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Abstract. This study presents a new method to derive cen-
terlines for the main branches and major tributaries of a set
of glaciers, requiring glacier outlines and a digital eleva-
tion model (DEM) as input. The method relies on a “cost
grid–least-cost route approach” that comprises three main
steps. First, termini and heads are identified for every glacier.
Second, centerlines are derived by calculating the least-cost
route on a previously established cost grid. Third, the cen-
terlines are split into branches and a branch order is allo-
cated. Application to 21 720 glaciers in Alaska and northwest
Canada (Yukon, British Columbia) yields 41 860 centerlines.
The algorithm performs robustly, requiring no manual ad-
justments for 87.8 % of the glaciers. Manual adjustments are
required primarily to correct the locations of glacier heads
(7.0 % corrected) and termini (3.5 % corrected). With cor-
rected heads and termini, only 1.4 % of the derived center-
lines need edits. A comparison of the lengths from a hydro-
logical approach to the lengths from our longest centerlines
reveals considerable variation. Although the average length
ratio is close to unity, only∼ 50 % of the 21 720 glaciers have
the two lengths within 10 % of each other. A second compar-
ison shows that our centerline lengths between lowest and
highest glacier elevations compare well to our longest cen-
terline lengths. For> 70 % of the 4350 glaciers with two or
more branches, the two lengths are within 5 % of each other.
Our final product can be used for calculating glacier length,
conducting length change analyses, topological analyses, or
flowline modeling.

1 Introduction

Glacier centerlines are a crucial input for many glaciolog-
ical applications. For example, centerlines are important
for determining glacier length changes over time (Leclercq
et al., 2012; Nuth et al., 2013), analyzing velocity fields
(Heid and Kääb, 2012; Melkonian et al., 2013), estimating
glacier volumes (Li et al., 2012; Linsbauer et al., 2012), and
one-dimensional modeling of glaciers (Oerlemans, 1997a;
Sugiyama et al., 2007). Also, glacier length, derived from
centerlines, is an important parameter for glacier inventories
(Paul et al., 2009).

So far, most of the above applications have relied on labor-
intensive manual digitization of centerlines. The few studies
that derive centerlines fully automatically use a hydrologi-
cal approach and/or derive only one centerline per glacier
(Schiefer et al., 2008; Le Bris and Paul, 2013). Here, we
present a new algorithm that allows for deriving multiple
centerlines per glacier based on a digital elevation model
(DEM) and outlines of individual glaciers. Moreover, this
algorithm splits the centerlines into branches and classifies
them according to a geometry order. The approach is tested
on all glaciers in Alaska and adjacent Canada with an area
> 0.1 km2, corresponding to 21 720 out of 26 950 glaciers.
We carry out a quality analysis by visual inspection of the
centerlines, and compare the derived lengths to the lengths
obtained from alternative approaches.
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2 Previous work

The automatic derivation of glacier centerlines and the result-
ing glacier length is challenging (Paul et al., 2009; Le Bris
and Paul, 2013). Consequently, only few automated ap-
proaches have been proposed so far (Schiefer et al., 2008;
Le Bris and Paul, 2013) and often centerlines have been dig-
itized manually even for large-scale studies (e.g.,Burgess
et al., 2013b).

In their large-scale study,Schiefer et al.(2008) applied an
automated approach to all British Columbia glaciers that is
based on hydrology tools. For each glacier, this approach de-
rives one line that represents the maximum flow path that wa-
ter would take over the glacier surface.Schiefer et al.(2008)
find that these lengths are 10–15 % longer than distances
measured along actual centerlines. Because lower glacier ar-
eas (∼ ablation areas) are typically convex in cross section,
their flow paths are deflected toward the glacier margins,
which leads to length measurements that are systematically
too long in these cases. While systematically biased lengths
in a glacier inventory can be corrected for, the actual lines
need major manual corrections before they can be used in
glaciological applications such as flowline modeling. There-
fore, Paul et al.(2009) suggest the use of the above au-
tomated algorithm in the concave (i.e., higher) part of the
glacier, combined with manual digitization in the convex
(lower) part of the glacier.

Le Bris and Paul(2013) present an alternative method for
calculating glacier centerlines based on a so-called “glacier
axis” concept, which derives one centerline per glacier be-
tween the highest and the lowest glacier elevation.Le Bris
and Paul(2013) first establish a line (the “axis”) between the
highest and the lowest glacier point, which is then used to
compute center points for the glacier branches. These cen-
ter points are connected, starting from the the highest glacier
elevation and following certain rules (e.g., “always go down-
ward”, “do not cross outlines”). Smoothing of the resulting
curve leads to the final centerline. The algorithm is appli-
cable to most glacier geometries, yielding results similar to
manual approaches (Le Bris and Paul, 2013). A limitation of
their approach is the fact that the derived centerline between
the highest and lowest glacier elevation does not necessar-
ily represent the longest glacier centerline or the centerline
of the main branch, both of which are frequently required in
glaciological applications. For example, for glacier invento-
ries, it is recommended to measure glacier length along the
longest centerline, or, alternatively, to average the lengths of
all glacier branches (Paul et al., 2009).

3 Test site and data

Our algorithm is tested on glaciers located in Alaska and ad-
jacent Canada (Fig.1a). For brevity, we hereafter refer to
these glaciers as Alaska glaciers. From the complete Alaska

glacier inventory (Arendt et al., 2013), we extract all glaciers
with a minimal area threshold of> 0.1 km2, thus eliminating
small glacierets and possible perennial snowfields. This re-
sults in 21 720 glaciers with 86 400 km2 of ice total, which
accounts for more than 99 % of the area of the complete
Alaska inventory.

The Alaska glacier inventory comprises glacier outlines
derived from satellite imagery taken between∼ 2000 and
2012. The outlines used herein either stem from manual dig-
itization at the University of Alaska Fairbanks or from auto-
mated band ratioing followed by visual quality checks and
manual corrections (Bolch et al., 2010; Le Bris et al., 2011,
Fig. 1a).

Four DEM products are combined to create a contin-
uous 60 m DEM consistent with the time span covered
by the glacier outlines (Fig.1b). South of 60◦ N, we rely
on the Shuttle Radar Topography Mission (SRTM) DEM
(http://www2.jpl.nasa.gov/srtm, last access: 25 July 2013),
taken in February 2000 (Farr et al., 2007). Over Alaska,
the SRTM DEM has a native spatial resolution of 30 m,
while the resolution is 90 m over Canada. North of 60◦ N,
we use a high-quality DEM derived from airborne interfer-
ometric synthetic aperture radar (IFSAR) data obtained in
2010 (Geographic Information Network of Alaska, GINA;
http://ifsar.gina.alaska.edu; last access: 25 July 2013). For
areas not covered by the IFSAR DEM, we use DEMs de-
rived from data from the high-resolution stereo (HRS) imag-
ing instrument onboard the Système Pour l’Observation de la
Terre (SPOT) satellite taken within the scope of the SPIRIT
program (time span 2007–2008;Korona et al., 2009) and
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) instrument onboard the Terra satellite
(ASTER GDEM2, time span 2000–2011;Tachikawa et al.,
2011; http://asterweb.jpl.nasa.gov/gdem; last access: 25 July
2013). The individual DEM tiles are merged into one data set
giving priority to the highest-quality DEM available for each
area. While the used DEMs represent roughly the same time
span, the goals and scopes of the individual campaigns are
different, which becomes apparent in the contrasting quality
of the DEMs. For example, the GDEM has nearly global cov-
erage, but limited quality, while the IFSAR DEM is of high
quality, but only available for parts of Alaska.

4 Method

Our goal is to design an algorithm that (1) creates centerlines
for the main glacier branches as well as major tributaries,
(2) yields a quality comparable to a manual approach, and
(3) requires minimal data and manual intervention. It would
be desirable to derive centerlines that represent actual flow-
lines (i.e., ice trajectories); however, this would require co-
herent velocity fields without gaps. While corresponding al-
gorithms are applied for single glaciers (e.g.,McNabb et al.,
2012), stringent velocity data requirements make large-scale
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Fig. 1. The study area comprising glaciers of Alaska and adjacent Canada.(a) The three main outline sources marked in colors.(b) The
DEM products used within the study.

applications difficult. Here, we aim at obtaining centerlines
that are close to flowlines by only using glacier outlines and a
DEM as input. Such centerlines differ from flowlines mostly
in areas where centerlines from different glacier branches
converge. Actual flowlines would not converge completely,
but run side by side to the glacier terminus, as illustrated,
for example, byFarinotti et al.(2009). Although not entirely
consistent with real flowlines, centerlines are used for model-
ing purposes (e.g.,Oerlemans, 1997b; Leclercq et al., 2012).
They can also be used for applications that generally have
lower requirements than does modeling (e.g., determining
length changes, deriving glacier length for inventories).

Here, we apply a method that we call a “cost grid–least-
cost route approach”. The workflow consists of three main
steps that are implemented using the Python™ programming
language and ESRI® ’s arcpy module. The first step com-
prises the identification of glacier termini and glacier heads.
The second step encompasses the calculation of a cost grid,
followed by determining and optimizing the least-cost route
to derive the glacier centerlines. In the third step, these cen-
terlines are split into branches and a geometry order is intro-
duced. Because the three steps are associated with different
uncertainties, we have separate modules for each step of the
algorithm.

4.1 Step 1 – Identification of glacier heads and termini

In the first step, we identify glacier heads and termini by
applying a search algorithm based on the DEM and glacier

outline. We aim to derive one terminus per glacier and one
head for each major glacier branch. The centerlines eventu-
ally run from each glacier head to the terminus.

4.1.1 Glacier terminus

A natural way of identifying the glacier terminus is by ex-
tracting the lowest glacier cell (e.g.,Le Bris and Paul, 2013).
To better constrain our lowest point to the actual terminus,
we apply the corresponding query on a low-pass filtered
and “filled” DEM. “Filling” refers to removing depressions
within the DEM that could hamper the identification of the
actual glacier terminus. In this method, filling and filtering
are most important for large receding glaciers, which end in
flat terrain and are generally characterized by a rough surface
with numerous depressions.

Figure2 shows the glacier terminus as automatically ob-
tained for Gilkey Glacier, an outlet glacier of the Juneau Ice-
field located in southeast Alaska.

4.1.2 Glacier heads

Since we aim to derive centerlines of all major glacier
branches, we need to identify heads for each of these
branches. A three-step procedure is adopted to identify these
heads (Fig.3). First we identify local elevation maxima along
the glacier outlines. Our algorithm samples the 60 m DEM in
predefined steps (100 m) along the glacier outline, including
nunataks. The 100 m sampling distance precludes repetitive
sampling of the same DEM cell. Each sampled elevation is

www.the-cryosphere.net/8/503/2014/ The Cryosphere, 8, 503–519, 2014



506 C. Kienholz et al.: A new method for deriving glacier centerlines

Fig. 2. Automatically derived glacier heads (red crosses) and ter-
minus (blue square) on Gilkey Glacier, Juneau Icefield, southeast
Alaska. The 50 m contours and the shaded-relief background are
derived from the SRTM DEM.

then compared to its neighboring points along the outline. A
possible glacier head is identified if the local point is higher
than its neighbors (five neighbors in each direction, Fig.3a)
and if the point is higher than the lowest one-third of the
elevation distribution of all the sampled points of the cor-
responding glacier (Fig.3b). We apply the second criterion
since glacier heads are typically located at higher elevations.
We also want to avoid assigning centerlines to low-lying mi-
nor tributaries.

Given the irregular shapes of typical glacier outlines, the
workflow above can result in multiple heads per glacier
branch. To remove multiple heads per branch, we introduce
a minimum linear distancer (m) that the derived heads must
be apart. Since larger glaciers tend to have wider basins, we
definer as a function of glacier areaS (m2):

r =

{
q1 · S + q2 : r ≤ rmax

rmax : r > rmax
. (1)

q1, q2 andrmax are constants given in Table1, constrainingr
to values between 500 and 1000 m. In case one or more heads
are within r, we only retain the highest head and erase all
others (Fig.3c). If two heads are apart by a distance less than
r but separated by ice-free terrain, both heads are retained.
Ice-free terrain is identified if the circle defined byr splits
the glacierized area into two or more parts (Fig.3d).

In case no head is identified using the above steps, which
can be the case for small glaciers, we identify the highest

Fig. 3. Three-step procedure to identify the heads of major glacier
branches.(a) Identification of local maxima along the glacier out-
line by comparing each point to its five neighbors in each direction.
(b) Histogram of the elevation distribution of all sampled points
along the glacier outline. Only points above the elevation thresh-
old are retained.(c, d) Glacier area covered by circle with radiusr

around identified head A; heads A and B are separated by less than
r. In case(c), head B (with lower elevation than head A) is elimi-
nated. In case(d), both heads are retained because the ice-free ridge
completely separates the two heads (i.e., splits the circle into two
disconnected parts).

glacier elevation as the glacier head. In the case of Gilkey
Glacier, 77 heads are identified (Fig.2).

4.2 Step 2 – Establishment of cost grid and
determination of least-cost route

This step establishes a cost or penalty grid (here used as syn-
onyms) with high values at the glacier edge and in upper
reaches of the glacier. The penalty values decrease towards
the glacier center as well as towards lower elevations. The
least-cost route from a glacier head to the glacier terminus
yields the centerline.

4.2.1 Cost/penalty grid and route cost

First, we create a penalty grid with 10 m× 10 m cell size ac-
cording to Eq. (2). We choose this small cell size to obtain a
detailed representation of the glacier outlines in the gridded
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Table 1.Used parameter values and units.

Symbol Value Unit Equation

q1 2× 10−6 m−1 1
q2 500 m 1
rmax 1000 m 1
f1 1000 – 2
f2 3000 – 2
a 4.25 – 2
b 3.5–4.0∗ – 2
u1 2× 10−6 m−1 4
u2 200 m 4
lmax 400 m 4
j1 0.1 – 7
j2 0.01 m−j3 7
j3 0.7 – 7
w1 1× 10−6 m−1 8
w2 150 m 8
kmax 650 m 8

∗ Derived from optimization (Sect.4.2.2).

map. A larger cell size would yield a coarser glacier grid
omitting small-scale features such as small nunataks. The
penalty valuepi of each grid celli within the glacier is com-
puted by

pi =

(
max(d) − di

max(d)
· f1

)a

+

(
zi − min(z)

max(z) − min(z)
· f2

)b

, (2)

wheredi is the Euclidean distance from celli to the clos-
est glacier edge andzi is the cell’s elevation. max(d) is the
glacier’s maximum Euclidean distance from any point to its
closest edge, and max(z) and min(z) are the glacier’s maxi-
mum and minimum elevation. The coefficientsf1 andf2 and
the exponentsa andb are given in Table1.

The first term,max(d)−di

max(d)
, normalizesdi to the maximum

Euclidean distance found on the glacier, and leads to a Eu-
clidean penalty contribution that ranges between zero and
one (i.e., zero at the cell(s) with max(d) and one along the
glacier edge). By multiplying the term withf1, we scale the
normalized values to a range between zero andf1. The sec-
ond term, zi−min(z)

max(z)−min(z)
, normalizes the elevation of each grid

cell to the elevation range of the entire glacier, and yields an
elevation penalty contribution that is zero at the glacier termi-
nus, wherez = min(z), and one at the highest glacier point,
wherez = max(z). f2 scales these values to a range between
zero andf2. While the first term tends to force the least-cost
route to the glacier center, the second term tends to force it
downslope. The exponentsa andb control the weight each
of these terms have. The normalization in Eq. (2) is imple-
mented to make the samea andb exponents better transfer-
able to glaciers of different size and geometry.

f1 and f2 scale the normalized values back to ac-
tual glacier dimensions. Both coefficients are derived from
medium-sized glaciers located in the Alaska Range that were

used to calibrate the initiala and b exponents. As we ap-
plied an unnormalized version of Eq. (2) to calibratea and
b, that is,pi = (max(d) − di))

a
+ (zi − min(z))b, f1 (1000,

∼ equivalent to max(d)calib.) andf2 (3000,∼ equivalent to
max(z)calib.−min(z)calib.) are necessary to use these initially
calibrateda andb values in the normalized Eq. (2).

To obtain plausible centerlines, a strong increase in the
penalty values is required close to the glacier boundary and
at higher glacier elevations. High Euclidean distance-induced
penalty values at the glacier boundary are crucial to prevent
centerlines from reaching too close to the glacier edge, which
would not match their expected course. A strong elevation-
induced penalty gradient at higher glacier altitudes is impor-
tant to ensure that centerlines choose the correct branch from
the start. By usinga andb as exponents and not as coeffi-
cients, we do obtain the highest penalty gradients close to
the glacier edges and at high glacier elevations.

Figure4a shows the initial cost grid obtained for Gilkey
Glacier. The first part of Eq. (2) is dominating (penalties de-
crease strongly towards the branch centers), while the second
part of the equation has a lower effect.

Using the cost grid obtained from Eq. (2), we calculate
the least-cost route from each head to the glacier terminus,
which corresponds to the path with the minimum route cost.
The route costc is defined by the sum of the penalty values
pi between the glacier head and the terminus,

c =

I∑
i=1

pi, (3)

whereI is the total number of cells crossed from the glacier
head to the glacier terminus. The path with the lowestc is not
necessarily the shortest path (minimalI ), because the penalty
valuespi are not constant. For example, given a meander-
ing glacier, the shortest route is expensive, because it crosses
cells with very high penalty values at the edge of the glacier.
Instead, it is cheapest to stay near the center of the glacier.
Although this route crosses more cells (higherI ), the result-
ing sum of penalties is smaller as the penalty values (pi) are
considerably smaller near the glacier center.

In a next step, we convert the above least-cost route, which
is obtained as a raster data set, to a vector format. We then
smooth the corresponding curve using a standard polyno-
mial approximation with exponential kernel (PAEK) algo-
rithm (Bodansky et al., 2002). This algorithm calculates a
smoothed centerline by applying a weighted average on the
vertices of a moving line subsegment. A longer subsegment
leads to more smoothing. We define the length of the subseg-
ment,l (m), for every glacier individually, by

l =

{
u1 · S + u2 : l ≤ lmax

lmax : l > lmax
, (4)

whereS is the glacier area in m2. The constantsu1, u2 and
lmax are given in Table1. l is increased as a function of the
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Fig. 4.Selected penalty grids of Gilkey Glacier and corresponding centerlines, using a constanta value of 4.25, but varyingb. (a) Initial cost
grid with b = 3.5. The penalty values strongly decrease towards the center of the branches. There is a subsidiary decline from higher to lower
elevations. The black circles indicate centerlines that take implausible routes with significant upslope flow.(b) The penalty grid withb = 3.7
(i.e., 1b = 0.2). The initially wrong centerlines now take the correct routes; however, other centerlines have partially deviated from their
expected courses.(c) b = 3.9 (1b = 0.4). (d) b = 4.1 (1b = 0.6). Many centerlines are cutting corners, especially in higher glacier reaches.
1b is limited to a maximum of 0.5; thusb values of 4.1 are not allowed during the optimization.

glacier area to account for the wider branches and the smooth
course of the centerline typical for larger glaciers.

For simple glacier geometries, the first term alone in
Eq. (2) already creates plausible centerlines; however, for
more complex geometries, the resulting centerlines can
“flow” unreasonably upslope and choose a wrong route. Be-
cause elevation (or slope) is neglected in the first term, the
centerlines stick to the glacier center regardless of the topog-
raphy. To remedy this problem, the elevation-dependent term
is essential in Eq. (2). The elevation-dependent term also
forms the basis for the optimization step introduced next.

4.2.2 Optimization

During the optimization we aim to find a combination ofa

andb values (Eq.2) that provides the most plausible solution

for each centerline. Our approach is based on the following
considerations: if a narrow and a wide basin are connected
in their upper reaches, centerlines will typically flow through
the wide basin, because the penalty values are smaller in the
center of the wide basin compared to the center of the nar-
row basin. This is illustrated in Fig.4a, where wide basins
have lower penalty values in the center than narrow basins.
In some cases, the centerlines may flow a significant distance
upslope and make a major detour to reach a wider basin, and
still have minimum route cost. In these cases, the low penalty
values in the center of the wide basin overcompensate for the
additional penalties due to the detour. This implies that the
weight of the second term of Eq. (2) is too low compared
to the weight of the first term. Incrementally increasing the
second term of Eq. (2) will eventually force the centerline to
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take a route that is shorter and typically characterized by less
upslope flow. Ideally, this is the correct centerline.

To obtain the initial centerlines, we applya andb values
of 4.25 and 3.5, respectively (Table1), as derived from tests
in the Alaska Range. During the optimization, we keepa

constant and raiseb in discrete steps, thereby increasing the
weight of the elevation-dependent term in Eq. (2).

Not all centerlines require an optimization, and in case
centerlines require optimization,b cannot be increased in-
finitely, as this leads to a loss of the expected course of the
centerline. Figure4a illustrates this on Gilkey Glacier, where
most initial centerlines have plausible routes. Only the cen-
terlines marked by circles have implausible routes with major
upslope flow and thus need optimization. Figure4b–d show
that an increase ofb improves the lines in need of optimiza-
tion (i.e., the implausible centerlines circled in Fig.4a take
the correct route in Fig.4b), while it may diminish the quality
of the remaining centerlines due to the higher weight of the
elevation-dependent term, which forces centerlines to “cut
corners” instead of sticking to the glacier center. Accord-
ingly, a criterion is needed to determine whether optimization
is necessary and, in case it is, to decide when to terminate the
optimization. For this purpose, we sample the DEM along
each centerline and determine the total elevation increase in
meters (1zup, Fig. 5) and the maximum number of samples
with continuously increasing elevation (nup, Fig. 5) by

1zup =

I∑
i=1

1zup,i (5)

nup = max(nup,i), (6)

whereI is the total number of individual centerline sections
with upslope flow.1zup andnup are then used to compute
the thresholdm:

m = j1 · nup+ j2 · 1zup
j3, (7)

wherej1, j2 andj3 are parameters given in Table1. Func-
tion type and parameters in Eq. (7) are empirically chosen so
thatm yields the upper limit of1b, the latter defined as the
increase ofb relative to its initial value of 3.5. Beyondm,
solutions are no longer expected to improve and thus are not
computed during the optimization.1b, and henceb, are in-
crementally raised until1b equals or exceedsm, at which
point the optimization terminates. Figure6 illustrates this
workflow.

Equation (7) mimics our concept of having a highm (and
thus a highb) if a large nup coincides with a high1zup
(“worst case”, e.g., C-1 in Fig.7a), as this is a very strong
indicator for a wrong course of the preliminary centerline. If
bothnup and1zup are zero,m is also zero as we assume that
the centerline follows the correct branch. If a high1zup oc-
curs in conjunction with a lowernup or vice versa (e.g., C-2
and C-3 in Fig.7a),m is reduced compared to the worst-case

Fig. 5. Elevation profile along a glacier centerline illustrating the
definition of1zup (total elevation increase, Eq.5) andnup (maxi-
mum number of samples with continuous elevation increase, Eq.6)
for I = 3 sections.

scenario. In such cases, we are less confident that the lines
are actually wrong as such patterns occur occasionally even
if the line follows the correct branch. For example, a C-2-like
pattern can be caused by blunders in the DEM, while a C-3-
like pattern can occur along the centerlines of larger glaciers.
By using Eq. (7) we allocate a lowerm to these possibly cor-
rect cases than to cases where we are more certain that they
are actually wrong (C-1).

Tests indicate that many wrong centerlines shift to the cor-
rect branch within a1b of 0.5, that is, with ab value between
3.5 and 4.0. Thus, we limit the maximum1b (1bmax in
Fig. 6) to 0.5, no matter the thresholdm derived from Eq. (7)
(i.e., no matter the magnitude ofnup and1zup). Not obtain-
ing a better solution within a1b of 0.5 may indicate wrong
divides (i.e., glaciers are not split correctly, and the center-
line has to flow over a divide) or problems with the DEM
(i.e., blunders within a large area that cannot be bypassed). A
narrow branch located next to a very wide branch may also
prevent a correct solution. Even if the algorithm found the
correct branch with a1b value larger than 0.5, the resulting
line likely had an implausible shape due to the highb value
(Fig. 4d).

For our large-scale application, we raiseb by increments
of 0.1 per iteration (Fig.6), thus reaching1bmax with five
iterations. Smaller increments do not considerably improve
the results, but increase the computing time. Fig.7b shows
a typical example of the progression of1zup during the op-
timization, in the case of there being a better branch option:
1zup remains high during the first three iterations because
the centerline keeps following the wrong branch. In iteration
four (i.e., with1b = 0.4), the centerline shifts to the correct
branch and1zup decreases greatly. This drop in1zup is typ-
ically associated with a drop innup (not shown in Fig.7b),
which results in a lowerm according to Eq. (7). In this exam-
ple, m falls below1b, and thus the optimization terminates
automatically as soon as the centerline shifts to the correct
branch. Iteration five is omitted, which reduces the comput-
ing time.

To obtain1zup andnup, we sample the DEM only along
the uppermost 25 % of the centerlines’ length. Centerlines
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a = 4.25 b = binit = 3.5

∆b = 0 ∆bmax = 0.5

∆b > ∆bmax

Compute least-cost

route (Eqs. 2 & 3)

Compute ∆zup (Eq. 5)

& nup (Eq. 6)

Compute m:

m = j1 · nup + j2 · ∆zup
j3

(Eq. 7)

∆b ≥ m

Select best solution

from calculated

centerlines (see text)

Increase b:

∆b = ∆b + 0.1

b = binit + ∆b

End

No

Yes

No Yes

Fig. 6. Flow chart illustrating the optimization steps, including im-
portant equations and parameter values. Rectangles show the main
operations, while diamonds represent decisions.

most often take the wrong route (i.e., flow upslope) in this up-
permost glacier section, where the different glacier branches
tend to be interconnected. The same is very unlikely in the
lowermost glacier part, as there is typically only one branch
left. Even if more than one branch is left, these branches
are generally separated by ice-free terrain that cannot be
crossed by centerlines. Moreover, upslope flow in the upper-
most glacier part is clearer evidence of a wrong route than
upslope flow in lower parts, where the surface may be more
irregular, for example, due to varying debris coverage. In-
cluding lower glacier parts could lead to large1zup andnup
values although the centerline takes the correct route.

The optimization results in a data set that contains one
centerline per glacier head and iteration. As the last solu-
tion from the optimization is not necessarily the best one,
a strategy is needed to select the best solution from the set
of centerlines. We choose the solution that has the smallest
nup. If two or more solutions have the samenup, we order
them according to1zup and choose the one with the smallest
1zup. If this does not lead to a unique solution either, we take
the one solution with the lowest1b.

Fig. 7. (a)The thresholdm (colored surface and contours) as a func-
tion of the number of samples with continuous elevation increase,
nup, and the total elevation increase,1zup. C-1 exemplifies a case
with both highnup and1zup (“worst case”), while C-2 and C-3
mark cases with a high value for one of the parameters and a low
value for the other.(b) Typical progression of1zup during the opti-
mization procedure.1b is raised by increments of 0.1 per iteration.

Figure 8a (corresponding to Fig.4a) shows the prelimi-
nary set of centerlines as derived for Gilkey Glacier, while
Fig. 8b shows the optimized set of glacier centerlines. The
three red circles indicate implausible centerlines with signif-
icant upslope flow that are successfully adapted during the
optimization step. The orange circle shows an implausible
centerline that is not improved because there is no upslope
flow in this case (the optimization does not respond because
1zup andnup are zero). In Fig.8b, the blue bold numbers in-
dicate which iterative solution is chosen as the best solution.
In 55 cases, this is the initial solution “0” (i.e., usingb = 3.5)
or solution “1” (b = 3.6); in 22 cases, higher-order solutions
(3.7 ≤ b ≤ 4.0) are picked.

The derived centerlines reach all the way from the glacier
heads to the glacier termini. If two or more branches con-
verge, lines start to overlap. As the optimization step can re-
sult in differentb values for each individual centerline, the
derived centerlines do not necessarily overlap perfectly. The
green circle in Fig.8b shows an example of imperfect overlap
in the case of Gilkey Glacier.

4.3 Step 3 – Derivation of branches and branch order

The ultimate goal of this step is to remove the overlapping
sections of the centerlines and to arrive at individual branches
that are classified according to a geometric order. We keep
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Fig. 8. The main processing steps using the example of Gilkey Glacier, Juneau Icefield.(a) The grey lines show the centerlines derived
without the optimization, usinga = 4.25 andb = 3.5 (Eq. 2). Red and orange circles mark implausible centerlines.(b) Centerlines after
the optimization. The lines indicated by red circles are improved, while the line indicated by the orange circle remains unchanged. Blue
bold numbers show the final iterative solutions for selected centerlines (e.g., “3” means solution of iteration three) given a1b increase of
0.1 per iteration. The green circle marks an area of imperfect overlap after optimization of the centerlines, which is due to the different
appliedb values.(c) Branches after splitting the centerlines. The width of the blue area illustratesk (Eq.8). Overlapping parts (green circle)
are eliminated and short segments (belonging to the orange heads) are omitted.(d) Branches after allocation of geometric order. The order
number indicates the number of first-order branches flowing into the corresponding branch.

the longest centerline that reaches from the head to the ter-
minus. The remaining centerlines are trimmed so that they
reach from their head to the next-larger branch. If a trimmed
centerline falls below a length threshold, it is deleted.

4.3.1 Branches

We consider the longest centerline as the main branch, fol-
lowing previous studies (Bahr and Peckham, 1996; Paul
et al., 2009). This main branch is exported into a separate
file. Then, from the initial file, we remove the main branch,
including line segments within a distancek (m) of the main
branch (Fig.8c). We apply this minimum distancek because
different b values, employed during the optimization step,

can yield centerlines that do not overlap perfectly. Center-
lines may run in parallel in the same branch before they
converge, or they may diverge again, after having converged
higher on the glacier.k, defined according to Eq. (8), allows
for eliminating such cases of imperfect overlap:

k =

{
w1 · S + w2 : k ≤ kmax

kmax : k > kmax
. (8)

The constantsw1, w2 andkmax given in Table1 constrain
k to values between 150 and 650 m. Larger glaciers tend to
have wider branches, and parallel running centerlines in the
same branch may be farther apart. To account for this, we
increasek as a function ofS. k is not the actual branch width,
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but rather a minimum distance that is required to eliminate
cases of imperfect overlap.

The application ofk may yield lines that are split into mul-
tiple parts (one segment from the head to the first conver-
gence point, the second segment from the first to the second
convergence point, etc.). As the segment from the first con-
vergence point to the terminus is already covered by the main
branch, we keep only the one segment in contact with the
glacier head and remove all the other segments.

The step above is applied iteratively to the longest center-
line of the updated initial file until either the number of re-
maining centerlines reaches zero or their length falls below a
certain length. As a length threshold, we reapplyr defined in
Eq. (1), designating lines shorter than the threshold as noise
rather than branches. In cases wherer would remove all cen-
terlines (which may occur for small glaciers), Eq. (1) is not
applied. Instead,r adopts the length of the longest centerline.

Merging of the identified individual branches yields the fi-
nal set of branches. In the case of Gilkey Glacier, 53 branches
are obtained; 24 out of 77 lines are omitted because their
length is belowr. In Fig. 8c, the heads of omitted branches
are marked in orange. The green circle in Fig.8c shows an
area of initially imperfect overlap after employment of step 3.

4.3.2 Branch order

The above step yields a set of branches for every glacier and
also establishes a branch order using the branch length as a
criterion: while the longest branch is the main branch (high-
est order), the shortest branch is the lowest-order branch.
Next, we evaluate the number of side branches that con-
tribute to each individual branch. In this case, the branch
order increases with the number of contributing branches.
This results in main branches that have the highest num-
bers allocated. The numbers decrease as the branches fork
into smaller branches. “1” stands for the lowest-order branch,
meaning that there are no other branches flowing into this
corresponding branch. The applied branch order is derived
from the stream order proposed inShreve(1966) and gives
some first-order information about the branch topology of the
glacier.

The implementation consists of a proximity analysis that
is iteratively applied to each individual branch. We start by
allocating an order of one (lowest order) to every branch.
Next, we iterate through the branches in the order of increas-
ing length and flag the branches that are within a distance
of k (Eq. 8) from the one branch selected at that iteration
step (the reference branch). The proximity analysis is applied
only within the glacierized terrain. That is, a branch sepa-
rated by ice-free terrain is not flagged unless the distance is
less thank at a point without ice-free terrain between the
branch and the reference branch. By summing the individ-
ual orders of the flagged branches, we arrive at the true order
of the selected reference branch. This true order is updated

instantaneously because its updated value is required for the
next iterations.

Figure8d shows the result for Gilkey Glacier. The “53” of
the main branch indicates that 53 first-order branches con-
verge to make up the main branch.

4.4 Quality analysis and manual adjustments

The quality analysis consists of a visual check, conducted
throughout the domain by evaluating the derived center-
lines in conjunction with contours (50 m contour spacing),
shaded-relief DEMs, and satellite imagery (mostly Landsat).
A 25 km× 25 km grid, covering the entire study area, is used
for guidance and keeping track of checked regions. We as-
sess visually whether heads and termini are located correctly.
For the termini, this means approximately at the center of the
tongue; for the heads, at the beginning of a branch. The actual
centerlines should flow roughly orthogonal to contour lines
and parallel to medial moraines.

Glacier termini are manually moved to the center of the
tongues, and glacier heads are added, deleted or moved as
needed. To determine the number of moved termini, we com-
pare the coordinates of the initial, automatically derived ter-
mini to the coordinates of the checked termini and sum the
number of cases with changed coordinates. A similar analy-
sis allows us to distinguish and quantify the two categories
“added” and “deleted” heads.

Instead of editing the actual centerlines manually, we es-
tablish a new set of lines that we call “breaklines”. The idea
is to treat these breaklines like nunataks upon rerunning of
step 2 of our workflow. This implies that centerlines may
not cross breaklines; moreover, breaklines change the de-
rived penalty raster. Such an approach allows for efficient
correction of wrong centerlines. For example, it is useful to
adapt a centerline that did not shift into the correct branch
despite the optimization procedure. A simple breakline that
blocks access to the wrong branch is sufficient to reroute the
wrong centerline, which is much faster than manually editing
the actual centerline. In the context of the quality analysis,
counting the number of set breaklines allows for quantifying
wrong centerlines.

To obtain the final set of centerlines, steps 2 and 3 of the
workflow are repeated using the adapted heads, termini and
breaklines as input, without changing any of the remaining
input data or parameters. To allow breaklines as an additional
input, an adapted version of the code of step 2 is run.

4.5 Comparison to alternative methods

To identify differences between alternative methods, it would
be ideal to compare the actual centerline shapes. However,
quantitatively assessing shape agreement is challenging, es-
pecially for a large number of glaciers. Here, we use the
length as a proxy for agreement and carry out two compar-
isons. First, we compare the glacier lengths derived from
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a hydrological approach to the lengths derived from our
longest centerlines. To obtain the hydrological lengths, we
run the tool “Flow Length” from the ESRI® ArcGIS software
package, which is similar to the tool applied bySchiefer et al.
(2008). While this tool yields a length parameter for every
glacier, it does not output an actual line that can be checked
visually.

In the second comparison, we evaluate agreement between
our longest centerlines and our centerlines between highest
and lowest glacier elevations. This comparison yields appar-
ent length differences that would occur by applying an ap-
proach that considers only the highest glacier elevations as
heads (e.g., followingLe Bris and Paul, 2013), rather than an
algorithm that considers multiple heads. Unlike in the first
experiment, we do not compare two approaches that are fun-
damentally different, but rather the same approach with one
different assumption regarding glacier heads. Thus, we ex-
pect better agreement in the second experiment.

5 Results

For the 21 720 glaciers with an area> 0.1 km2, we obtain
41 860 centerlines, of which 8480 (20.3 %) have a nonzero
optimized iterative solution. The centerlines range in length
between 0.1 and 195.7 km; the summed length is 87 460 km.
Mean glacier length of our sample, as derived from the
respective longest centerlines, is 2.0 km. A total of 4350
glaciers (20.0 %) have more than one branch, and the cor-
responding branch orders reach up to 340. Figure9 shows
the final centerlines for the Delta Range area of the Eastern
Alaska Range and Fig.10 for the Stikine Icefield area, lo-
cated in the Coast Mountains of southeast Alaska/northwest
Canada. The glacier geometries range from large outlet
glaciers to medium-sized valley and small cirque glaciers.

Table 2 gives an overview of the manual changes con-
ducted during the quality analysis. Of the 21 720 glaciers,
19 060 (87.8 %) require no manual intervention at all;
2660 glaciers (12.2 %) need at least one manual interven-
tion within the three-step procedure. Most cases of manual
intervention are required to adapt the automatically derived
glacier heads (1850 deleted, 1070 added) and termini (770
moved), indicating that step 1 or 3 does not yield the ex-
pected outcome in these instances. A total of 580 breaklines
are used to adjust the course of the actual centerlines, indi-
cating that in these cases, step 2 does not yield the intended
result.

6 Discussion

6.1 Algorithm

Despite its empirical nature, our approach yields plausible
results for a wide range of glacier sizes and shapes, provided
both good-quality DEMs and glacier outlines are available.

Table 2. Manual changes attributed to individual error categories.
Percentages are relative to the total of each category (e.g., deleted
heads vs. total heads).

Category Number %

Termini 21 720
Moved termini 770 3.5

Heads 41 860
Deleted heads 1850 4.4
Added heads 1070 2.6

Centerlines 41 860
Breaklines 580 1.4

Glaciers 21 720
Glaciers with changes 2660 12.2

However, the algorithm has limitations, as shown by the
quality analysis. The main challenge is to automatically de-
rive glacier heads and termini, due to the large natural vari-
ability inherent in the glacier sample with respect to size,
shape and hypsometry. The actual derivation of the center-
lines is less error-prone.

6.1.1 Termini

We use the lowest glacier points to automatically identify
glacier termini, which can lead to problems described in
Le Bris and Paul(2013). Especially if glacier tongues reach
low-slope terrain, which is typical for expanded-foot and
piedmont glaciers, the lowest glacier cell may not be located
in the center of the glacier tongue but rather along the side of
the glacier. This “pulls” the line away from the glacier center
and leads to centerlines that are not realistic. Although this
inconsistency only affects the immediate tongue area, it may
interfere with certain applications and thus requires a man-
ual shift of the terminus. In our study area, shifting of mis-
placed termini accounts for a considerable number of cases
requiring manual input (Table2). Currently, we do not have
a reliable automatic approach to detect and adapt such mis-
classified termini.

In many glacierized areas, there are glaciers that drain into
multiple tongues. Our algorithm identifies the lowest point as
the only terminus and therefore does not account for multiple
termini. To address this problem, we have to manually split
these glaciers into separate catchments (i.e., one catchment
per tongue), followed by treating the catchments like sepa-
rate glaciers. In Alaska and northwest Canada, only a hand-
ful of glaciers drain into multiple tongues; hence the amount
of manual intervention required is relatively small.
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Fig. 9. Derived centerlines for the Delta Range area. The white lines in panel(a) and (b) show the centerlines overlaid on a Landsat 5
Thematic Mapper false-color composite (bands 7-4-2) from 10 August 2005 (scene LT50660162005222PAC00). Moraines are shown in
brown, snow and ice in light to dark blue. Panel(c) shows the same centerlines, but with colors indicating the branch order. Branch orders
greater than one are labeled. The shaded-relief background is derived from the IFSAR DEM.
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Fig. 10. (a)Derived centerlines for glaciers in the Stikine Icefield area. The line colors indicate branch order. The shaded-relief background
is derived from the SRTM DEM. 50 m contours are shown as white lines. Inset(b) shows a subarea with labels quantifying the branch orders
greater than one.
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6.1.2 Heads

By definition, our algorithm obtains exactly one point per
local elevation maximum. The corresponding centerline cov-
ers one branch; other branches that may originate from the
same area remain without centerlines. This is illustrated in
Fig. 8b, where not all branches have a centerline allocated.
Because our algorithm does not necessarily yield centerlines
for each individual glacier branch, additional heads may have
to be set manually, often combined with breaklines (required
to prevent centerlines from clustered heads taking the same
branch). In our test area, this constraint is responsible for
most cases in the category “added heads” (Table2). Glaciers
that fork from one into multiple branches, such as glaciers on
volcanoes, are most susceptible to the problem.

We further prescribe that centerlines must run from their
head to the terminus. While this is appropriate for many
glacier geometries, it may not be the case for hanging or
apron glaciers. For example, the minimum point of a small,
wide apron glacier may be on one side, while a local maxi-
mum may be on the other side of the glacier. This results in a
centerline that runs almost parallel to the contours, yielding
a maximum length that is too long. In such cases, manual in-
tervention is required to remove implausible head–terminus
combinations. In our test area, this problem is responsible for
the bulk of corrections with regard to deleted heads (Table2).
By applying a higher minimum glacier area threshold (e.g.,
1 km2 instead of 0.1 km2), the amount of manual corrections
could be reduced, as the challenging glacier geometries tend
to have small areas.

6.1.3 Cost grid–least-cost route approach

Our algorithm generally yields plausible centerlines if we de-
rive the routes from cost grids established witha andb values
of 4.25 and 3.5, respectively (Eq.2). The Euclidean distance
term controls this initial cost grid, reflecting our assumption
that the main flow occurs in the glacier center. If this as-
sumption does not hold, the quality of the resulting center-
lines may decline, although we consider elevation in Eq. (2)
and also conduct an optimization step. Lower-quality center-
lines are found, for example, on glaciers that drain very wide,
asymmetric basins. In contrast, our quality analysis indicates
that the approach works particularly well for valley glaciers.
Alaska and northwest Canada comprise many outlet and val-
ley glaciers, which is an important reason for the relatively
high success rate in this area (Table2).

The existence of nunataks tends to improve the derived
centerlines. Due to the high penalty values close to the
nunataks, centerlines are forced to flow around nunataks,
which is typically consistent with their expected course. In
our test area, nunataks are abundant, which simplifies the ap-
plication of the cost grid–least-cost route approach.

Equation (2) is only one way to obtain a functioning cost
grid. Other, possibly shorter equations may yield similar

results. For example, it would be possible to use the same
values forf1 andf2 upon recalibratinga andb, thus reduc-
ing the number of variables by one. Instead of exponentials,
one could also attempt to obtain a cost grid using logarithms.

6.1.4 Optimization

The optimization is a crucial element of the cost grid–least-
cost route approach and works robustly in general. We iden-
tify three cases where the optimization either fails or does not
respond at all. First, no optimization occurs if the line contin-
uously flows downslope, despite taking the wrong route (m

in Eq. 7 is zero in these cases). Second, the algorithm does
not optimize if the upslope flow occurs below the upper 25 %
of the centerline’s length (1zup andnup are only determined
within the first 25 %). Anm that is not high enough (despite
detected upslope flow) is a potential third cause for failure of
the optimization. It is difficult to attribute wrong branches to
individual cases; however, we hypothesize that the first case
causes the largest number of errors.

The presented optimization is the result of experimenting
with different optimization approaches and break criteria. In-
tuitive break criteria such as “optimize until1zup andnup
equal zero” or “optimize until improvement of1zup andnup
equals zero” do not work reliably due to the large variability
inherent in the glacier sample. For example, a solution may
decline temporarily (resulting in higher1zup or nup) before
it improves again to finally yield the best solution. Iteratively
calculating all the solutions according to Eq. (7) and then
choosing the best solution out of this set of centerlines gen-
erally is most successful.

6.1.5 Branches and geometry order

The proposed approach to derive branches from centerlines
works satisfactorily in most cases; however, we rely on var-
ious simplifications. For example, Eq. (8) defines a constant
k for each glacier, which is then used to split the centerlines
into branches. Ideally,k would correspond to the actual local
branch width and thus evolve along each individual branch.
While such a procedure is easily implementable for simple
glacier geometries, it is difficult in areas with many inter-
connected branches, and thus not implemented here. Assum-
ing a constantk is most problematic for very large glaciers,
where the branch widths can vary from less than one to sev-
eral tens of kilometers. In conjunction with the constant min-
imum length thresholdr (Eq. 1), the constantk may lead to
branches that are omitted although they should not be, and
vice versa. For large glaciers, such errors can be an impor-
tant contributor to the categories added and deleted heads
(Table2).

6.2 Influence of DEM and outline quality

Our results depend on the quality of DEM and glacier out-
lines. While systematic elevation biases (e.g., like those
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found in the SRTM DEM) have little to no effect, blun-
ders such as bumps (e.g., found in the ASTER GDEM2, due
to a lack of contrast in the corresponding optical imagery)
are more severe. They lead to elevation maxima that are not
real, which interfere with our search for actual glacier heads.
Blunders also affect the course of the centerlines. Artificial
bumps lead to upslope flow, and the subsequent optimization
picks centerlines that flow around these bumps. These solu-
tions are better according to the optimization criteria1zup
and nup, but in reality may be worse than the initial solu-
tions. In areas where we rely on DEMs with blunders, the
DEM quality is responsible for most manual corrections in
any error category.

If the glacier is part of a larger glacier complex, correct ice
divides along the actual drainage divides as retrieved from
the DEM are crucial. In case of erroneous divides, center-
lines flow over the divide, which may prompt an optimiza-
tion although the only solution is to adapt the divides. Like-
wise, it is important to identify correctly location and shape
of nunataks. In case of omitted nunataks, the centerlines
may cross the nunataks, which is not intended. Identifying
nunataks where there are none (e.g., on a medial moraine)
leads to centerlines flowing around these apparent nunataks,
yielding an implausible curvy shape.

6.3 Quality assessment

For the quality assessment, we use shaded-relief DEMs, con-
tour lines, and satellite imagery. As medial moraines and
contour lines are only a proxy for ice flow direction, it would
be ideal to consult actual velocity field data to validate the
centerlines. However, at the time of the quality analysis, such
flow fields were not available on a larger scale. Recently pre-
sented data (Burgess et al., 2013a) may be used for future
studies.

Visual assessments involve some degree of subjectivity,
which we attempt to minimize by checking the results mul-
tiple times. Comparison to centerlines exclusively derived
by hand could extend the current quality assessment. How-
ever, to be meaningful, such tests should comprise multiple
glaciers from each glacier type, manually processed by dif-
ferent technicians. This is very time-consuming and thus be-
yond the scope of this study.

6.4 Comparison to alternative methods

To quantify method-related differences, we compare the
glacier lengths derived from alternative algorithms. A mean-
ingful analysis is supported by the large number of length
observations available. Calculating the ratios of the lengths
obtained from different methods allows a comparison among
glaciers. The histogram in Fig.11a illustrates contrasts in
length arising from the concurrent application of our cost
grid–least-cost route and a hydrological approach. The dis-
tribution of the obtained ratios is shown in the histogram

in Fig. 11a. While the mean and median are very close to
unity (R̄ = 0.99,R50 = 1.02), the distribution is left-skewed
with a maximum between 1.05 and 1.15 and considerable
spread. Only∼ 50 % of the 21 720 glaciers have lengths that
are within 10 % of each other. Assuming that the centerlines
from our cost grid–least-cost route approach are the “cor-
rect” reference, the distribution peak between 1.05 and 1.15
confirms the finding ofSchiefer et al.(2008) that hydrologi-
cal approaches tend to overestimate glacier length due to the
deflection of the hydrological “flowline” to the glacier edge
in convex areas. However, in almost 50 % of the cases, the
lengths from the hydrological approach are shorter than the
lengths from the cost grid–least-cost route approach. The pat-
tern is found throughout all size classes and can occur if the
hydrological flowline not only gets deflected in areas with
convex glacier geometry but actually leaves the glacier be-
fore reaching the lowest glacier elevation. In these cases, the
hydrological approach may underestimate glacier length. In
the cost grid–least-cost route approach, every centerline is
forced to reach the lowest glacier elevation, an assumption
that may not always hold, which then leads to an overestima-
tion of the length by our approach. Combined, the two ten-
dencies for under- and overestimation may explain the con-
siderable fraction of ratios between 0.7 and 0.9.

The histogram in Fig.11b shows how different the lengths
would be if centerlines were computed between the lowest
and highest glacier elevations only (e.g.,Le Bris and Paul,
2013), instead of considering multiple branches per glacier.
For this comparison, we extract only the 4350 glaciers that
have two or more centerlines, as the two lengths must be
identical in the case of the remaining 17 370 glaciers. Ex-
cluding the glaciers with one centerline tends to exclude the
smallest glaciers; thus, nearly all glaciers< 0.5 km2 are omit-
ted. More than 70 % of the glaciers have a high ratio between
0.95 and unity, meaning that the centerline originating from
the highest glacier elevation has a length that is within 5 % of
the longest centerline’s length. For most glaciers, the longest
centerline is actually identical to the line between the low-
est and the highest glacier elevation, which is explained by
a strong correlation of elevation range and length. Neverthe-
less, considerable outliers may occur in individual cases, es-
pecially for large glaciers that have many branches.

7 Conclusions

We have developed a three-step algorithm to calculate glacier
centerlines in an automated fashion, requiring glacier out-
lines and a DEM as input. In the first step, the algorithm
identifies glacier termini and heads by searching for minima
and local elevation maxima along the glacier outlines. The
second step comprises a cost grid–least-cost route implemen-
tation, which forces the centerlines towards both the central
portion and lowest elevations of the glacier. The second step
also implements an optimization routine, which obtains the
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Fig. 11. Histograms illustrating the length ratio distributions of differently derived glacier lengths. Colors distinguish size categories;N

indicates the total number of glaciers. Mean (R̄) and selected quantiles (R) are calculated for the complete distributions. Panel(a) shows
the ratio of length derived from a hydrological approach to the length derived from our longest centerline. Bar width is 0.1. Panel(b) shows
the ratio of length derived from the centerline between the highest and the lowest glacier elevation to the length derived from our longest
centerline. Only glaciers with more than one centerline are considered. Bar width is 0.05.

most plausible centerlines by slightly varying the cost grid.
In the third step, the algorithm divides the centerlines into
individual branches, which are then classified according to
branch order (Shreve, 1966).

We have developed and applied our centerline algorithm
on a glacier inventory for Alaska and northwest Canada
(Arendt et al., 2013). The algorithm is applied to 21 720
glaciers with a minimum area of 0.1 km2, yielding 41 860
individual branches ranging in length between 0.1 and
195.7 km. The mean length of the glacier sample is 2.0 km.
Our quality analysis shows that the majority (87.8 %) of
the glaciers required no manual corrections. The most com-
mon errors occurred due to misidentification of either glacier
heads or termini (7.0 and 3.5 % of errors, respectively). Once
heads and termini are correctly identified, the algorithm de-
termines centerlines for nearly all (98.6 %) cases. The qual-
ity analysis further indicates that the algorithm works best
for valley glaciers, while apron glaciers tend to be most chal-
lenging.

For our sample of 21 720 glaciers, we compare the lengths
derived from a hydrological approach (e.g.,Schiefer et al.,
2008) to the lengths derived from our longest centerlines.
We find considerable variation: although the average ratio of
the two lengths is close to unity, only∼ 50 % of the glaciers
have the two lengths within 10 % of each other. This suggests

that the choice of the applied method may significantly influ-
ence the derived glacier lengths. Comparing the lengths from
the centerline between highest and lowest glacier elevations
to the lengths from the longest centerlines shows that they
agree well:> 70 % of the glaciers with two or more branches
have the two lengths within 5 % of each other. Agreement is
best for small glaciers with few branches. Our results sug-
gest that the centerline between the highest and the lowest
glacier point is generally valid to describe the glacier length
although considerable outliers may occur in individual cases.

Our derived centerlines do not provide unique, “true” so-
lutions. The results may vary with the parameters chosen
in the applied equations; moreover, technician interpretation
adds subjectivity within the quality analysis. Nevertheless,
the proposed approach contributes towards a standardized
derivation of centerlines. The final product may be used, for
example, to calculate the glacier length using both suggested
methods (Paul et al., 2009) or to conduct topological analy-
ses (Bahr and Peckham, 1996). It may also be used for area-
length scaling applications (Schiefer et al., 2008) or as input
for flowline modeling (Sugiyama et al., 2007). As soon as
good-quality DEMs and glacier outlines are globally avail-
able, the scope of the presented project may be expanded
from a regional to a global scale.
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