussed in this study, though it might be part of
future studies.

In this study we present a simplified framework of contin-
uum damage evolution based on ideas byPralong and Funk
(2005) andBorstad et al.(2012), which we named “fracture
density”, adapted to the finite-difference Parallel Ice Sheet
Model (Bueler and Brown, 2009; Winkelmann et al., 2011,
based on PISM v.05; see documentation:www.pism-docs.
org). In the first part we briefly resume the assumptions and
methods of identifying regions of fracture initiation and cor-
responding fracture-density accumulation, which has been
described in detail inAlbrecht and Levermann(2012). A
simple coupling relationship between fracture density and
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viscous-ice deformation is then presented and justified, fol-
lowing the analytical formulation byBorstad et al.(2012).
Inherent non-linear effects such as multi-stability are in-
vestigated in a simplified model setup. Applying the pro-
posed fracture coupling in simulations of several Antarctic
ice shelves and comparing the results to observations pro-
vides a tool for calibrating employed parameters and thresh-
olds and identifying qualitative differences in the flow field.
A concluding discussion summarizes the findings and reveals
limitations of the approach and also future applications, such
as a fracture-induced calving parameterization (Duddu et al.,
2013).

2 The fracture-density concept

The basic idea of the continuous, dynamically evolving
fracture-density field, applied to ice shelves, has been intro-
duced byAlbrecht and Levermann(2012). The scalar value
of the isotropic damage variable, 0≤ φ ≤ 1, called “fracture
density”, has been interpreted as a measure for the density of
macroscopic fracture features per ice-shelf surface area. In
this study we considerφ to be a relative volume measure of
included voids as in the scalar damage interpretation. As a
field variable,φ can be transported with the ice flowv as

∂φ

∂t
+ v · ∇φ = fs+ fh . (1)

In this simple advection equationfs and fh indicate the
source and sink terms.

In areas, where a certain fracture-initiation thresholdσcr is
met,φ is assumed to grow with a rate that is proportional to
the local maximum spreading rate,ε̇+. This functional rela-
tionship accounts for the formation of new fractures within
a grid cell and hence for fracture accumulation. Since brit-
tle fractures, for example, surface and bottom crevasses, are
likely produced in previously cracked regimes, we consider
here the aggregated effect, not distinguishing between indi-
vidual fracture representations. Rift propagation across flow
domains is yet too complex to be modeled explicitly here.
The presence of densely spaced fractures, however, restricts
the rate of additional fracture formation by reducing the over-
all stress in their proximity, which is expressed simply by a
reducing factor, 1−φ, in the fracture-density evolution func-
tion

fs =

{
γ · ε̇+ · (1− φ), σt ≥ σcr

0, σt < σcr
. (2)

Contributions to fracture density are expected in regions
where the “effective-stress” ellipse, defined in terms of
surface-parallel principal stresses,σ+ andσ−, as

σt =

√
σ 2

+ + σ 2
− − σ+σ− , (3)

exceeds the von-Mises critical strengthσcr (von Mises, 1913;
Vaughan, 1993). The fracture-density variable is then carried

downstream with the ice velocity (here following the Shallow
Shelf Approximation in Eq.1).

Existing fractures can experience deactivation by snow
cover and refreezing of mélange at the surface, or closure
in moderate stress environments by the ice overburden pres-
sure in both surface and bottom crevasses. This is expressed
in a healing rate:

fh =

{
γh · (ε̇+ − ε̇h), ε̇+ ≤ ε̇h

0, ε̇+ > ε̇h
. (4)

Depending on the local tensile strain-rate condition,ε̇+ ≤ ε̇h,
the advected fracture density is then reduced with the con-
stant rate factor,γh. Sensitivity of the fracture field to these
parameters and their role for the steady-state fracture den-
sity have been evaluated inAlbrecht and Levermann(2012).
However, the insights of this previous study are associated
with a model setup, where the evolving fracture-density pat-
tern is considered for a prescribed ice thickness. In the fol-
lowing we take into account the macroscopic dynamic effect
of the evolving fracture density on the ice viscosity to allow
for a feedback onto the flow field and the ice geometry.

3 Fracture-induced softening

In this section we build on recent efforts and investigate
the feedback mechanism of fracture formation and its cu-
mulative imprint on the flow dynamics within a framework
that is based on a simplified version of continuum damage
mechanics (Pralong and Funk, 2005; Duddu and Waisman,
2012a, b). The fracture-density concept considers the first-
order effects and adopts a simpler foundation in order to
reduce the parameter space of the more generally defined
(power-law) continuum damage model. Fractures can be as-
sociated with voids in the ice body, that reduces the integrity
of the ice body and stresses cannot be transferred properly
any more, hence the ice loses its “load-bearing capacity”
(Borstad et al., 2012). We hence consider the influence of
fractures in the ice column on horizontal ice deformation. As
observed in satellite images, bands of high fracture density,
aligned along the flow, separate slow-moving areas from flow
units coming in from different inlets with different speeds.
From a macroscopic point of view, this mechanical decou-
pling along the suture zone corresponds to a softening ef-
fect of the ice that can be expressed in the model as a modi-
fied flow-enhancement factorEA (Humbert, 2006; Humbert
et al., 2009). Assuming the strain-equivalence between phys-
ical and effective spaces (Pralong and Funk, 2005; Duddu
and Waisman, 2012a; Borstad et al., 2013), the stress-balance
equation changes using a modified effective viscosity defined
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ESSA ESSA

b)a)

Fig. 1. Functional relationship of viscosity(a) and ice softening(b) with respect to fracture density as in Eq. (6) is shown for three SSA-
enhancement factorsESSA (see legend). Base line forESSA= 1 is grey dashed.

as

ηφ = E
−1
n

A ·
1

2
· ε̇

1−n
n

e ·

∫
B(T )dz

= E
−1
n

φ ·

[
E

−1
n

SSA ·
1

2
· ε̇

1−n
n

e ·

∫
B(T )dz

]
. (5)

Here,B(T ) denotes ice hardness (or rigidity), which depends
on the vertical temperature distribution,T = T (z). PISM cal-
culates temperature evolution using a semi-implicit scheme
for the vertical diffusion and horizontal advection with the
ice flow, where strain heating comes in as heat source. The
effective strain rate,̇εe, is the second invariant of the strain-
rate tensor (equivalent to the effective stress in Eq.3), with
n = 3 the Glen’s flow law parameter. The term in parenthe-
ses on the right hand side represents the standard viscosity
used in PISM, where the enhancement factor for the Shallow
Shelf Approximation,ESSA, is commonly used in ice shelf
modeling, comprising anisotropy and other softening or stiff-
ening effects of the intact ice (Ma et al., 2010; Winkelmann
et al., 2011). However,ESSA is taken to be constant in space

and time. In contrast,E
−1
n

φ represents an additional factor
in Eq. (5) corresponding to the spatially varying fracture-
induced softening.
We assume a simple functional relationship for this softening
due to fractures, adopted in its analytical form fromBorstad
et al.(2012), written as

Eφ = [ 1− (1− ε) · φ ]−n ε=0
−→ [ 1− φ ]−n . (6)

For its implementation in the numerical model we introduce
the parameterε as a lower limit for the softening, avoiding
a degeneration of the equations. In the simulations presented
here epsilon isε = 0.001.

The combined influence of the two unitless enhancement
factors,EA = ESSA·Eφ , on the emerging non-linear coupling
is shown in Fig.1. For a fracture density ofφ = 0.5, and

hence half the undamaged viscosity, ice is stiffened by a fac-
tor EA = 0.4 for very low SSA-enhancement,ESSA = 0.05
(right panel). In contrast, the flow is softened by a fac-
tor EA = 8 if no SSA-enhancement is applied (ESSA = 1).
Regarding anisotropy for tensional ice-shelf flow, values of
aboutESSA = 0.6− 0.7 seem realistic (Ma et al., 2010). The
low value of ESSA = 0.05, as used in two applications to
produce realistic velocities, also comprises other effects in
the model setup (e.g., an overestimation of strain heating
along the shearing margins). Due to the strong non-linearity,
the total flow enhancement is almost an order of magnitude
larger (3≤ EA ≤ 59) for a fracture density ofφ = 0.75 and
a quarter of the undistorted ice viscosity. Approaching van-
ishing viscosity and hence infinite enhancement can be in-
terpreted as pathway towards quasi-discontinuous model be-
havior, where domains seem mechanically decoupled. In this
regime of fracture densities close to 1, the comparably small
residual valueε limits ice softness to guarantee convergence
of the stress balance calculation. Its sensitivity will not be
discussed here.

The proposed model framework implies a potentially self-
amplifying feedback mechanism: if fractures form in a cer-
tain region, the ice will be softened according to Eq. (6),
which allows for stress concentration. This applies also in
regions downstream of the formation area where the frac-
tures are transported to. Stronger shear or tension increases
the effective stress and if the critical threshold is met, ad-
ditional fractures can form leading to an increasing fracture
density where fractures otherwise would not from. Healing
and numerical diffusion counteract the accumulation of frac-
ture density, which otherwise would tend to approach asymp-
totically the upper bounding value 1.
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Fig. 2. Comparison of von-Mises effective stress(a), maximum-shear stress(b) and LEFM-stress intensity(c) in the Larsen C ice shelf
region with thin grey contours every 20 kPa(

√
m), green contour at 70 kPa(

√
m) and violet at 80 kPa. Resultant steady-state fracture density

is shown in the lower left panel, no healing or softening applied. Scatter plots in the lower right panels show the point-wise comparison for
the given examples.

4 Methods

4.1 Evaluating fracture initiation criteria

Failure of ice occurs at stresses beyond certain thresholds
and is hence typically expressed in terms of the strength of
the ice. There is a variety of phenomenological standard fail-
ure criteria for the identification of regions where fracturing
potentially is initiated. As one example of the strength of the
material theory, we use the von-Mises criterion based on the
maximum effective stress exceeding a critical value ,σt > σcr
(Eq. 3), which is equivalent to the exceedance of a maximal
distortion energy (von Mises, 1913; Vaughan, 1993).

In addition to the von-Mises criterion, we consider here
for comparison the similar maximum shear stress criterion
(a.k.a. Tresca or Guest criterion in literature)

σms = max( |σ+|, |σ−|, |σ+ − σ−|). (7)

In a computational setup of the Larsen C ice shelf with a res-
olution of 1.75 km, this maximum shear stress is about 15 %
larger than the effective stress used in the von-Mises crite-
rion (Fig.2b, e). If the corresponding threshold is reduced by
15 % with respect to the von-Mises strength (σt ≥70 kPa and
σms ≥ 80 kPa coincide with 95 %) fracture formation is ini-
tiated in the same regions and very similar steady-state pat-
terns of fracture density evolve.

As an alternative, a third criterion derived from Linear
Elastic Fracture Mechanics (LEFM) is considered, that takes

into account both shear and tensile modes of cracking in a bi-
axial stress field. It is based on the observation, that fractures
propagate from stress concentrations at sharp pre-existing
flaws in the ice, while the far-field load can be less than the
strength of the ice. Following this approach, a single crevasse
forms when the critical plane-strain fracture toughnessKIc is
exceeded by the combined stress intensities, defined as

√
π c

[
σn cos3

(
θ

2

)
+ τs cos

(
θ

2

)
sin(θ)

]
≥ KIc (8)

with θ = −2arctan

(√
σ 2

n + 8τ2
s − σn

4τs

)
. (9)

The parameterc denotes the half-length of assumed pre-
existing edge cracks,σn is the stress across to the crack
opening andτs the shear stress along the crack planes (see
(Erdogan and Sih, 1963; Shyam Sunder and Wu, 1990; Rist
et al., 1999) and (Hulbe et al., 2010) for details). The frac-
ture toughness for a given geometry of pre-existing flaws
is density-dependent. For the low-density firn at the sur-
face, a fracture toughness ofKIc ≈ 50kPa

√
m was obtained

in laboratory experiments with ice core specimen from the
Ronne Ice Shelf (Rist et al., 1999, 2002). Larger values of
KIc ≈ 150kPa

√
m or more are expected for the meteoric

or marine ice at the ice shelf bottom. For fracture fields of
narrow-spaced crevasses, the fracture toughness for ice with
included voids can even be twice or triple as high as for in-
tact ice without voids (Van der Veen, 1998a). It appears that
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the initial crack half-lengthc is a weakly confined parameter.
Without making physically-based decisions about formulat-
ing the LEFM criterion, we assigned a value ofc = 0.2 m,
such that the root mean square error in comparison to the
von-Mises criterion becomes minimal within the computa-
tional setup of the Larsen C region (Fig.2f). Jansen et al.
(2010) indicate a unique pattern of potential crevasse open-
ing for a given ratio of fracture toughness and half-length,
which compares very well with Fig.2c, (compare grey con-
tour lines of 50kPa

√
m). Since the relevant formation areas

of brittle fractures coincide mostly with those identified with
the ductile von-Mises criterion (forKIc = 70 kPa

√
m and

σt ≥ 70 kPa fracture-formation area have a 75 % match), the
fracture-density pattern does not show major differences at
the resolutions applied here. LEFM may provide a different
pattern for better resolved geometries and physical choices of
the parameterc. In the following study we use the von-Mises
criterion only to identify regions of fracture initiation.

4.2 Feature-preserving two-dimensional numerical
advection scheme

Standard upstream differencing schemes of first-order accu-
racy are a commonly applied and pragmatic choice to ap-
proximate hyperbolic-type partial differential equations as
the advection equation in Eq. (1) (e.g.,Press et al., 2009).
However, these schemes are known to be numerically dissi-
pative, that is, they tend to smear out well-defined structures,
such as shocks (discontinuities) along the flow. In contrast,
we consider confined stripes of fracture density in the hori-
zontal plane with sharp gradient across the main flow. For our
applications it is important to maintain this flow-stripe struc-
ture and to avoid a smearing effect transversally to the flow,
which can be associated with fracture healing for unphysical
reasons. Figure4 shows three transects perpendicular to the
symmetry flow line in a simplified ice-shelf setup of 100 km
width and length. Fracture density as a tracer is initialized
with unity value within a small domain of 8 km× 8 km. The-
oretically a narrow band of constant fracture density is ex-
pected downstream in a steady state. In fact, if the flow di-
rection coincides with one grid axis, numerical diffusion can
be neglected (Fig.4b). However, the smearing effect depends
on the direction of the flow with respect to the underlying
grid. For the standard upwind scheme, it is strongest for di-
agonal transport (Fig.4d), where finite differences towards
the direct upstream neighbors are calculated (Fig.3a), result-
ing in a “zigzag” course from cell to cell. This corresponds
to a wide domain of influence of 90◦, that is the triangle con-
taining the two direct neighboring upstream grid cells, from
where flux contributions are received. In order to increase
the accuracy of the transport scheme, we split the domain
of influence (45◦) and consider eight different cases (instead
of four in the standard case) depending on the flow direc-
tion. Thus, we calculate finite differences involving all eight

neighboring grid cells,

φN+1 = φN − 1t · (10)

u
φi,j −φi+1,j

1x
+ v

φi+1,j −φi−1,j−1
1y

, 0 ≤ v 1x
1y

<u

u
φi,j−1−φi−1,j−1

1x
+ v

φi,j −φi,j−1
1y

, 0<u
1y
1x

≤ v

−u
φi,j−1−φi+1,j−1

1x
+ v

φi,j −φi,j−1
1y

, 0 ≥ u
1y
1x

> − v

−u
φi,j −φi+1,j

1x
+ v

φi+1,j −φi+1,j−1
1y

, 0<v 1x
1y

≤ −u

−u
φi,j −φi+1,j

1x
− v

φi+1,j −φi+1,j+1
1y

, 0 ≥ v 1x
1y

>u

−u
φi,j+1−φi+1,j+1

1x
− v

φi,j −φi,j+1
1y

, 0>u
1y
1x

≥ v

u
φi,j+1−φi+1,j+1

1x
− v

φi,j −φi,j+1
1y

, 0 ≤ u
1y
1x

> − v

u
φi,j −φi+1,j

1x
− v

φi+1,j −φi+1,j+1
1y

, 0>v 1x
1y

≥ −u ,

whereN indicates the time step, whilei andj are the co-
ordinates on the regular rectangular grid, associated with the
velocity vector componentsu and v (see Fig.3b). The fi-
nite difference that corresponds to the smaller component of
the vector velocity is simply shifted upstream. This modi-
fication exhibits less numerical diffusion for transport that
is oblique with respect to the grid axes and hence preserves
better the shape of stripe-like structures for advection in two
dimensions. When turning the main flow direction by 45◦,
the higher order scheme reveals a much higher accuracy than
in the unturned case. In contrast, for the first order scheme,
maximum values are reduced by 60 % of its initial value over
a distance of 90 km (compare profile in Figs.4d and h). For
the flow that is turned by intermediate angles (e.g., 22.5◦),
both schemes show an unintended numerical diffusion with a
reduction of the maximum by about 50 % for the standard up-
wind scheme and significantly less (30 %) for the improved
accuracy scheme (Fig.4c and g). Although, both schemes are
not conservative, the integral along the considered cross sec-
tions varies less than 5 % along the 90 km transport in a com-
parably smooth velocity field. Higher resolution increases the
accuracy significantly for both schemes (Fig.5), which needs
to be considered in the experiments.

4.3 Fracture formation along grounded ice streams

Fractures are often observed to be initiated in the rocky
shear margins of the inlets upstream from the grounding line,
where ice flow accelerates due to decreased basal friction.
The boundary condition for the fracture-density evolution,
φ0, is applied along the grounding line that confines the ice
shelf domain. In this way,φ0 accounts for pre-existing frac-
tures draining through the inlets. We assume that fracture
processes in grounded but “shelfy” regions occur under sim-
ilar conditions as within the ice shelf domain. In this way we
can calculate contributions to the fracture-density field from
observed velocities in the grounded regions as prescribed
boundary condition along the grounding line, yielding a more
realistic φ0 than in a previous study (Albrecht and Lever-
mann, 2012).
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i-1,j i, j

i-1,j+1 i,j+1 i+1,j+1

i+1,ji-1,j i, j

i-1,j+1 i,j+1 i+1,j+1

i+1,j

a) standard b) improved

Fig. 3. Two-dimensional view of grid celli,j with a brown velocity vector pointing to the lower right cell neighbors (0≥ vi,j1x/1y ≥

−ui,j ). The standard first-order upwind scheme takes into account the gradients along the two axes between the direct upstream neighboring
cells (a). In order to gain a higher accuracy the second gradient is shifted upstream (violet arrow)(b). This improved scheme mimics a
velocity-weighted gradient along the green-dashed flow line.
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Fig. 4.Dissipation of fracture density during transport as studied in a simplified ice-shelf setup where the main flow direction is 0◦, 22.5◦ and
45◦ and oblique with respect to the underlying regular grid of mesh width 2 km. The fracture band originates in a small spot with maximal
fracture densityφ = 1. Results shown in the top-panels are produced with the standard first-order upstream transport scheme, in the lower
panels with the improved scheme. The steady-state cross-profile of the fracture band is compared at three transects perpendicular to the main
flow direction at the source (grey), as well as with 45 km (brown) and 90 km (violet) distance, using bivariate interpolation for the plots.

4.4 Interpreting fracture density from satellite visible
imagery

In order to compare the modeled fracture density with ob-
servations, we hand-digitized visible surface features that
seem to represent fracture phenomena of any kind. We iden-
tified these features in MOA satellite spectroradiometer im-
ages of the largest Antarctic ice shelves as snapshot of the
years 2003 to 2004 (Scambos et al., 2007, MODIS Mosaic
of Antarctica). Recent observation have shown that observed
surface troughs in ice shelves often correspond to widely
spaced basal crevasses, which support surface fracturing by
viscous-adjustment-induced bending effects (McGrath et al.,
2012b; Luckman et al., 2012; Vaughan et al., 2012). How-
ever, the smaller surface crevasses as well as the highly
fragmented shear zones are hard to identify from satellite

data for resolutions of 150 m, especially when snow-covered.
Here we do not distinguish between the different representa-
tions (Glasser and Scambos, 2008; Glasser et al., 2009) and
assume that visible fractures features have enough vertical
extent to affect the flow dynamics, even though we do not
consider the vertical distribution of voids in the ice column.
Following Albrecht and Levermann(2012), we calculated
a two-dimensional representation of the observed fracture
features,φobs, for each grid cell of a given resolution, as-
suming a rectangular “zone of influence” of 1 km width. This
assumption is motivated by the fact that, for crevasse opening
perpendicular to the the main tensile stress axis, the applied
far-field stress has to circumvent the discontinuity. This re-
duces the effective stress to both sides of the crack, acting as
a stress shadow cast.
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Fig. 5. Transport of fracture density as in Fig.3 for different mesh sizes 4 km, 2 km and 1 km (left to right) where the main flow direction is
turned by 22.5◦ with respect to the underlying regular grid. Top panels show the results with the standard transport scheme; bottom panels
show the ones done with the improved higher-accuracy scheme.

Additionally, the inferred observed fracture density was
smoothed with a running mean along the flow line, which
is derived from the modeled/observed velocity field. This
along-flow-line spatial smoothing of the monitored snapshot
mimics a time average and reveals more clearly the continu-
ous band structure of observed fractures, for example, in su-
ture zones and along shear margins (see Fig.6). Apparently,
this mapping procedure cannot give a precise and complete
picture of the dynamically relevant observed fracture regions,
but it gives an impression of the rough pattern of fracture
abundance and fracture accumulation for a qualitative vali-
dation.

4.5 Computational setup and settings

The simulations of the Antarctic ice shelves that we per-
formed are based on high-resolution data sets. Ice thick-
ness, bed-topography data and the grounding-line position
are described in the Bedmap2 product on a 1 km grid in po-
lar stereographic projection (Fretwell et al., 2013). In order
to avoid grounding in shallow ice-shelf areas, the sub-shelf
seabed elevation is arbitrarily set to 2000 m depth. Climatic
mass balance and ice-surface temperature are available from
ALBMAP v1 on a 5 km grid (Le Brocq et al., 2010). FESOM
data (melting and refreezing rates beneath the ice shelf), av-
eraged over the historical period 1960 to 1999, were kindly
provided on an unstructured grid with resolutions of up to
4 km by Timmermann et al.(2012) and Timmermann and
Hellmer(2013). A scaling parameter is used here to account
for the FESOM subshelf mass flux data, which are prescribed
and associated with a certain ice thickness distribution, while
the PISM shelf-ice thickness can freely evolve in our setup.
Surface-velocity data covering the whole Antarctic continent

has been assembled byRignot et al.(2011a) from multiple
satellite interferometric radar data of the years 2007 to 2009.
The data are used for validation and as Dirichlet boundary
conditions along the grounding line (and in some subregions
along the boundaries of the computational domain if the flow
is directed inwards).

Since the data sets are a product of a period after the
breakup of Larsen A and B ice shelves, the input data has
been modified for this region according to a period prior to
it (Jezek et al., 2003, Modified Antarctic Mapping Mission
(MAMM)). Initial ice thickness in the embayment was in-
ferred from surface elevation data on a 2 km grid with applied
firn correction (Lythe et al., 2001). Provided MAMM sur-
face velocities of the time period 1997–2000 for validation
exhibit gaps that have been filled using an SOR method (suc-
cessive over-relaxation) for the Laplace equation. For the in-
lets Dirichlet boundary conditions are based on the latest ob-
servations byRignot et al.(2011a). Since the tributaries have
accelerated after the collapse, the ice supply in the model for
the intact Larsen B ice shelf may be overestimated. However,
the objective of this study is a comparison between models
rather than an optimal match to observations.

Iceberg calving is not considered in the simulations. The
ice flow is simply cut off at the initial ice-shelf front. Fric-
tion along side margins and ice rises is not explicitly set as
in previous studies since it inherently results from ice thick-
ness and velocity along the boundary. Fracture initiation is
considered also in the grounded region as determined by
the prescribed velocities based on observations and is trans-
ported across the grounding line into the ice-shelf domain
(see Sect.4.3). Density within the ice is prescribed with a
constant value of 910 kg m−3. A simplified computational
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Fig. 6. Surface features in the largest and most important Antarctic ice shelves hand-digitized from MODIS data (Scambos et al., 2007,
Mosaic of Antarctica). Positions of ice shelves are marked in the inset Antarctica map. Smoothed observed fracture densityφobs is shaded in
orange/red colors across the ice shelf surrounded by MOA image map of grounded landscape and ice-free ocean. Colored rectangles show
areas of investigated regional setups.

setup is used with an ice shelf confined in a rectangular bay
of 100 km width and 2000 m depth. Constant ice inflow is
defined at the upper grounding line with 600 m thickness and
300 m yr−1 speed while the friction along the side margins
is prescribed, such that the intensity of shear flow can be
controlled. Surface temperature is constantly−30◦ C and at
pressure melting point at the base. Surface-mass balance is
constantly 0.1 m yr−1 on the ice shelf. The minimum reso-
lution is 1 km in this simplified setup, which can be simply
rescaled to coarser multiples of that resolution.

5 Results

5.1 Self-amplified fracturing

Non-linear systems may exhibit bistable phenomena based
on a positive, that is, self-amplifying, feedback mechanism
as considered previously in the text (Sect.3). On large cli-
matic scales, systems that exhibit such behavior are some-
times called “tipping elements” (Levermann et al., 2011).
Here this characteristic threshold behavior is investigated in
a simplified experiment, where fracture density ofφ = 0.7
is prescribed within a confined ice shelf region (a few grid
cells), which imitates a constantly active fracture source
(similar to setup in Fig.4). The ice flow carries away dam-
aged ice from this constant supply forming a fracture band
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Fig. 7. The self-amplifying feedback(a) is studied in a simplified ice-shelf setup for successively varied fracture-initiation thresholdσcr.
Corresponding steady-state fracture-density profiles along the flow line are shown in rainbow colors(b). Each profile initiates at the point of
prescribed valueφ = 0.7 at the left hand side. Fracture density accumulates or decays with distance from this point depending on the specific
threshold. The black vertical line indicates the position 100 km downstream, where values are taken for hysteresis plot(c). Two steady-state
fracture densities exist between 79 kPa and 83 kPa depending on the previously evaluated threshold.

elongated with the flow. If a high critical threshold for
fracture growth,σcr, is chosen, no additional fractures will
form, resulting in a steady-state fracture band of constant
or slightly decreasing density with distance from the supply
(see red and blue profiles in Fig.7b). In this experiment we
consider a shearing flow regime, where effective stresses can
locally reach up to 80 kPa. We gradually reduce the critical
thresholdσcr, mimicking an additional environmental forc-
ing that supports fracture formation (e.g., by meltwater in-
filtration). If it goes belowσcr = 80 kPa, additional fractures
can form, which softens the ice locally allowing for enhanced
shear flow. This is a self-amplifying feedback mechanism
(Fig.7a), which also influences the region downstream of this
spot. Advected fracture density leads to higher effective shear
stresses and can accumulate on its course along the flow, as
indicated by the upper profiles in Fig.7b.

If environmental conditions reverse, such that the frac-
ture thresholdσcr increases, we observe a jump back to the
off mode for critical thresholds ofσcr > 82 kPa, which is
larger than the value, where self-amplification was switched
on (σcr < 80 kPa). Hence, this switch between the two sta-
ble states occurs at different levels of the control parameter
due to the memory of the system, which can be interpreted
as hysteresis behavior (Fig.7c). This is a robust feature and
is also found in more realistic setups representing relevant
Antarctic ice shelves.

5.2 Application to Antarctic ice shelves and subregions

In the following the various aspects of fracture-softening
are investigated in examples of ice shelf sub-regions of
the largest Ross and Ronne–Filchner ice shelves (see col-
ored rectangles as computational boundaries in Fig.6). The
smaller northern-most Larsen ice shelves along the Antarctic
Peninsula will be discussed as separate case. Simulations are
performed on a 1 km regular grid. Parameters for the stan-
dard run are estimated on the basis of an ensemble analysis
minimizing the root mean square error (RMSE) of both ice
thickness and ice speed compared to observations. However,
this study does not intend to find the best possible fit, but to

investigate the qualitative changes of the ice flow induced by
the employed fracture feedback for each individual setup.

5.2.1 Byrd inlet in Ross Ice Shelf

The Byrd inlet is an important inflow for the Ross Ice Shelf,
draining though a narrow trough of the Transantarctic Moun-
tains (Fig.8a). From there the ice flows as a homogeneous
unit at about 600 m yr−1 eastwards through slow moving
ice that is confined within the embayment of Ross Island.
The cross section right after the entrance of the inlet shows
steep velocity gradients especially on the northern side. A
constant flow enhancementESSA = 0.05 yields a RMSE of
about 95 m yr−1 for simulations of the whole Byrd inlet do-
main, where the standard model underestimates velocities in
the inner inlet and overestimates them closer to the margins
respectively. The corresponding profile perpendicular to the
main flow direction hence shows a smooth transition between
the broad inflow unit and the much slower surrounding ice
(light blue in Fig.8c), but it does not allow for the intense ob-
served shear gradient. In contrast, fracture-softening reveals
highly fractured bands on both sides of the inlet (Fig.8b),
confining the fast flow unit, with sharp gradients at its flanks
(violet profile in Fig.8c). Yet, the resulting profile appears to
be shifted transversally by about 15 km, with a slightly larger
RMSE, which is not a good measure here. This shift might
be caused by underestimated inflow through the southern
boundary of the computational domain, forcing the incom-
ing stream northwards. The orange contour lines in Fig.8b
indicate that fractures form already in the grounded upstream
inlet channel, where the von-Mises effective stress is larger
than 110 kPa. This fracture band partly detaches the flow
from the topographical promontory further downstream (Pr),
which otherwise would act as fracture-formation area. Heal-
ing is comparably small but fracture density vanishes within
about 100 km distance as suggested by observations in this
area.
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5.2.2 Evans inlet in Ronne Ice Shelf

The ice stream of the Evans Glacier enters the second
largest Ronne Ice Shelf in the west and turns north. This
motion yields an inclined cross profile with a speed of
up to 700 m yr−1 at the souther margin jumping to al-
most 100 m yr−1 in some minor side inlets (green profile in
Fig.9d). Simulations with the ordinary stress balance require
a small basic flow enhancementESSA = 0.05 (light blue in
Fig. 9c and d), in order to reproduce observed surface ve-
locities in this region (RMSE: about 100 m yr−1). However,
neither the gradual inclination of the main flow nor the strong
gradient at the southern flank are well represented. Fracture
softening instead exhibits these features and produces a thin
fracture band along the rocky margin. From there the fracture
zone continues with the main flow and separates the stagnant
regions at the sides (right hand side in Fig.9d). A relatively
high critical threshold stress of 140 kPa and a comparably
strong healing in the main trunk of the inlet limits the extent
of the fracture band and restricts the inflow in the observed
range. Observations confirm the presence of elongated frag-
mental structures close to the margin from where crevasses
propagate towards the center line of the inlet. On average ice
speed in the ice shelf domain agrees much better with ob-
servations (see RMSE reduced by 6 % and maps of velocity
anomalies are provided as Supplement).

5.2.3 Filchner Ice Shelf

Filchner Ice Shelf is the fastest of the smaller Antarctic ice
shelves with speeds up to 1400 m yr−1 close to the front
(Fig. 10a). It shears along Berkner Ice Rise (BIR) at its west-
ern margin and drains into the Weddell Sea in the north. The
cross section is located south of the rifted areas at the north-
eastern margin (cf. Figs.6b and10c). The maximum speed
is shifted from the center line towards the Berkner side with
a small buckle at about 70 km distance. This feature likely
indicates the presence of a suture zone between the flow unit
fed by the Recovery Glacier and the flow coming from the
Support Force Glacier farther west. The characteristic flow
pattern in relation to observed surface crevasses was already
diagnostically studied bySaheicha et al.(2006), presuming
a crevasse band with origin at Recovery Glacier inlet (see
overlain structures in Fig.10b). Simulations with constant
enhancement factorESSA = 0.2 produce a symmetric and
smooth velocity distribution (RMSE: 145 m yr−1) within the
Filchner trough (light blue in Fig.10c). A much better rep-
resentation of elongated structures such as the suture zone
within the main trunk causing a small kink in the velocity
profile is provided by application of the fracture-softening
scheme with a relatively high critical stress threshold of
130 kPa. For chosen parameters a better agreement with ob-
servations is attained than in the standard model (RMSE:
100 m yr−1), reproducing much of the inclination and the
steep gradient at the western margin. The straight inclined

part of the observed profile might be an effect of the rift sys-
tem downstream, which is not accounted for in the model.

The characteristic fracture band pattern is also obtained
for lower resolution of 2 km or even 5 km (Fig.11); however,
much more damped for wider meshes (cf. Fig.5). Hence the
softening effect is weaker and the typical shape of the across
velocity profile is less pronounced.

5.2.4 Larsen B region prior to its break-up

The Larsen B ice shelf is situated at the northeastern flank
of the Antarctic Peninsula facing the Weddell Sea (Fig.12).
The climatic conditions in this region are considerably dif-
ferent from those in the more continental ice shelves far-
ther south. Surface melting during summer can produce melt
ponds (Glasser and Scambos, 2008), which initiate a series
of processes that can result in such large-scale events as the
disintegration of major parts of Larsen B in 2002 within
a few weeks (Rack and Rott, 2004). Satellite observations
indicated a heavily crevassed ice-shelf surface prior to the
collapse (Fig.6c) and model studies confirmed the dynami-
cally active role of those fractured regions (Sandhäger, 2003;
Sandhäger et al., 2005; Vieli et al., 2006, 2007; Khazen-
dar et al., 2007; Borstad et al., 2012). Since ordinary model
configurations with constant flow enhancement fail to accu-
rately reproduce the characteristic pre-collapse flow pattern
with sharp velocity gradients across weak shear zones along
the side margins of the Larsen B regime (cf. green profile
in Fig. 12), our fracture-density approach provides a physi-
cally motivated tool to reduce this discrepancy. The velocity
of the interior of the ice shelf appears plateau-shaped. This
can be explained by the partial mechanical decoupling from
the confining side margins such that a large enhancement fac-
tor of ESSA = 10 is needed to reach observed maximum ve-
locity values of up to 560 m yr−1 along the central front (cf.
dashed light blue in Fig.12e). Especially along inlets close to
the grounding line the computed velocities are far too small
(Fig. 12f).

A fracture-density dependent and hence spatially varying
flow enhancement reproduces the observations much bet-
ter (thick violet in Fig.12e and f), since the inferred frac-
ture density identifies the dynamically relevant weak zones
and allows for intense located softening and hence strong
flow gradients. In this example, fracture-density-induced ice
weakening occurs not only along the side margins, but also
along a wide fracture band further downstream. Inversely in-
ferred damage in Larsen B based on the short observation
period identifies similar band structures (Borstad et al., 2012,
Fig. 1d).

We used an enhancement factorESSA = 1.0 as base level
for unfractured ice, which is more realistic for ice shelves
in tension than values larger than 1 (Ma et al., 2010). A
comparably high value for the fracture rateγ = 1.0 and a
low value of the fracture-initiation thresholdσcr = 60 kPa is
needed in order to yield high fracture-density accumulation
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Fig. 8. Observed surface speed of the years 2003 and 2004(a) and modeled steady-state fracture densityφ (b) for the Byrd inlet region in
western Ross Ice Shelf (violet box in Fig.6a). In the lower panel values of observed (green) and calculated ice speed (blue and violet) as well
as corresponding fracture density (brown) are plotted along indicated cross section. Parameters: FESOM-melting factor 0.2, ESSA= 0.05,
γ = 0.2, σcr = 110 kPa,γh = 0.05, ε̇h = 20× 10−10s−1.

close to unit value and hence strong softening in the active re-
gions. Especially within the narrow tributary inlets, densely
spaced fractures and hence intense softening occurs, which
coincides with detailed observation in theses areas (Glasser
and Scambos, 2008, Fig. 2). Surface meltwater draining into
existing crevasses and enhancing fracture formation support
this parameter choice. On the other hand, for accumulation
rates of more than 1 m yr−1 and possibly refreezing within
surface and bottom crevasses, strong healingγh = 2.0 may
be plausible. Self-enforcing fracture growth occurs, due to
the low initiation threshold, in a large portion of the Larsen B
ice shelf, such that the location of fracture-free regions from
those of highly fractured ones depends sensitively on the ap-
plied healing threshold (herėεh = 6× 10−10 s−1).

6 Discussion

Fractured regions can support only limited stress and lose
this ability when crossing a specific threshold. Fracture-
induced softening has the potential to introduce additional
non-linear characteristics into the ice-flow dynamics such
as dynamic regime shifts (bifurcation), hysteresis behavior
and irreversibility. This has been investigated for a shear
zone in steady-state configurations with respect to succes-
sively varied parameters (Fig.7). A self-amplifying pro-
cess is then activated and additional fractures intensify the
shear, which in turn promotes additional fracturing. Hence,
small changes in environmental conditions potentially have
strong impacts in such systems. A short surface-melting pe-
riod can trigger a change in fracture threshold and may acti-
vate such abrupt shifts between dynamic regimes. This mech-
anism is robust and may occur for different settings at dif-
ferent thresholds. Critical effective stresses of 80 kPa as in
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Fig. 9.Observed surface speed(a) and calculated fracture density(b) in the Evans inlet in western Ronne Ice Shelf (green box in Fig.6b). In
the lower panels values of observed (green dots) and calculated ice speed are presented, light blue for the constant flow enhancement, violet
for fracture-induced softening. Corresponding fracture density (brown) is plotted along the indicated cross section. Parameters: FESOM-
melting factor 1.0,ESSA= 0.05,γ = 0.2, σcr = 140 kPa,γh = 0.1, ε̇h = 12× 10−10s−1.

the demonstrated simplified case are found at the lower end
of the observation-derived critical-value range with values
reaching up to 320 kPa (Vaughan, 1993). This large range
indicates a high variability of fracture histories, temperature
regimes, ice properties but also uncertainty in the conversion
of measurable strain-rates to stresses. Hence, stress thresh-
olds are not constant material parameters and may differ de-
pending on various conditions.

However, independent of this qualitative possibility of
non-linear threshold behavior, we find that the influence of
fractures on the creep of ice is relevant in a number of situa-
tions. This study does not aim at a conclusive investigation of
the influence of fracture on the flow field. It is rather meant to
introduce the first-order concept and to provide results on the
qualitative changes in the flow field when fracture density is
accounted for in this way. The critical strengths for the realis-
tic computational setups of Antarctic ice shelves and ice shelf
inlets were determined such that characteristic observed flow
patterns are adequately represented, which provides a rough
way of parameter calibration. The so estimated critical values

for parts of the large Antarctic ice shelves are located in the
lower half of this literature range, i.e., 110–140 kPa (Figs.8–
10). Only shear stresses can reach these high thresholds in the
presented applications. In contrast a comparably low thresh-
old of 60 kPa has to be chosen in the smaller Larsen B ice
shelf situated at the Antarctic Peninsula (Fig.12) in order
to produce realistic fracture and flow patterns. This cannot
be just explained just by temperature effects, since the de-
crease in fracture toughness for increasing temperatures is
comparably small (about−0.5kPam−1/2 ◦C−1 according to
Schulson and Duval, 2009, Fig. 9.4). Ice-shelf thickness and
the associated confining cryostatic stress may explain some
of this variance, that would reduced for a non-dimensional
threshold (Bassis, 2011).

Using higher thresholds in the Larsen B simulation cannot
produce the degree of fracture density within the evolving
fracture bands, which is necessary to capture the observed
strong shearing for the given setting of enhancement factor
and healing parameters,ESSA, γh andε̇h respectively. Exter-
nal conditions like melt water draining into surface crevasses
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Fig. 10. Observed surface speed over MODIS data(a) and calculated fracture density(b) in the Filchner Ice Shelf (light blue box in
Fig. 6b). Scatter plot of computed vs. observed velocities(c) for constant flow enhancement (blue) and in the fracture-softened case (violet).
Corresponding cross sections of observed and calculated ice speed as well as fracture density are shown in the lower right panel(d).
Parameters: FESOM-melting factor 1.0,ESSA= 0.2, γ = 0.3, σcr = 130 kPa,γh = 0.02, ε̇h = 15× 10−10s−1.

or basal melting intensified within basal crevasses openings
provide reasonable explanations for a considerably lower
threshold in this region. However, this study is not meant
as a parameter-tuning exercise and the inferred parameters
should be considered with caution. Generally, for increas-
ing basic enhancement factorESSA, stresses are intensified
throughout the ice shelf domain and thresholds are more
likely met at stress maxima. Related ice-shelf thinning is not
further discussed here. The signal of fracture softening in ice
thickness is much less pronounced than in flow speeds. A
comparison to the damage effect patterns inferred by inverse
methods from observed surface velocities (Borstad et al.,
2012, Fig. 1d) indicates a good match along the margins of
Larsen B ice shelf and in the vicinity of its inlets. However,
this pattern reveals the macroscopic effect of damage within
a short time period, while certain fractured regions may be
dynamically inactive.

In our study we used the von-Mises criterion, which iden-
tifies preferably fracture initiation in shear regions. These
regions coincide with observed fracture features at the ice
shelf surface (Fig. 6), but crevasse bands in rather tensile
flow regimes are not well reproduced. We have shown that
more sophisticated mixed-mode criteria based on LEFM do

not change the results significantly, at least for large-scale
simulations of ice shelves. Since tensile crevassing occurs
predominantly in pre-fractured ice, we do not distinguish be-
tween the particular failure behavior and assume a smooth
transition of ductile to brittle fracturing. In the present formu-
lation we account for horizontal interactions simply parame-
terized by a factor(1− φ) in Eq. (2), bounding the evolving
fracture density. However, this integrated view neglects the
vertical extent and possibly non-linear interactions of basal
and surface crevasses (McGrath et al., 2012b, a; Luckman
et al., 2012; Vaughan et al., 2012). In fact, resolving the
vertical dimension of fracturing is relevant in understanding
fracture interaction and calving and needs to be specified in
an expanded formulation of the fracture density. To give an
example, tensile crevasse formation at the ice-shelf bottom
triggered by vertical bending at the grounding line (Logan
et al., 2013) cannot be captured by shallow approximation
models. Contribution of such processes may be considered
as boundary conditions,φ0, in future studies. Considering
the involved vertical bending stresses, tidal flexure seem to
play a secondary role.

With origin in the fracture formation areas, elongated dam-
age bands often reach far downstream towards the front.
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Fig. 11. Calculated fracture density in the Filchner Ice Shelf for varied resolutions 1 km, 2 km and 5 km from left to right. In the lower
panels values of observed and calculated ice speed as well as the corresponding fracture density are plotted along the indicated cross section.
Parameters same as in Fig.10.

Viscosity is reduced along these confined fractured zones as-
suming a linear relationship, comprising all relevant soften-
ing processes. This procedure mimics a partial mechanical
decoupling of the separated regions and reproduces a cou-
ple of observed flow characteristics: fast-flowing units of the
ice shelf pass by stagnant ice shelf regions in minor side
bays (Figs.9 and 12) or get sutured together with neigh-
boring flow units of different speed. This can be identified
by jumps or kinks in ice-speed cross sections (Figs.8 and
10). Ice-stream inlets shearing along the rocky fjord walls
accelerate when the main flow gets partly detached from the
sticky margins (Fig.9). Similar effects are observed within
small ice shelves shearing along islands or ice rises. Along
these fractured zones of weakness transversal stresses cannot
be transferred effectively leading to increased speed and less
buttressing.

This prognostic fracture-density approach might be ex-
panded, especially regarding the application to grounded ice
streams as well as to the coupling of the evolving fracture
density in an enhanced calving scheme. A natural link ex-
ists already in the given framework between fracture-induced
modification of internal stresses and the strain-rate-based
calving scheme (Levermann et al., 2012), but this is beyond
the scope of this study.

7 Conclusions

We developed a phenomenological scalar fracture-density
evolution model coupled to viscous-creep deformation in
shallow approximation. This formulation, based on first-
order assumptions as simplified version of the more general
continuum damage model, captures the gross interactions
of flow dynamics and fracture processes. The aim of this
study is to represent characteristic ice-flow behavior at the
macroscale and to roughly constrain involved parameters us-
ing satellite data. Its implementation into a conventional ice
sheet and ice shelf model is straight forward. An enhanced
transport scheme improves the representation of the fracture-
density advection. This framework provides a basis for more
rigorous formulations requiring more detailed experimental
laboratory and field data for model validation. Furthermore
the fracture-density approach provides a spatial and tempo-
ral link between local fracture initiation and post-formation
processes occurring on the large scale and eventually located
elsewhere. Rift propagation and calving would be examples
of such phenomena. Hence, the structural integrity and sta-
bility of key regions, buttressing the ice flow, can be evalu-
ated in a more realistic manner and potential contributions to
global sea level can be assessed with more confidence.
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Fig. 12.Observed surface speed of the years 1997 to 2000 as well as calculated fracture density and ice speed in the Larsen B ice shelf(a–c).
Point-by-point correlation of calculated and observed ice velocities in the lower left panel (light blue for constant enhancement factor and
violet with fracture softening).(e–f) demonstrate the effect of the coupled fracture density on the calculated ice speed (cf. light blue, dashed
and violet) compared to observed speeds (green) along the indicated transverse section (violet arrow) and longitudinal section (brown arrow).
Parameters: FESOM-melting factor 0.2,ESSA= 1.0, γ = 1.0, σcr = 60 kPa,γh = 2.0, ε̇h = 6× 10−10s−1.

Supplementary material related to this article is
available online athttp://www.the-cryosphere.net/8/587/
2014/tc-8-587-2014-supplement.zip.
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