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Abstract. This study investigates the impact of cyclones on
the Arctic Ocean sea ice for the first time in a statistical man-
ner. We apply the coupled ice–ocean model NAOSIM which
is forced by the ECMWF analyses for the period 2006–2008.
Cyclone position and radius detected in the ECMWF data
are used to extract fields of wind, ice drift, and concentra-
tion from the ice–ocean model. Composite fields around the
cyclone centre are calculated for different cyclone intensi-
ties, the four seasons, and different sub-regions of the Arc-
tic Ocean. In total about 3500 cyclone events are analyzed.
In general, cyclones reduce the ice concentration in the or-
der of a few percent increasing towards the cyclone centre.
This is confirmed by independent AMSR-E satellite data.
The reduction increases with cyclone intensity and is most
pronounced in summer and on the Siberian side of the Arc-
tic Ocean. For the Arctic ice cover the cumulative impact
of cyclones has climatologic consequences. In winter, the
cyclone-induced openings refreeze so that the ice mass is in-
creased. In summer, the openings remain open and the ice
melt is accelerated via the positive albedo feedback. Strong
summer storms on the Siberian side of the Arctic Ocean may
have been important contributions to the recent ice extent
minima in 2007 and 2012.

1 Introduction

Arctic sea-ice extent and thickness have undergone a signifi-
cant decline in the last decade (Stroeve et al., 2012) with the
latest record sea-ice extent minimum in September 2012. The
reasons are manifold and cannot be assigned to one process
only. However, it is generally accepted that the decline is also

a signature of anthropogenic climate change (e.g.Notz and
Marotzke, 2012).

Although sea ice is finally the result of local thermody-
namic freezing and melting, there are many processes that
significantly influence sea-ice formation and destruction. To
this end, cyclones play an important role with both thermo-
dynamic and dynamic aspects. With respect to the thermo-
dynamics, cyclones contribute the major part of the sensible
heat and moisture advection to the Arctic (e.g.Overland and
Turet, 1994). In addition, the related higher amount of clouds
enhances the surface radiation and energy budget in autumn
through spring and reduces it in summer (e.g.Curry et al.,
1993; Intrieri et al., 2002). With respect to the dynamics, the
strong, inhomogeneous wind field in cyclones deforms the
ice cover and causes cracks, leads and polynias. The effect of
these openings is different in winter and summer. In winter,
the openings are the places with the largest heat fluxes from
the ocean to the atmosphere. The openings refreeze so that
the heat fluxes decrease with time and salt is released from
the newly formed ice to the ocean. In summer, refreezing
does not occur, so that almost all downwelling short-wave
radiation is absorbed. This leads to a local warming of the
uppermost ocean layer and promotes further ice melt (e.g.
Perovich et al., 2008).

The potential of cyclones to significantly affect the sea
ice has been demonstrated in many case studies.Zwally and
Walsh(1987) investigated by means of satellite images and
model data the local change in ice concentration under the in-
fluence of a wintertime cyclone north of Alaska. Even though
the impact of the wind field of the cyclone lasted only be-
tween 1 and 3 days, the reduction of the multiyear sea ice
persisted for months. With satellite data and ice-drift buoy
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measurementsMaslanik and Barry(1989) found for winter-
time situations in the Canadian part of the central Arctic, that
cyclones lead to reductions in sea-ice concentration and in-
creased divergence of the sea-ice drift.Barry and Maslanik
(1989) also reported a reduction in sea-ice concentration in
summer in the Canadian part of the Arctic, caused by cy-
clonic conditions in the wind field and the associated diver-
gent and sheared ice drift. In the western Arctic, a strong
cyclone reduced the sea-ice concentration by 3 to 5 % in Oc-
tober 1991 (Maslanik et al., 1995). A measured increase in
the fraction of first year ice was attributed to the freezing of
the cyclone-induced open water areas.

Through the breaking of the ice cover, internal stress
within the ice is reduced and the mobility of the ice floes
is increased. The ratio of ice-drift speed and wind speed (the
wind factor) is increased for a short time period after the cy-
clone passage (Brümmer and Hoeber, 1999). On the basis
of satellite images,Holt and Martin(2001) investigated the
passage of a cyclone through the Beaufort Sea, the Chukchi
Sea, and the East Siberian Sea in August 1992. They reported
a growth of the fraction with open water and a decrease in the
size of floes. Using RADARSAT satellite images,Brümmer
et al. (2008) analyzed the ice-drift field around a cyclone in
March 2002. They found a divergent drift in the centre of the
cyclone and a convergent drift at the margins.

On the basis of buoy measurements,Brümmer et al.(2003)
found cyclone-induced inertial oscillations or tidal oscilla-
tions in the Fram Strait. They showed, that the oscillations
are also detectable in the divergence, the vorticity and the
deformation of the ice drift.Lammert et al.(2009) reported
on a cyclone that caused a resonant forcing of inertial oscil-
lations of the sea ice in the Fram Strait in March 2007. On
the right side of the cyclone track (looking along the propa-
gation vector) the wind direction changes were in phase with
the drift direction changes of the inertial oscillation so that
the ice concentration was reduced by up to 11 %.

More process-oriented,Haapala et al.(2005) used a mul-
ticategory sea-ice model in order to separate sea ice in “un-
deformed” and “deformed” ice classes. In model simulations
with a prescribed cyclone propagating over ice, they inves-
tigated how the amount of the open water forming through
the deformation influence of the cyclone depends on the cho-
sen cyclone and ice parameters.Kawaguchi and Mitsudera
(2008) used a Lagrangian ice model with an idealized sta-
tionary cyclone to examine mechanisms that cause ice di-
vergence and its seasonal changes. They found, among other
factors, that even the stratification of the ocean between win-
ter and summer can change the ice divergence by a factor
of 2. This is because the divergence of the Ekman flow in the
shallow, stable ocean boundary layer below the ice in sum-
mer is larger than in the deeper and less stable boundary layer
in winter.

Based on reanalysis data,Simmonds and Rudeva(2012)
investigated a strong Arctic cyclone that occurred during Au-
gust 2012. While their paper focuses mainly on the properties

of the cyclone, they also note, that the cyclone led to a dis-
persion and separation of a significant amount of ice from the
main Arctic ice shield.

Screen et al.(2011) investigated the relationship between
sea-ice extent at the end of the Arctic summer, and cyclone
activity in the preceding spring and summer. They found that
fewer cyclones over the central Arctic Ocean in May, June,
and July favour a low sea-ice extent at the end of the melt
season. They argue that fewer storms are associated with
above-average sea-level pressure, strengthened anticyclonic
winds, intensification of the transpolar drift stream, and re-
duced cloud cover, which all favor ice melt.

In this paper, we use a statistical approach to quantify the
local impact of cyclones on the sea ice in the Arctic Ocean,
applying a combination of observations and modelling. We
use the six-hourly operational analyses of the ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts) as at-
mospheric forcing of the coupled ice–ocean model NAOSIM
(North Atlantic–Arctic Ocean Sea-Ice Model). Within a cer-
tain radius around the cyclone position the model-simulated
impact on the sea ice is determined with respect to ice con-
centration and the wind–ice-drift relation. The model results
for the individual cyclone cases are stratified by different cy-
clone intensities, different seasons, and different sub-regions
of the Arctic Ocean. For all classes, the spatial distribution
of wind, drift, and ice concentration within the cyclone ra-
dius and the time evolution from before, during, to after the
cyclone event are investigated. The study is based on a three-
year period 2006–2008, thus, including the time of the so-
far second-lowest summer ice extent minimum in September
2007.

The paper is organized as follows: Sect.2 describes the
model, the model domain, and the study area. Section3 de-
tails the method of cyclone detection. The results of the sta-
tistical analyses of the impact of the cyclones on sea ice in the
central Arctic Ocean are presented in Sect.4 with respect to
the cyclone intensity, to seasonal differences, and to regional
differences. Conclusions are given in Sect. 5.

2 The ice–ocean model

The model NAOSIM is a coupled sea-ice–ocean model. It
has been applied in many research papers (e.g.Köberle and
Gerdes, 2003; Karcher et al., 2007; Rozman et al., 2011)
and also participated in the Arctic Ocean Model Intercom-
parison Project (e.g.Martin and Gerdes, 2007). The ocean
part is based on the Modular Ocean Model 2 of the Geo-
physical Fluid Dynamics Laboratory. The sea-ice part is the
dynamic–thermodynamic ice model based on the work ofHi-
bler (1979), and was enhanced, for example, in the subgrid
sea-ice thickness (Hibler, 1984) and in the rheology (Harder,
1996). The sea ice follows a viscous-plastic rheology. The
prognostic variables of the ice model are ice concentration
and thickness, snow height, and ice drift. On a subgrid scale,
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Fig. 1. Study area with spatial and seasonal distribution of the cy-
clone detections (dots) for the period 2006–2008. The orientation
of the (x, y) coordinate axes is shown in the upper left corner.

the thermodynamic ice thickness growth is distinguished be-
tween seven ice thickness classes. The model domain covers
the whole Arctic and the North Atlantic with a southern bor-
der at the 50◦ N latitude line. Thex axis is parallel to the
30◦ W/150◦ E longitude line. Since the impact of the coast
on the ice drift is detectable up to several hundred kilome-
tres (Thorndike and Colony, 1982), we restrict our studies
to those parts of the Arctic Ocean that are at least 300 km
distant from the nearest coast (Fig.1). The spatial resolution
is ≈ 9 km. The model time step is 5 min and the prognostic
ice variables were stored every 3 h. The model needs a pre-
scribed atmosphere every 6 h. In this work, forcing data of
the ECMWF operational analysis are used. These data have
a spatial resolution of 25 km and are interpolated to the 9 km
model grid. The forcing variables are temperature, dew point
temperature, wind, cloud cover, and precipitation. Precipita-
tion is taken from ECMWF 6 h forecast. The short-wave and
long-wave up- and downwelling radiation fluxes are parame-
terized in the NAOSIM model as well as the turbulent fluxes
of momentum and sensible and latent heat.

Since the cyclone impact on sea ice is taken here from the
NAOSIM model, the degree of realism of the results depends
essentially on the model quality. The quality of NAOSIM
with respect to ice drift has been tested against satellite and
in-situ data in several publications (e.g.Martin and Gerdes,
2007; Rozman et al., 2011). The results show a high corre-
lation of at least 0.84 between the simulated drift and the in
situ data. The standard deviation of the error for the model
simulations validated with mooring observations amounts to

0.03 ms−1. Results from comparisons between the model
simulations during the period 2006–2008 in this paper and
simultaneous buoy drift data are presented inKriegsmann
(2011). The data were taken from two ice-drift experiments
with 16 buoys in the region north of 85◦ N for the period
April 2007–January 2008 and with eight buoys in the Amer-
ican sector of the Arctic for the period April 2008–February
2009. For both drift experiments, model–buoy correlations
for both the u- and v-ice-drift component were between 0.82
and 0.85. In general, there were more model overestimations
for ice drifts< 0.2 ms−1 and underestimations for ice drifts
> 0.2 ms−1, that is, model variability was less than observed
variability. The angle difference varies around zero, but with
more positive than negative deviations. The angle difference
for each buoy averaged over the lifetime of the buoy is be-
tween 3◦ and 19◦ to the right of the buoy drift. It should be
mentioned that the model–buoy differences cannot solely be
attributed to the model, but can result also from uncertainties
of the ECMWF analysis and to a minor degree from mea-
surement errors.

For our study, there might have been the option to use
satellite-derived fields of ice motion. However, even the best
time resolution of 1 day (mean over 1 day) and spatial reso-
lution of 25 km appear not yet adequate for a cyclone impact
study which requires simultaneous fields of atmosphere and
ice with high time and spatial resolution as applied in this
paper.

In order to compare the cyclone-induced changes in ice
concentration between model and observations, we use the
satellite-based AMSR-E (Advanced Microwave Scanning
Radiometer - Earth Observing System) microwave (89 GHz)
sea-ice concentration, retrieved with the ASI-algorithm. The
satellite data were obtained from the Integrated Climate Data
Center (ICDC, http://icdc.zmaw.de), University of Hamburg,
Germany. The AMSR-E ice concentration data have a hor-
izontal resolution of 6.5 km and a time resolution of 1 day.
For the comparison, the AMSR-E data are interpolated to the
9 km model grid. AMSR-E has the tendency to overestimate
the ice concentration (Spreen et al., 2008). This is mainly the
case in summer so that the ice-covered area in the simula-
tion and from the AMSR-E data do not match well (Fig.2).
Therefore, all cyclone cases with a difference in the mean
ice concentration within the cyclone radius (for definition,
see Sect.3) of more than 10 % are neglected for the cyclone
impact study (called ADiff-Filter). The ADiff-filter removes
about 30 % of the cyclone detection cases (Table1). It should
be mentioned that in this study we are only interested in
changes of ice concentration, not in the absolute values.

3 Cyclone detection

Cyclone position, radius, and intensity are determined from
the 6-hourly sea level pressure field of the ECMWF analysis
for the period 2006–2008 applying the algorithm ofMurray
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Fig. 2.Top: mean simulated and AMSR-E ice concentration within
the cyclone radius for all 5057 detections. Bottom: difference be-
tween mean simulated and AMSR-E ice concentration. Red line
marks range of Adiff-filter.

and Simmonds(1991). In the beginning, the first and the sec-
ond derivatives of the two-dimensional field of sea level pres-
surep are calculated at all grid points. Grid points where the
Laplace operator∇2p = pxx +pyy , which is proportional to
the geostrophic vorticity, has a local maximum and is above
a certain threshold are candidates for a cyclone. In the case
that a pressure minimum in the surrounding of this point
exists, the exact position of the cyclone core is calculated.
The cyclone detection according toMurray and Simmonds
(1991) depends on many settings, for example on the thresh-
old of ∇2p, on the search radius around the maximum of the
Laplace operator, on the search area and the kind of search.
For cyclone tracking, the detections are connected to cyclone
tracks, based on probability calculations regarding cyclone
track direction, cyclone speed, and core pressure among oth-
ers.

In this work, two further quantities are used in addition to
position and time of detection: the radius and the intensity
of a cyclone. The radius is defined as a weighted distance
(weighted over 12 directions) between core and margin of
a cyclone, where margin is the place with∇

2p = 0. The in-
tensity of a cyclone is defined as the mean of∇

2p within the
radius region.

The cyclone data set which we use was prepared byHaller
(2011) and contains all detections for the area north of 60◦ N,
for the period 2006–2008. This amounts to a total of 70 405
detections belonging to 7987 cyclones (Table1). On average,
each cyclone has 8.8 detections (i.e. a lifetime of about 53 h).
Detections in the study area after applying the Adiff-filter
amount to 3496 detections belonging to 692 cyclones.

The automated detection of cyclones is an often applied
method. For example,Jahnke-Bornemann(2010) uses an au-
tomated procedure ofBlender et al.(1997) for investigations
of cyclones in the Norwegian Sea. Also with an automated

Table 1.Number of detections (cyclones).

North of 60◦ N Within study area After ADiff-filter

2006 23 220 (2627) 1874 (316) 1245 (248)
2007 23 171 (2570) 1462 (248) 1100 (204)
2008 24 014 (2790) 1721 (304) 1151 (240)

Total 70 405 (7987) 5057 (868) 3496 (692)

procedure,Serreze and Barrett(2008) found in reanalyses of
the National Centers for Environmental Prediction (NCEP)
in the long-time mean a maximum of cyclones in the central
Arctic during the summer.Affeld (2003) used automatically
detected cyclones to investigate the impact of cyclones on the
ice transport through the Fram Strait. A good review of the
different approaches to detect (and track) cyclones is given
in Ulbrich et al.(2009).

On the basis of the position of the cyclones the mean im-
pact on ice concentration and ice drift was investigated. The
cyclone detections were sorted into different classes in order
to find out how the impact of the cyclone on the sea ice varies
with cyclone intensity, season, and sub-region of the Arctic
Ocean.

The study period 2006–2008 contains the time (September
2007) when the so-far second lowest summer ice-extent min-
imum occurred. The cyclone frequency during this period
was at an almost constant level, embedded in an otherwise
increasing trend of cyclone frequency since 1958 (Haller,
2011). In terms of general circulation, characterized by North
Atlantic Oscillation and Arctic Oscillation indices (e.g.http://
www.ersl.noaa.gov/psd/gcos_wgsp/Timeseries), this period
was not particularly outstanding. So, our results can be re-
garded to represent Arctic conditions typical for the first
decade of the 21th century.

4 Statistical analysis of cyclone impact on sea ice

In this section the impact of cyclones on the Arctic Ocean sea
ice is presented and distinguished with respect to three cat-
egories. The first category is the strength of the atmospheric
forcing which we assume to be represented by the cyclone in-
tensity. The second category is the season because in addition
to, for example, different air temperatures, a cyclone meets
different sea-ice conditions such as concentration, thickness,
or ice strength and, thus, the consequences on the different
sea ice are expected to be different. The third category is the
sub-region of the Arctic Ocean because the sea ice has a dis-
tinct gradient, for example, in thickness from the Siberian
(thin) to the Canadian side (thick) and belongs to different
drift regimes (Transpolar Drift, Beaufort Gyre).

Each category (intensity, season, region) is subdivided into
four classes. For each class composite fields for wind, ice
drift and concentration around the cyclone are calculated.
This is performed in a relative horizontal coordinate frame
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which has its origin at the cyclone centre and is normalized
with the cyclone radius. The composite averaging is made
without any rotation of the frame (e.g. with respect to North).
So, the relativex, y frame in the figures below is parallel to
the axes of the model domain (see Fig.1) andx = y = 1 is
the normalized cyclone radius.

4.1 Cyclone intensity

The intensityI = ∇
2p of all cyclone detections in the study

area during the period 2006–2008 ranges fromI = 0 to I =

Imax (= 7.31 hPa(deg.lat.)−2). We distinguish between four
intensity classes,I1 to I4, belonging to the four quartiles of
the frequency distribution. The intensity range for each class
together with the average cyclone radius is given in Table2.

For each class the mean wind vector field and the mean
wind speed are shown in Fig.3 (top). The cyclonic struc-
ture of the wind field does not end at the cyclone radius,
but reaches to twice the cyclone radius. As expected, the
wind speed increases with increasing intensity. The maxi-
mum mean wind speed increases from about 4 ms−1 in I1
to almost 9.5 ms−1 in I4. The wind speed slows down to-
wards the cyclone centre where it is around 2.5 ms−1 in I1
and 4.5 ms−1 in I4.

The wind fields in Fig.3 are not rotationally symmetric
but show the highest winds and, thus, the strongest pressure
gradients in the direction towards the negativex and y di-
rections. This is (see Fig.1) along the direction from the
North Atlantic side to the Pacific side of the Arctic Ocean,
and coincides with the gradient of the climatologically mean
sea-level pressure distribution which exhibits lower pres-
sure over the northeast Atlantic and higher pressure over the
East Siberian Sea and Beaufort Sea (e.g.Serreze and Barry,
2005). If a symmetric cyclone pressure field is superposed
to this climatological pressure distribution the resulting pres-
sure gradient in the cyclone is stronger on the side towards
the climatological high pressure than towards the low pres-
sure.

The mean ice-drift field in Fig.3 (bottom) has a similar
cyclonic structure as the wind field. The ice drift decreases
towards the centre in accordance with the decreasing wind.
This is true for all intensity classes.

The relation between drift and wind is presented in Fig.4
by means of the wind factor WF (ratio drift vs. wind) and the
deviation angle DA (positive for ice drift to the right of the
wind). WF and DA are relatively easily accessible from ob-
servations and are frequently applied in the literature because
they are indirect indicators for the importance of the individ-
ual forces in the ice momentum balance equation. In case of
a free ice drift (internal ice force negligible which is typi-
cally assumed for ice concentrations below 0.8,Leppäranta,
2005, p. 141) and thin ice (Coriolis force negligible), the WF
is the square root of the ratio of the products of density and
drag coefficient in atmosphere and ocean. If, in addition, the
ocean current is zero the ice drifts along the wind. If we as-

Fig. 3.Mean wind (top) and mean ice drift (bottom) for the intensity
classesI1 to I4, centred on the location of the cyclone detection
and normalized with the cyclone radius. Mean vectors as arrows,
mean over absolute value of the speed as color. Isoline interval is
0.5 ms−1 for wind speed and 1 cms−1 for ice drift.

sume a wind-driven Ekman current in the ocean the ice drifts
to the right of the wind and to the left of the current. With in-
creasing ice thickness (i.e. increasing Coriolis force), the WF
decreases and the DA increases (Leppäranta, 2005, p. 144).
In case of ice concentrations above 0.8, the internal ice force
has to be taken into account. It is about opposite to the drift
and acts towards a decrease of WF and DA (Thorndike and
Colony, 1982). The inertial force is typically small but can
modify these relations for example if rapid wind changes oc-
cur.
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Table 2.Number of cyclone detections with corresponding mean radius and intensity for intensity quartiles, seasons, and regions.

Intensity No. Radius Season No. Radius Intensity Region No. Radius Intensity
(% of Imax) [km] [km] hPa(deg.lat.)−2 [km] hPa(deg.lat.)−2

I1 (0–14.7) 873 266 winter 1360 315 1.76 np-s 782 298 1.95
I2 (14.7–20.3) 875 306 spring 1067 320 1.73 np-c 844 309 1.69
I3 (20.3–29.0) 874 327 summer 374 303 1.64 sib 789 316 1.70
I4 (29.0–100) 874 344 autumn 694 293 1.75 can 1080 318 1.58

Averaging the WF and DA over the area within the double
cyclone radius and over all cyclone detections and all inten-
sities, they amount to about 2.0 % and 30◦, respectively. This
agrees with the values cited byLeppäranta(2005, p. 144) as
typical for the Arctic Ocean. This is again an indirect indi-
cation for the validity of the NAOSIM model and that the
above-mentioned (Sect.2) differences found between model
and drift buoys cannot be attributed to model alone. For all
intensities, Fig.4 exhibits a mean gradient in the WF and DA
composite fields: WF (DA) decreases (increases) towards the
positive x direction and weakly negativey direction. This
direction points from the Siberian side to the Canadian side
(i.e. from thinner to thicker ice). These mean gradients in
Fig. 4 agree with the above-mentioned increasing influence
of the Coriolis force with increasing ice thickness. These gra-
dients remain, even in the case of ice concentrations above
0.8, when the internal ice stress has to be regarded in the bal-
ance of forces.

The WF and DA values deviate from this gradient around
the cyclone centre in a region with a non-dimensional radius
of 0.25 to 0.5. The DA minimum below 20◦ and WF max-
imum of up to 2.6 % are suggestive of a smaller ice thick-
ness in the centre than on the perimeter. The WF maximum
is almost absent inI4 and increases with decreasing inten-
sity. This may be related to the slowing down of the wind
in the cyclone centre. At these weak winds the inertia of the
ice drift and, in addition, the ocean current come into play
and can make the WF particularly high (Leppäranta, 2005,
p. 146).

Next we investigate the time development of wind and
drift in the fixed circular area where the cyclone passes over
(is detected) att = 0. We calculate composite fields every
3 h from 2 days before until 5 days after the cyclone passage.
The horizontal averages of the composite fields of wind, ice
drift, and wind factor WF within the cyclone radius are cal-
culated and displayed in Fig.5. Hereby, the mean WF is not
calculated as ratio of mean ice drift and mean wind but as
the mean of the individual ratios at each grid point. The ratio
ice drift / wind can be arbitrarily high for small wind speed;
therefore WF was only taken into account when the wind
stress was at least 0.01 Nm−2, that corresponds to a wind of
about 1.8 ms−1.

The time series of the horizontally averaged wind speed
show an opposite time development for the intensity classes

I1 andI4 with a minimum and a maximum neart = 0 and
t = −0.25d, respectively. The different behaviour can be un-
derstood from the different wind fields in Fig.3. In I1, the
wind speed increases from the centre to the single radius and
remains relatively constant further outside. If such a cyclone
approaches, the mean wind speed within the fixed circular
area decreases the closer the cyclone is and becomes minimal
aroundt = 0, when the wind field including its minimum is
centred over the fixed averaging area. The situation is differ-
ent inI4: the wind speed has a distinct maximum around the
cyclone radius, centred in the negative (x, y) direction, and
decreases towards both the centre and further outside. If such
a cyclone approaches the fixed area, the mean wind first has
to increase.I2 andI3 are transition classes betweenI1 and
I4.

As expected, the time series of the ice drift are similar to
those of the wind speed. The four time series of WF dif-
fer significantly only between the intensity classesI1 andI4
aroundt = 0. There, surprisingly, WF exhibits a minimum
and a maximum, respectively. A possible reason may be re-
lated to regional differences, becauseI1-cyclones occur most
frequently over the Canadian sector (Can) andI4-cyclones
over the North Pole sector on the Siberian side (NP-S) (see
Fig. 1 and Table2). This is further outlined in Sect.4.3 on
the regional differences.

In the following, the changes in ice concentration within
24 h after cyclone passage (t = 0) are displayed in Fig.6. For
each intensity class a reduction in ice concentration around
the cyclone centre is simulated. With increasing intensity, the
area, where the ice concentration is reduced, becomes larger
and the reduction becomes stronger. The change in the centre
is at−0.7 %day−1 in I1 and at−2.1 %day−1 in I4.

For comparison, the 24 h ice concentration change based
on AMSR-E is also shown in Fig.6. It should be kept in
mind that the time resolution of the AMSR-E ice concentra-
tion fields is 1 day and that a field is composed of several
satellite orbits. For the calculation of the ice concentration
change, we assume that the daily fields hold for 12 UTC and
then interpolate the daily fields to the time of cyclone detec-
tion (t = 0) and tot = 24 h. The 24 h change in the AMSR-E
ice concentration shows no major difference between theI1
to I3. The ice concentration decreases in the cyclone centre
by up to−1 % day−1. The single radius area is surrounded by
an area with ice concentration increase. InI4, the reduction
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Fig. 4. Mean wind factor (top) and mean angle between wind forc-
ing and ice drift (bottom) for the cyclone intensity classesI1 to I4.
Isoline interval is 0.2 % for wind factor and 5◦ for deviation angle.

in ice concentration is stronger than in the other three classes.
Altogether, AMSR-E observations support the model results
that the ice concentration is reduced within the radius of the
detection and that the ice reduction increases with increasing
cyclone intensity.

Ice concentration is changed by two processes: divergence
and deformation. In Fig.7 the composite fields of vortic-
ity, divergence, and shear deformation for the weakest and
the strongest intensity classes,I1 andI4, are displayed. Vor-
ticity and divergence are about three times stronger forI4-
cyclones than forI1-cyclones, with respect to both the mean

Fig. 5.Time series of wind (top), ice drift (middle), and wind factor
(bottom) for different intensity classes. Shown are the mean values
within the cyclone radius for the time period from 2 days before to
5 days after detection (t = 0).

values within the cyclone radius and the maximum values
in the cyclone centre. The maximum vorticity in the cen-
tre of I4-cyclones amounts to 22× 10−7s−1 corresponding
to a rotation of 11◦ per day. The maximum divergence in
I4-cyclones amounts to 7.5× 10−7s−1 corresponding to an
opening of the ice by 5 % per day. The shear deformation in
I1-cyclones is small whereas inI4-cyclones maximum val-
ues of 15×10−7s−1 are reached. This means that a right an-
gle opens by 7.5◦ per day. Of course, these maximum values
are not reached in the course of a day, because the compos-
ite fields do not remain for 24 h over the same location. The
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Fig. 6.Mean change of simulated (top) and AMSR-E (bottom) ice concentration within 24 h after cyclone passage (t = 0) for I1 to I4.

impact on vorticity, divergence, and deformation extends up
to the cyclone radius forI4-cyclones and is significant only
in the very centre of theI1-cyclones.

4.2 Seasonal differences of cyclone impact

The number of cyclone detections in the study area during the
period 2006 to 2008 is almost the same in all seasons. Also in
summer, the cyclone activity is high in the central Arctic. The
maximum of cyclone detections is placed over the central
Arctic Ocean in summer (Serreze and Barrett, 2008), while
it is placed over the northeast Atlantic in winter (e.g.Sorte-
berg and Walsh, 2008). Due to the above-mentioned prob-
lem of ice concentration differences between AMSR-E and
model in summer and autumn we use here only those detec-
tions where simulated and observed ice concentration are in
the same range (Table2). The frequency distribution of cy-
clone intensities in Fig.8 shows a similar distribution in au-
tumn (SON), winter (DJF), and spring (MAM), whereas the
summer (JJA) cyclone intensity distribution has more weaker
cyclones and less stronger cyclones. This ranking is also re-
flected in the season means in Table2.

The composite cyclone wind fields for each season are
presented in Fig.9. As already mentioned for the intensity
classes, the cyclonic wind field is not rotationally symmetric
during autumn, winter, and spring but shows a maximum to-
wards the negativex andy directions (i.e. towards the west-
ern Arctic because of the large-scale pressure increase from
the Atlantic to the Pacific side of the Arctic). This is not the
case in summer when the high-pressure zone over the west-
ern Arctic is absent. On the average, the wind is weaker in

spring and summer than in autumn and winter as may be ex-
pected because of the more frequent weak summer cyclones.
However, the differences are not large: the mean is 5.9 ms−1

in summer and 6.8 ms−1 in winter. This reflects the fact that
the frequency distribution of cyclone intensities is not too
much different between the seasons (Fig.8). The ice-drift
fields (not shown) exhibit an analogous pattern to the wind
pattern, but have a different ranking of the seasons concern-
ing mean drift speed. It is highest in autumn and lowest in
summer and spring. This reflects a combination of the sea-
sonal variations in wind speed and internal ice stress.

The composite fields of WF and DA around cyclones dur-
ing different seasons are displayed in Fig.10. The large-
scale gradients with decreasing WF and increasing DA to-
wards the positivex direction and slightly negativey direc-
tion (i.e. towards the Canadian side) are, as was shown for
the different cyclone intensities, also present in each sea-
son. This reflects the increasing ice thickness and, thus, in-
creasing role of the Coriolis force towards the Canadian side.
Figure10 further represents the well-known observationally
based seasonal differences of DA and WF. DA is in win-
ter (average 29◦) smaller than in summer (average 37◦) and
also WF is in winter (average 2.0 %) smaller than in sum-
mer. However, the largest WF values occur after summer,
in autumn (2.2 %). This underlines the seasonally different
importance of the internal ice stress. We remind that, accord-
ing to the above-mentioned model–buoy comparison, the DA
values may be slightly overestimated. But this does not af-
fect the general seasonal and spatial patterns. The superposed
cyclone effect with small DA and large WF (in accordance
with a smaller mean ice thickness around the cyclone centre)
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Fig. 7.Composite fields of vorticity (top), divergence (middle), and
deformation (bottom) for intensity classesI1 (left) andI4 (right).

Fig. 8. Relative frequency of cyclone intensity per
0.5 hPa(deg.lat.)−2 for each season.

is most obvious in winter and spring concerning both am-
plitude and extent. Though discernible, it is less distinct in
summer. This results from the different mean ice concentra-
tions in winter (about 98 %) and summer (about 77 %) (see
Fig. 12). The change of the internal ice stress caused by the
cyclone is less in case of a small rather than high ice concen-
tration.

The seasonal impact of cyclones on the ice concentration
during the first 24 h after the passage is shown in Fig.11.
In all seasons, a reduction is present which is most pro-
nounced in spring and summer. In the centre of the cyclone
the ice concentration is reduced within 24 h by 0.9 % in win-
ter, 1.7 % in spring, 2.5 % in summer and 1.2 % in autumn.

Fig. 9.Mean seasonal wind at the position of detection, normalized
by radius. Shown are mean vector components and, as color, the
mean value of wind speed. Isoline interval is 0.5 ms−1.

For a closer investigation of the cyclone-induced part of the
ice concentration changes, the annual cycle of ice concen-
tration has to be considered. Melting in summer and freez-
ing in winter result in a long-term (longer than the cyclone
event) decrease and increase of the sea-ice concentration, re-
spectively. The cyclone impact is then superimposed on these
seasonal trends, producing less of a decrease in concentra-
tion in winter than in summer. This effect can be seen in
Fig. 11. The outer area (beyond 1.5 times the cyclone ra-
dius) shows no change in ice concentration in winter, a slight
decrease in spring, a stronger decrease in summer, and an in-
crease in autumn. For comparison, the 24 h change in the ob-
served AMRS-E ice concentration is also shown in Fig.11.
The main features simulated by the model are also present
in the satellite observations: cyclones reduce the ice concen-
tration in all seasons. Outside the cyclone radius the mean
seasonal trends of ice concentration are present: constant in
winter, variable (decrease as well as increase) in spring, de-
crease in summer, and increase in autumn.

Figure 12 displays the temporal evolution of ice con-
centration within the cyclone radius in comparison to the
ice concentration trend in the whole study area. In winter,
temperatures are far below the freezing point and the ice
concentration is high (> 98 %). Open water, caused by cy-
clones, freezes quickly and the ice concentration has recov-
ered≈ 5 days after the passage of the cyclone. In spring, the
mean ice concentration is around 97 %. However, areas of

www.the-cryosphere.net/8/303/2014/ The Cryosphere, 8, 303–317, 2014



312 A. Kriegsmann and B. Brümmer: Cyclone impact on sea ice in the central Arctic Ocean

Fig. 10. Spatial distribution of the wind factor (top) and the angle
between wind forcing and ice drift (bottom) for each season. Isoline
interval is 0.2 % for wind factor and 5◦ for deviation angle.

open water, caused by cyclones, do not freeze as quickly as
in winter. They exist even after a few days. The reason is
the onset of the warming due to the solar radiation. In sum-
mer, the ice concentration is around 77 % and is reduced by
2 % per week even without cyclone impact. However, with
cyclones the reduction is accelerated to 4 % per week. In au-
tumn, the mean ice concentration is about 83.5 % and new
ice is formed in large areas of the region. The ice concen-
tration in the whole study area increases by about 2.5 % per
week. Under the influence of a cylone, the sea-ice concentra-
tion grows only by 1.5 % per week. An important difference

between the seasons is that the impact of a cyclone in win-
ter is greatly diminished after about 5 days, whereas in the
other seasons the impact remains visible. In summer, the dif-
ference between mean ice concentration in the whole study
area and mean ice concentration within the area of detection
is 2 % even after 5 days. The cyclone-induced change in ice
concentration relative to the mean seasonal trend underlines
the quantitatively stronger reduction in summer (Fig.12bot-
tom).

The seasonal difference in the duration of a cyclone’s im-
pact may have important climatological consequences. Many
studies have examined the change in Arctic cyclone activity
over the past decades, some finding an increase in the num-
ber of cyclones in the Arctic (e.g.Sepp and Jaagus, 2011).
Zhang et al.(2004) found that the number of summer cy-
clones are increasing. With an increasing number of cyclones
in summer, the melting of sea ice could be accelerated. This
conclusion appears to be in contrast to the results ofScreen
et al. (2011), who find a positive correlation between Arc-
tic sea-ice extent at the end of the summer and cyclone fre-
quency in the preceding spring and summer. However, their
investigation is on an Arctic-wide scale where other Arctic-
wide processes, like the strength of the Transpolar Drift,
come into play, whereas our investigations are on the local
cyclone scale. Of course, a cyclone in summer has two op-
posite effects. On one side, the cyclone breaks the ice and
favors ice melt via the positive ice–albedo feedback. On the
other side, a cyclone is related with a higher amount of clouds
and reduces solar insolation and, thus, ice melting. However,
both opposite effects are taken into account in the NAOSIM
model, so the reason for the contradiction between our results
and those ofScreen et al.(2011) is not clear.

4.3 Cyclone impact in different regions of the Arctic
Ocean

We divide the study area into four sub-regions: Siberian sec-
tor (Sib), Canadian sector (Can), North Pole region on the
Siberian side (NP-S), and North Pole region on the Canadian
side (NP-C) (Fig.1). The regions were chosen in a way that
all have similar numbers of detections (Table2), but that the
ice conditions differ. For example, in the Can sector thick
and compact ice prevails moving with the Beaufort Gyre.
The sea ice in the Sib sector is thinner and moves with the
Transpolar Drift towards the Fram Strait. The mean inten-
sity of cyclones is highest (see Table2) in NP-S which is
closest to the North Atlantic low-pressure zone (e.g.Jahnke-
Bornemann and Brümmer, 2009), followed by Sib, NP-C,
and finally Can which is close to the Arctic high pressure
zone.

Figure 13 shows the frequency distribution of the wind
factor WF at each model grid point within the cylone ra-
dius. In addition, the corresponding mean values of wind
speed, ice concentration and thickness are listed. WF is high-
est in Sib where thin ice is present, followed by NP-S, NP-C,
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Fig. 11.Mean change of simulated (top) and AMSR-E (bottom) ice concentration within 24 h after cyclone passage (t = 0) for each season.

and Can where the thickest ice is present. Sectors Sib and
NP-S are rather similar and so are the sectors Can and NP-
C. For NP-C and Can, there are relatively more grid-points
within the cyclone radius with a small WF below 1.75 %.
This is attributed to the thick (mean values 3.3 m and 4.2 m,
respectively) and compact ice (mean values 96 % and 95 %,
respectively) that piles up ahead of the Canadian Arctic
Archipelago and that drifts relatively slow.

The mean deviation angle DA within the cyclone radius
shows smaller values around 28◦ in the Sib region and larger
values around 35◦ in the Can region (not shown). Thicker ice
(larger Coriolis force) causes an increase of DA and more
compact ice (larger internal ice stress) a decrease of DA.
Obviously, the effect of ice thickness dominates over the ef-
fect of ice concentration when looking at the Sib–Can differ-
ences.

Time variations of wind, drift, and wind factor WF in the
cyclone radius during a 7 day period around the cyclone pas-
sage (t = 0) within the four sub-regions are shown in Fig.14.
Wind speeds in the regions Can and NP-C are nearly identi-
cal and are the smallest, compared to the other regions. Wind
speed in the Sib sector is slightly higher. In these three re-
gions, the wind speed varies similarly with time, whereas in
NP-S not only the wind speed is highest, but also the wind ex-
tremes occur at other times and the minimum is less distinct.
The mean ice drift during a cyclone event is slowest in the
Can and NP-C regions. The fastest moving ice can be found
in NP-S, where the wind is strongest. The different WF lev-
els between the Can–NP-C sectors on one side and Sib–NP-
S sectors on the other side are, as already mentioned above,
due to the clearly different ice conditions (thickness, concen-

tration). Furthermore striking is the opposite time variation
of WF around the cyclone passage between Can–NP-C and
Sib–NP-S. In Sib–NP-S, the passage is connected with an
increase of WF by up to 0.1 %. In contrast to that, in Can–
NP-C WF decreases by up to 0.2 %. We presume that this
is a consequence of the different climatological ice drift and
ocean current systems on the Can and Sib side. In the Can
sector, mean drift and current rotate anticyclonically with the
Beaufort Gyre, whereas a cyclone rotates cyclonically. Thus,
the atmospheric cyclone impact on the ice drift is reduced. In
contrast to that, mean drift and current in Sib follow with the
weakly cyclonically curved Transpolar Drift Stream. Thus,
the cyclone impact on ice drift is supported and increases
WF.

The time series of ice concentration within the cyclone
radius show that the mean ice concentration 2 days before
the detection starts at different levels between 91.5 % in Sib
and 97 % in NP-C (Fig.15 top). In all regions, the ice con-
centration 5 days after detection is reduced, compared to the
mean ice concentration in the whole study area, and is below
the value it had before the cyclone passage. Relating the ice
concentration to that before the cyclone passage (t = −2d)
(Fig. 15 bottom), there is a similar development of the ice
concentration in all regions. The reduction amounts between
1 % and 1.5 %. The maximum cyclone-related ice reduction
is reached about 1 day after the cyclone passage.
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Fig. 12. Top: ice concentration in the period around the time of
detection (t = 0). Solid line: mean over all detections within the
cyclone radius, dashed line: simultaneous ice concentration in the
whole study area (shifted to the starting value of the correspond-
ing ice concentration within the cyclone radius). Bottom: detrended
change in ice concentration, relatively tot = −2d.

5 Conclusions

In this study the impact of cyclones on the sea ice in the
central Arctic Ocean was investigated, in contrast to many
case studies, for the first time in a statistical manner. To this
end we applied the coupled ice–ocean model NAOSIM and
forced it with the 6-hourly ECMWF analysis data for the pe-
riod 2006–2008. Cyclone position and radius detected from
the ECMWF sea-level pressure were used to extract the local
fields of wind, ice drift, and concentration within twice the
cyclone radius for a time interval from 2 days before to 5 days
after the cyclone passage. The cyclone impact is quantified
by the drift-wind ratio, the deviation angle, and the change
of ice concentration. Centred at the cyclone position and
normalized by the cyclone radius, composite fields of these
quantities are calculated for different cyclone intensities, the
four seasons, and different sub-regions of the Arctic Ocean.

Fig. 13.Frequency distribution of the wind factor within the cyclone
radius in four sub-regions of the Arctic Ocean. Red lines mark 5 and
95 percentiles, blue line marks the median. Also given is the mean
wind speed ff [m/s], the mean ice concentrationA [%] and the mean
ice thicknessh [m].

The classification of the cyclones according to their inten-
sities shows that wind speed and ice drift increase with in-
creasing intensity. In general, the cyclone passage leads to
a reduction of the ice concentration. The reduction increases
from the cyclone edge to the centre. In the centre, the reduc-
tion within 24 h after the passage is of the order of 0.5 to
2 % increasing with cyclone intensity. This spatial distribu-
tion and ranking of the ice concentration change is supported
by independent AMSR-E satellite data.

Mean wind speed and ice drift within the cyclone radius
show only small seasonal differences with a minimum in
summer and a maximum in autumn/winter. The deviation
angle between 10 m-wind and ice drift is largest in summer
with up to 37◦ and smallest in autumn/winter with up to 29◦.
The wind factor has a minimum in spring and a maximum in
autumn. Reductions in sea-ice concentration occur in all sea-
sons, but with different magnitude and duration. The largest
reduction of up to 4 % occurs in summer and is persistent.
In winter, the sea-ice concentration returns to its initial value
a few days after the passage of a cyclone, because areas with
open water refreeze quickly.

The regional investigation of cyclone impact reveals that
wind speed and ice drift are strongest in the NP-S region,
which is close to the North Atlantic cyclone track, and are
weakest in the Can region, which is close to the high pres-
sure zone over the western Arctic Ocean. The wind factor
is smallest in the Can region with 1.8 % and largest in the
Sib region with 2.2 %. The main reason for the regional dif-
ferences of cyclone impact is the different ice thickness and
concentration in these sectors.

On the short timescale (less than 12 h) of a passing cy-
clone, freezing and melting play a minor role in the change
of ice concentration. Thus, the cyclone-induced reduction of
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Fig. 14. As in Fig. 5, but for different sub-regions of the Arctic
Ocean.

ice concentration is almost solely due to the dynamics (i.e.
ice-drift divergence and ice sheet deformation). This means
that there is no loss of ice mass. The subsequent processes of
freezing and melting have different longer term or even cli-
matologic consequences, especially in winter and summer.
In winter, the heat flux between ocean and atmosphere over
the cyclone-induced open water areas is increased for a few
days. This heats and moistens the shallow Arctic boundary
layer. At the same time the freezing of the open water areas
leads to the formation of new sea ice, so that a further impor-
tant impact of the wintertime cyclones is an increase of the
Arctic ice mass. In summer, the cyclone-induced reduction
of sea-ice concentration is largest and the open water areas
remain open, decreasing the area average surface albedo and
increasing the solar absorption. This summertime impact is
expected to be especially large in areas with thinner ice as,

Fig. 15. As in Fig. 12, but for different sub-regions of the Arctic
Ocean.

for example, on the Siberian side and in areas with smaller
ice floes as, for example, in the marginal ice areas of the
Arctic Ocean. Strong summer storms in those areas can lead
to increased exceptional reduction of the sea-ice concentra-
tion, because they can separate and disperse large ice fields
from the main Arctic ice cover. The strong summer cyclone
between 4 and 8 August 2012 is believed to be one reason for
the following record ice extent minimum in September 2012
(Simmonds and Rudeva, 2012). Based on model simulations,
Zhang et al.(2013) hint at another impact of the strong 2012
August storm. They found an exceptionally strong bottom
melt of the sea ice resulting from the cyclone-induced en-
hanced upward mixing of water from the near sub-surface
ocean maximum temperature layer.

In this paper, we distinguished between three categories
(intensity, season, region). This stratification can only show
tendencies. A combined stratification would have been bet-
ter and more instructive, but was not made here because
of the only 3 year-long investigation period and the conse-
quently limited number of cases. This could be improved
with a longer investigation period. The cyclone radius may
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be a further classification parameter.Uotila et al. (2011)
studied the relationship between cyclone properties and sur-
face properties in the Antarctic. They distinguished between
mesoscale (r ≤ 500km) and synoptic-scale cyclones (r >

500km) and found that cyclones impacting the surface are
more synoptic-scale and cyclones being impacted by the sur-
face are more mesoscale. A further stratification criterion
when applying the compositing method should be the prop-
agation direction of the cyclone.Haapala et al.(2005) and
Kriegsmann(2011) demonstrated that the cyclone impact is
not symmetrical on the left and right side with regard to the
propagation direction. On the right side, the cyclone presses
the ice towards the not yet impacted ice cover, and away from
it on the left side. All these additional stratification criteria
would help to increase our knowledge of cyclone impact on
sea ice, however, this requires a far larger number of cases.
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