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Abstract. Melting is mapped over Antarctica at a high spa- 1 Introduction

tial resolution using a novel melt detection algorithm based

on wavelets and multiscale analysis. The method is applied

to Ku-band (13.4 GHz) normalized backscattering measured he future response of the Antarctic Ice Sheet to a changing
by Seawinds onboard the satellite QuikSCAT and Spatia"yclimate is one of the largest uncertainties in the estimates
enhanced on a 5km grid over the operational life of the@nd predictions of global sea-level rise over the coming
sensor (1999-2009). Wavelet-based estimates of melt sp&lecades (Hughes, 1981; Joughin and Alley, 2011; Overpeck
tial extent and duration are compared with those obtainectt al., 2006; Shepherd and Wingham, 2007; Bromwich and
by means of threshold-based detection methods, where mel¥icolas, 2010; Dowdeswell, 2006; Lemke et al., 2007). As
ing is detected when the measured backscattering is 3 di&mperature increases at high latitudes (e.g., Comiso, 2010;
below the preceding winter mean value. Results from bothtansen et al., 2010) the rate of surface melting is expected
methods are assessed by means of automatic weather st& increase (Ohmura, 2001). Analysis of long-term trends in
tion (AWS) air surface temperature records. The yearly melt-weather station air temperatures indicates a strongly positive
ing index, the product of melted area and melting duration,trend in the duration of melting conditions over the Antarc-
found using a fixed threshold and wavelet-based melt algofic Peninsula (Vaughn, 2006; Barrand et al., 2013). Efforts to
rithm are found to have a relative difference within 7 % for all quantify mass balance indicate a positive trend in mass loss
years. Most of the difference between melting records deterfor much of the West Antarctic Ice Sheet and the Antarctic
mined from QuikSCAT is related to short-duration backscat- Pe€ninsula but a negative trend for much of the East Antarc-
ter changes identified as melting using the threshold methodt¢ Ice Sheet (e.g., Chen et al., 2011; Rignot and Thomas,
ology but not the wavelet-based method. The ability to clas-2002; Shepherd and Wingham, 2007; Rignot et al., 2011).
sify melting based on relative persistence is a critical aspecfie€cent results using a combined climate modeling and satel-
of the wavelet-based algorithm. Compared with AWS air- lite observational approach suggest that in the period 1992
temperature records, both methods show a relative agreemeHtrough 2011, the East Antarctic Ice Sheet gains mass at a
to within 10 % based on estimated melt conditions, althoughrate of 14+ 43 Gtyr, while the West Antarctic Ice Sheet
the fixed threshold generally finds a greater agreement witf@nd the Antarctic Peninsula exhibit a mass loss-65+ 26,
AWS. Melting maps obtained with the wavelet-based ap-2nd—20+14 Gtyr ', respectively (Shepherd et al., 2012).
proach are also compared with those obtained from space- In the recent past, the Antarctic Peninsula has experienced
borne brightness temperatures recorded by the Special SefPisodes of dramatic ice-shelf break-up, for example the
sor Microwave/lmage (SSM/I). With respect to passive mi- 2002 Larsen B Ice Shelf and the 2008 Wilkins Ice Shelf col-
crowave records, we find a higher degree of agreement (9 %@Pses. Both were the consequence of a suite of physical sur-
relative difference) for the melting index using the wavelet- face processes as well as ocean—ice-shelf interaction mecha-

based approach than threshold-based methods (11 % relatiVSms, but with surface melting likely playing a key role. In-
difference). deed, the formation of meltwater ponds on the surface of the

ice shelves caused by the accumulation of runoff might have
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26 N. Steiner and M. Tedesco: A wavelet melt detection algorithm

contributed to the process of disintegration through hydro-snowmelt detection (Joshi et al., 2001; Liu et al., 2005; Wang
fracturing (e.g., MacAyeal et al., 2003; Scambos et al., 2009)and Yu, 2011). These approaches are dynamic in that they are
Instability caused by ice-shelf loss has been shown to inbased on the magnitude of relative change within each indi-
crease observed ice flow velocity in related glacial tributariesvidual time series. A dynamic approach assumes that large
(Rignot et al., 2004; Scambos et al., 2004; Rott et al., 2011)changes in the microwave region are associated with melting
Melting also drives firn densification and compaction (Hol- events so that “edges” are created in the backscattering time
land et al., 2011). series. These edges can be identified and used to estimate
Direct measurements of melting are not available from inthe timing of melting events. Edge-detection algorithms of
situ data. Additionally, quantities necessary to fully solve this type have been developed using derivative-of-Gaussian,
the surface energy balance are often unavailable. Thereforde.g., Joshi et al., 2001) or multiscale wavelet edge detection
surface melting is generally estimated from near-surface ai(Liu et al., 2005).
temperature measurements performed by automatic weather Building on previous dynamic melt detection approaches
stations (AWS) when and where available. Such measurefJoshi et al., 2001; Liu et al., 2005), we introduce a wavelet-
ments are sparse over Antarctica and mostly performedased melt detection algorithm based on multiscale analysis
around coastal areas and at low elevations. Moreover, dataf wavelet transforms to identify melting events using sin-
measured from AWS represent only local conditions and aregularity detection (Mallat and Hwang, 1992). Such method
difficult to extrapolate or estimate melting with at large spa- identifies points of substantial transition in backscatter time
tial scales without adding biases or increasing uncertainty. series using no a priori information. In addition to this, a
Active and passive microwave spaceborne instruments aremeasure of the signal regularity at the point of transition can
used to monitor melting over snow-covered areas due to thelassify the transition “type”, which allows the separation of
insensitivity to atmospheric and illumination conditions and persistent melting events (melting lasting continuously for a
high sensitivity to liquid water (e.g., Abdalati and Steffen, certain number of days) from transient or sporadic melting
2001; Ashcraft and Long, 2006; Liu et al., 2005; Mote et events. Besides the wavelet-based approach, we also consider
al., 1993; Nghiem et al., 2001, 2007; Steffen et al., 2004;a fixed-threshold algorithm-derived melting record from the
Tedesco et al., 2007; Torinesi et al., 2003; Wang et al., 2008)same data set. This fixed-threshold record is to evaluate the
For vegetation-free snow-covered areas, the volume scattevavelet-based method where alternative validation data, such
component will be dominant for radar backscatter measureas in situ weather-station measurements, are not available.
ments at Ku-band frequencies (Ulaby et al., 1982). BackscatThe fixed-threshold method is performed as in Ashcraft and
ter loss due to the presence of liquid water in snow duringLong (2006) and Barrand et al. (2013). All results of the
melting is responsible for a rapid and considerable decreaseurrent dynamic algorithm are shown relative to this fixed-
in the Ku-band normalized microwave backscaiét, with threshold algorithm approach.
respect to dry snow conditions. This is because of the in- We apply these two melt detection algorithms to an en-
creased imaginary component in the bulk complex dielectrichanced spatial resolution QuikSCAT (Ku band) scatterom-
constant of wet snow relative to dry snow (e.g., Ngheim et al.,eter data set distributed by the Microwave Earth Remote
2001; Stiles and Ulaby, 1980). This same emissivity changeSensing (MERS) Laboratory with an effective resolution of
will create near-blackbody emission characteristics for wet5km gridded to 2.225km (Early and Long, 2001; Spencer
snowpacks leading to a marked increase in brightness tenmet al., 2000). The enhanced spatial resolution allows for
peratures (Ulaby et al., 1982; Stiles and Ulaby, 1980). the discrimination of melting patterns at sub-ice-shelf res-
Various melt detection algorithms have been developedlution and resolves melting patterns and trends that are
and applied to active microwave time series to estimate seanot apparent in coarse-spatial-resolution products. High-
sonal melt. Often, a threshold value of absolute magnitudeesolution data sets are ideal for the Antarctic Peninsula,
signal change either constant or regionally variable is usedh region of high elevation contrast where the coarse reso-
to detect melt-related changes. (e.g., Ashcraft and Longlution of some microwave observations may underestimate
2006; Trusel et al., 2012; Wang et al., 2008; Zwally and melt due to a large sub-pixel elevation gradient. We fo-
Fiegles, 1994). Generally, this threshold value is chosen as aous on melt onset date, melt-off date, melt extent and melt
approximation of the expected microwave response duringluration for the whole Antarctic continent. Results from
snowmelt with respect to a baseline referring to wintertime both dynamic wavelet-based and fixed-threshold approaches
dry snow conditions (e.g., Ashcraft and Long, 2006). We re-applied to the enhanced-resolution QuikSCAT data record
fer to all methods that consider a constant value thresholdire also compared with those obtained from spaceborne
in the following as fixed-threshold approaches. In contrast,microwave brightness temperatures from the Special Sen-
approaches employing physically based temporally or spasor Microwave/lmager (SSM/I) and melt estimates obtained
tially variable threshold values will be referred to as dynamic from the analysis of surface air-temperature values recorded
threshold approaches (Mote and Anderson, 1995; Tedescdyy automated weather stations.
2009). Algorithms that rely on the intrinsic properties of a
measurement within time series have also been applied to
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2 Methodology backscattery °(r) is defined by the convolution product

. - +oo 1 t—u
Ageneral overview of wavelets and the specific methodologyyy ;0 (,, 5) = / o0(r) dt = (w:fao) w), (1)
applied here is presented in Sect. 2.1. This is followed by a —00 NG s ‘

more detailed discussion of the mathematics and examples %herelp is the wavelet functiony is the translation param-
wavglet melt detection m_Sect. 2.2, An OVerview of the_ PIO” eter,s is the scaling factor antlis the convolution operator
cessing steps and operation of the melt detection algorithm '?Mallat 1999). The analyzing wavelet;, is a real-valued

presented in Sect. 2.3. localized zero-mean function with a vanishing integral (e.g.,
the integral ofys is zero) (Mallat, 1999; Holschneider, 1995).
The analyzing wavelet function used in this study is defined

. . . . using the first derivative of a Gaussian function:
The duration of seasonal melting over Antarctica is esti-

mated by means of a wavelet analysis. A wavelet transform L d70@)
unfolds a one-dimensional time series @? into a two- ®)=(=1 Tdim @
dimensional power spectrum of position and scale (i.e., in-
verse frequency). The wavelet transform can evaluate Iocalgnd
ized variability of a backscatter time series using a series of 1 2
convolutions with a dilating and translating wave-like func- (1) = N exp(—E)
tion (Daubechies, 1992). In this study, we use the wavelet d
transform as a differential operator, in that it is able to ap-with ordern = 1 (Mallat, 1999).
proximate the derivative of a smoothed data series at each A wavelet function with a Gaussian base is necessary to
time location. Melting and refreezing events will cause largeensure that wavelet coefficient maxima will be continuous
variations ino? and therefore appear as local maxima or min- from large to small scales (Mallat, 1999). This allows for
ima in the wavelet transform. the tracing and association of wavelet maxima across scales,
Many studies in the natural sciences have used the wavelet process that is key for multiscale analysis. As an exam-
transform to detect changes in one-dimensional time serieqple, a microwave backscattering time series recorded over
for example the detection of tropical convection anomaliesthe Larsen Ice Shelf AWS during the 2006—2007 season is
(Weng and Lau, 1994) and geomagnetic jerks (Alexandrescylotted in Fig. 1a, with the corresponding CWT plotted in
et al., 1995). Wavelet analysis methods have also been ag=ig. 1b. The magnitude of local maxima or minimaV°
plied to snowmelt detection: specifically, Liu et al. (2005) (black and white areas, respectively) are correlated with the
apply a wavelet-based methodology to identify large changesnagnitude of backscatter change (Liu et al., 2005). This is
in measured brightness temperature values associated wittkpected ag is equivalent to the first derivative of a smooth-
melting events over Antarctica. ing function as indicated in Egs. (2) and (3). In Fig. 1b the
We apply an approach similar to Liu et al. (2005), but with conical field of negativeWo? intercepts the scale axis at
several key differences. First, we apply this approach to acits narrowest width at a position & 185) coincident with
tive microwave (Ku band, 13.4 GHz) measurements. Addi-a ~20dB decrease ia® over several days. Fields of ele-
tionally, we use no a priori information, such as statistical vatedW o in a CWT, or “cones of influence” (Mallat, 1999),
or physically based thresholding of wavelet coefficients, forare located where the data in the time series (or its deriva-
any of the pixel locations. Melt and refreezing events aretive) behave as a discontinuous function (Mallat and Hwang,
both identified and classified in the framework of singular- 1992; Holschneider, 1995; Mallat, 1999). Melting or refreez-
ity detection as introduced Mallat and Hwang (1992). Con-ing events therefore create cones of influences that will con-
tinuous wavelet transforms are used to detect melting eventgerge at fine scales to the position of signal discontinuity
that appear as discontinuous events in the backscatter tim@allat and Hwang, 1992; Mallat, 1999; Liu et al., 2005).
series and to eliminate those melting events that are deteM/e refer to these positions as singularities (e.g., Mallat and
mined to be sporadic in time using multiscale analysis (Mal-Hwang, 1992).
lat and Hwang, 1992; Mallat, 1999; Alexandrescu, 1995). The values contained in a cone of influence compose the
This methodology is novel, and to our knowledge, it is the scalar components (the signal change relative to the temporal
first time that such an approach has been applied to remotscale) of that transition and are used in multiscale analysis.

2.1 Melt detection using wavelets

®3)

sensing of snow and ice. We define the set of all CWT coefficient maxima along the
“ridge” of the maxima cone as the wavelet transform modu-
2.2 Continuous wavelet transform and lus maxima line (WTMML) for each singularity. These po-
multiscale analysis sitions are found wheres(su)Wo°(u,s) = 0 and are con-

nected across adjacent scales from large duration to small
The continuous wavelet transform (CWT) of the seasonal(Hermann, 2001; Mallat, 1999; Mallat and Hwang, 1992;
(June of one year through May of the successive yearAlexandrescu, 1995). The CWT, although redundant in its
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0 e the coefficientA are determined using a linear least-squares
o 10 1 regression.
o 20 ‘ Each WTMML can be then classified layusing several
. (@ | theoretical transition types whogevalue is known. For ex-
07-01-06 10:01-06 01-01-07 04-01-07 ample, a step-like or Heaviside function will result in a near
time [mm-dd-yy]

Oa (Le Gonidec et al., 2002), while a ramp-like or smoothed
transition has: of 1 or greater (Mallat, 1999; Le Gonidec

et al., 2002). For wet snow detection, we assume melt onset
transitions (e.g., similar toe = 185 in Fig. 1b) can be approx-
imated by either a step-like or smoothed transition. Here the
corresponding value af is a; = 0.27. Due to the complex
nature of a time series,values determined by Eq. (5) are not
expected to match the theoretical case since nearby singular-
ities will have contributions to the WTMML (i.e., cones of

i . i P influence will overlap if transitions are close in time) (Mallat,
log(s) log(s) 1999). In Fig. 1a we observe a more gradual (smoothé&d)
transition, coincident with a refreezing event neat 250,

a =~ 0.27; a,~ 0.4

oy = -0.27;0,~-0.5

Fig. 1. (a)QuikSCATa0 time series with the melt duration (MD)

estimated using the CWT method shaded in gfieyThe CWT of the r?kthﬁkdeterrm|ned”rkegt1rlar|;|t1{yt2i(=n 0.\‘/1v,il::lgr. Z(ch). neqativ
the time series in Fig. 1a, where dark-grey to black values indicate >P'<€7!IK€ O CUSp-like transitions produce negative

positive Wo© and light-grey to white values negativéo?. WT- a in multisc_ale analysis (Le G_onidec et al., 2_002; Mallgt,
MMLs are indicated as black, green or red lines associated with1999). In Fig. 1a, @ ° fluctuation, corresponding to posi-
melt onset (MO, WTMML 1) melt refreeze (MF, WTMML 2) and tion u = 140 in Fig. 1b illustrates a transition that is spo-
sporadic, early season melt (WTMML 3, WTMML 4%) The W © radic in time. This transition produces two WTMMLs, shown
along WTMML plotted over all scaless), and the associatedfor in Fig. 1d, labeled 3 and 4, having negative and positive
the MO and MF eventgd) Same as Fig. 1c but for an early season Wo? components, respectively. From Eq. (2) it is deter-
sporadic melting. mined that both can be approximated with negativ@lues
(a3 =~ —0.27,a4 =~ —0.4). Negativeu values associated

frequency or scale representation of any signal, is neceswith a_WTMI\/_IL indicate the sig_nal is both discontinuous and

N . g T non-differentiable at that position, heke= 140 (Mallat and
:Zelzl ?Pg’;gﬁ:ﬁi?grﬁ; ;T%Si’gc?gtsel t'(;)yn; diiéﬁ;gizlg CEinHwang, 1992). In terms of melt detection, by removing all
et al., 2005). Additionally, tracing CWT maxima to the finest egatives transitions, we eliminate sporadic changes that

¢ | | th te localizati f melti return to “dry” conditions rapidly relative to the reference
emporal scale ensures the accurate localization of meting . “1his creates a melt detection process that eliminates
events as these positions will be shifted with increasing scal

e . .
. S $poradic melting events.
as'l?r:”d\?\?'lt'al\ill_g: 131 d 1o ch terize th ¢ ¢ For locations that do not experience melting events,
50 chiinge at ea<l:?1 sir?gutjasriy uc;iggar:]iﬁti?sgzlee ar?a?;?siir?e% changes in backscatter associated with snow properties
: J'th fl itud dtoch in liquid
Mallat and Zhong, 1992; Le Gondidec et al., 2002). The anges are of low magnitlce comparea to changes in iqul

X S o . water content, but produce positigeén multiscale analysis.
WTMMLSs for several singularities im_ are highlighted in To reduce the influence of falsely classified melting events,

Fig. 12 qnd are _Iabgled L 'Fhrough 4. Th? apparent regularityove set a minimum threshold for f|at each temporal scale
of a " time series in the immediate neighborhood of eachalong the WTMML corresponding to one order of magni-

singularity can be estimated from the wavelet coefficient val-tuole (10x) greater than that observed during winter (June,
ues that compose each WTMML (e.g., Mallat, 1999). TheJuly and August). This is a conservative threshold and this

Htoiﬂerte;(rg?nnetir:a’ IS % r::ee;sure hOfV\(/e;t\'ATﬂaLte?wr?Ith"agg choice does not appear to influence classification for areas
at the te ating position ot eac (Mallat a experiencing melt.

Zhong, 1992). An estimate of is found as (Mallat, 1999)
2.3 Melt detection process

0 a
‘WU (,5)| = Ae “) The WTMMLs from each backscattering time series are eval-
so that uated as a possible melting event according to the following
criteria:

|n)WUO(u,s)‘§a|n a+InA. (5)

1. The WTMML must have a scale component that ex-
Here, W<r°| correspond to the wavelet coefficients that com- tends above a set minimum scale. Signal noise and
pose the WTMML. Using Eq. (4) and Eq. (5),as well as noisy transition in backscatter produce WTMMLs
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only at small scales (i.e., high frequency). We set thethan three continuous days are removed from the melting

minimum scale at2 We observed that using a scale of record at each pixel following Tedesco et al. (2007).

23 similar to Liu et al. (2005) could not eliminate all For our study, we use a MATLAB wavelet analysis soft-

noisy transitions during the melting season. This in- ware library (WaveLab 850) distributed by Stanford Univer-

creased minimum scale relative to previous studies issity and available ahttp://statweb.stanford.edu/~wavelab/

expected since the enhanced-resolution remote sensingecause of the computationally intensive nature of the prob-

product used in this study is noisier than the coarserem and of the high number of pixels necessary to cover the

resolution one (Ashcraft and Long, 2006; Spencer etentire Antarctic continent at the spatial resolution considered

al., 2000). here (2.225 km), we also made use of the MATLAB’s parallel

computing toolbox, running on a dedicated server using eight

2. All |Wo 0| along the WTMML must have a value one processing cores. In this configuration, one continent-scale

order of magnitude (1&) greater than those mea- melting season requires between 24 and 48 h of processing.

sured during the winter season. For areas experienc-

ing melt, this condition does not have a large effect,

since WO produced at all scales fora3dB transi- S Datasets

tion in backscatter is many orders of magnitude greater,

than observed wintertime conditions. However, areas?"1 Seawinds on QUIkSCAT

that experience snow property changes but no seagppanced spatial resolution melting maps (gridded at
sonal melt W'"_ produce WTMMLs with large _scalar 2.225km) are derived from the enhanced-resolution Sea-
components since these changes are not “noisy” raNyyings  (commonly referred to by the satellite name
sitions and are temporally sustained. Since changeg, ixscAT) scatterometer data set distributed by MERS at
in LWC produce greater differences in backscattering Brigham Young Universitytfttp://www.mers.byu.edy/ The
values compared to snow property changes over a rélge,\winds instrument is a conically scanning pencil-beam-
atively short period (Stiles and Ulaby, 1980), we Set yiq scatterometer that records normalized radar cross-
the threshold with the || values of a WTMML, at  soction measurements in the Ku band (13.4 GHz). This in-
all spatial scales, with a value an order of magnitude g, ment records both horizontal and vertical polarizations
(10x) greater than observed wintertime conditions. 4 5 fixed incidence angle of #or horizontal polarizations
and 54.2 for vertical polarizations (Long and Hicks, 2000).
3. The Holder exponent, of each WTMML mu;t be The effective~ 7 kmx 30km instantaneous field of view
gqual to or greater .than ZEro. Eor reasons .dlscussegf the QuikSCAT range-Doppler-processed “slice” product
n _the previous section, we eliminate s_plke-_llke t_ran- (Spencer et al., 2000) is enhanced through a scatterometer
sitions n backscatter using a test of point-wise Slgnalimage reconstruction algorithm (SIR) developed at BYU. By
regularity. combining multiple observations that are weighTed within
with the senor’s antenna function, the SIR algorithm can re-

All signal transitions that meet the three criteria above are.,er information attenuated at the antenna side lobe, thereby

considered to be either melt onset or refreeze events. To destectively increasing the spatial resolution of the standard
fine periods of melt we select the WTMM;‘t?hat extends 10 goatterometer product (Early and Long, 2001). This resolu-
the largest scales that has the greatest m&art|. Thistran- oy enhancement is done at the expense of increased signal

g . . O .
sition is matched with a WTMML greatest meail¢"| in - poise |n view of the strong change in measured backscatter
the set of transitions of opposite magnitude. This defines ONgsllowing snowmelt, the increase in signal noise does not af-
seasonal melting event. We assume that refreeze must folloyg ot melt detection considerably, hence allowing for the gen-
melting. This process is repeated with the remaining melt-g a4ion of a surface-melting product at a gridded spatial reso-
related WTMMLs to define additional periods of melting or | tion of 2.225 km (Trusel et al., 2012; Barrand et al., 2013).

periods of sustained refreeze within melting. The melt onsey, 5qgition, the CWT method is well suited for noisy data sets
(MO) is defined as the first day of melting, and melt-off (MF) gjnce high-frequency, noisy transitions in backscatter are not

is defined as the last m.eltir?g day plus one. The melt duratior]ike|y to create a WTMML that extends to large scales (e.g.,
(MD) at any pixel location is the total number of days when | ;, at al., 2005) and those that do will decreaséfiwf| with

melting occurs. increasing scale, leading to negative Holder exponents and

A fixed-threshold melting record is created for compari- 5 hsequently being removed in the melt detection methodol-
son, hereafter referred to as FT3. In the FT3 record, melt-

ing is classified as where the enhanced-resolutibft) is oo
at or below 3dB minus winter (June—July—August) mean
backscatter, equivalent to the expected backscatter loss from

a 2.8 cm layer of 1 % volumetric water content as in Ashcraft

and Long (2006). Melting events whose durations are shorter

www.the-cryosphere.net/8/25/2014/ The Cryosphere, 8, 283; 2014


http://statweb.stanford.edu/~wavelab/
http://www.mers.byu.edu/

30 N. Steiner and M. Tedesco: A wavelet melt detection algorithm

3.2 Automated weather stations the lack of in situ liquid water content or snow temperature
measurements, melt is estimated from AWS air temperatures
Automated weather station data from the Antarctic Meteo-where the temperature is above zero for at least six hours
rological Research Center and Automatic Weather Statiorper day. The time series of coregistered backscattering, air
program, maintained by the Space Science and Engineetemperature and positive temperatures for the stations con-
ing Center at the University of Wisconsin, Madison, are usedsidered in this study are plotted in Fig. 2. We evaluate the
to evaluate the results of the melt detection algorithms. Foragreement, commission and omission in percentage at each
our comparison, we use the hand-corrected 3-hourly air temstation, and the results are presented in Table 1. Agreement is
perature records. The AWS used in this study are Larsenlefined as the percentage of cases where surface temperature
Ice Shelf (lat. 67.01S, long. 61.55W, elev. 17 m), Uranusand spaceborne-based estimates both detect melting. Com-
Glacier (lat. 71.43S, long. 68.93W, elev: 780 m), Fossil mission is defined as the percentage of cases in which re-
Bluff (lat. 71.33 S, long. 68.28 W, elev. 63 m), Butler Island mote sensing algorithms indicate melting but AWS does not.
(lat. 72.21S, long. 60.17 W, elev. 91 m), Pegasus South (latLastly, omission indicates the percentage of cases in which
77.998S, long. 166.57 E, elev. 5m) and Limbert (lat. 75.91 S, AWS suggests melting but the remote sensing algorithms do
long. 59.26 W, elev. 40 m). For each AWS, air-temperaturenot.
measurements and backscatter are spatially and temporally For stations that experience at least 10 days of melt per
coregistered using overpass times available from MERSyear (Butler Island, Fossil Bluff and Larsen Ice Shelf sta-
SCP. Melting is determined from AWS air-temperature mea-tions), we find the highest rates of agreement. For these
surements where there are at least 2-3 h daily above-zerstations the FT3 approach performs with more agreement
measurements. For Antarctica, extreme fluctuations in daily(~ 10 %) than the CWT approach. The Larsen Ice Shelf and
temperature often prevent the daily mean temperature fronfossil Bluff stations show the highest overall agreement, av-
exceeding OC, though satellites observations indicate thateraging 87 % (77 %) and 75% (66 %) for the FT3 (CWT)
melting is likely taking place. A threshold belowQ is of- approach for all years. Both of these stations have large mag-
ten used to account for this fact (Tedesco and Monaghampitude and sustained change in backscatter over the melting
2009; Van den Broeke et al., 2010), or in those cases whergeason (Fig. 2a and b). For the Limbert, Butler Island and
additional measurements are available, such as surface shot#ranus Glacier stations, shown in Fig. 2c, d and e, respec-
wave and long-wave radiative fluxes, melting may be de-tively, the difference in agreement for the FT3 and CWT
termined using a simple thermodynamic model (Van denmethods is greater, up to 43 % (FT3>CWT) between meth-
Broeke, 2005). From the lack of a defined sub-zero threshods. At these stations, most of the melting occurs as short-
old for each AWS station, as well as of sufficient surface duration events. This is not the case during the 2002—-2003
measurements for modeling approaches, we choose a terand 2003—2004 seasons for the Limbert and Uranus Glacier
poral threshold of at least six hours of above-zero measurestations, respectively, where the backscattering time series
ments in one day to establish melting conditions from AWS shows a substantial decrease in backscatter. In this case both
measurements and acknowledge that is a source of unceremote sensing methods are in good agreement with AWS
tainty in the AWS validation data set. This is equivalent to estimates. Figure 2a and b show that most of the difference
at least two daily above-zero measurements for the 3 h AWSetween methods at these stations occurs during transitional
air temperature data set. Once melt is estimated from AWSeriods, meaning near the seasonal MO or MF. For the Pe-
data, we study the number of days when the remote-sensingsasus South station, the CWT method is in better agreement
and air-temperature-based estimates agree (true positive); theith AWS compared to FT3, with a 10 % greater mean agree-
omission error, computed as the percentage of days when ainent. At the Pegasus South station the apparent backscat-
temperature indicates melting but the remote sensing-base@r response to melting, as shown in Fig. 2f, is below de-
approach does not (true negative); and the commission, contection by the FT3. Additionally, the Pegasus South station
puted as the percentage of days when the satellite data indhas the highest mean air temperature during melting condi-
cate melting but this is not occurring from the analysis of air tions among these stations-a2.16°C and a mean loss of
temperature (false positive). +1.86 dB (from winter mean) during AWS defined melting.
Only the Uranus Glacier station has a smaller backscatter
change;+1.80dB, with an average temperaturetd.79°C

4 Results during melting. In contrast, the Larsen Ice Shelf averages a
loss 0f+15.07 dB with a mean temperature+1.06°C dur-
4.1 Comparison between QuikSCAT-derived melting ing AWS-defined melting.
and analysis of automated weather stations Omission errors for all stations show an average of 12 %

fewer false positives for the FT3 compared to the CWT. For
Results of the FT3 and dynamic wavelet-based (CWT) apthe Limbert AWS shown in Fig. 2e the CWT method has
proaches are compared with estimates of melting deriveca maximum mean omission error of 83 %, compared to the
from surface air temperatures measured by AWS. Because dfT3 at 40%. The Limbert station has a short melting season,
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Table 1. Stations used in the AWS evaluation. Shown are the agreement (true positive), omission (false positive) and commission (true
negative) relative differences from the comparison of melting estimated from AWS air temperatures and melt duration (MD) time series
estimated using the FT3 and CWT melt algorithms.

Agreement Omission Error Commission Error
AWS Station Name FT3 CWT FT3 CWT FT3 CWT
Butler Island 50 %(92184) 30% (5%3184) 50% (92184)  70% (129184) 2% (592708)  21% (382708)
Fossil Bluff 75% (123164) 66 % (109164) 25% (4)164) 34 % (5%164) 10% (93923) 10 % (89923)
Larsen Ice Shelf 87% (4Y877) 77 % (368477) 13% (64477)  23% (111477) 10% (2882771) 9% (2382771)
Limbert 60 % (2%35) 17 %(§'35) 409%(1435) 839%(2935) 09%(7/3225) 09%(53225)
Pegasus South 38 % (AE21) 48% (58121) 62 % (73121) 52 % (63121) 1% (142421) 1% (282421)
Uranus Glacier 36 % (57.60) 17% (27160) 64 % (103160) 83 % (133160) 1% (1¥1641) 0% (31641
Total 66 % (7521141) 54% (6211141) 34% (3891141) 46% (5201141) 3% (46713689) 3% (40113689)
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Fig. 2. AWS temperature records f¢a) Larsen Ice Shelib), Fossil Bluff,(c), Uranus Glaciend) Butler Island(e) Limbert and(f) Pegasus
South for 2000 to 2009 plotted with the corresponding QuikSCAT backscattering values. Times where the FT3 or CWT approaches estimate
melting are shaded red and blue, respectively, while times where both methods agree are shaded grey.

averaging close to 4daysykin length from AWS-derived  rors are found to be small for both methods, averaging 3 %

melting. The majority of these melting events are omittedfor all stations for both the FT3 and CWT, respectively.

using the CWT. Conversely, the FT3 approach detects these

events with relatively high agreement (83 %). These findings4.2 Comparison between QuikSCAT melting

are consistent with the basic principles of the CWT algo- algorithms

rithm, which aims to detect only sustained melting events.

For the Larsen Ice Shelf, we find the lowest rate of omission,The mean continent-scale seasonal (2000 through 2009) MD

averaging 34 % (25 %) for the CWT (FT3). Commission er- js shown in Fig. 3a and b for the FT3 and CWT approach, re-
spectively. Figure 3c shows a map of the difference between
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Fig. 3. (@)A map of mean (2000 through 2009) seasonal melt duration estimated from the SeaWinds sensor on QuikSCAT using a 3 dB below
winter mean threshold (FT38p) and a continuous wavelet-based method (CW@))The difference between mean MD from both methods is
indicated asAMD (FT3-CWT). The location of the Antarctic Peninsula (AP) and Dronning Maud Land (D) are laljd)esltocorrelation

analysis using a log-transformed two-axis histogram, where mean MD is compared for all areas where melt is detected by both methods.

MD approaches whera MD=MD g13—MDcwt. Although subject to at least one day of melting per season, is found to
the spatial patterns of MD from the two methods are simi-be 6.23 % when using the CWT finds and 8.14 % from the

lar, systematic differences exists regionally and with eleva-FT3.

tion change. Results are presented and discussed in the con-The average MO, expressed as day of year, determined
text of Antarctica as a whole, specific regions and trends inby the CWT approach is day 347 (e.g., 13 December for

AMD with elevation. non-leap years) and in the case of the FT3 algorithm is
_ day 352. The mean MF date for the whole of Antarctica be-
4.2.1 Continent-scale results tween methods differs by 6 days, with the FT3 suggesting a

) later refreezing (day 28) than the CWT approach (day 22).
For all areas and years, the CWT algorithm prqduces_ an avthe difference (5 days MO and 6 days MF) between the
erage MD value of 41 days vs. 28 days obtained with theseasonal MO and MF obtained with the two approaches
FT3 algorithm. The mean continent-scale melt index (M), is small compared to the standard deviation f either
defined as the area subject to melting times the numbeethod, beingrers = 26 days andewr = 16 days for MO
of melting days, for the two methods is similar although 5nqs1; =28 days andcwr = 17 in MF over all locations
larger for the CWT at 2.97% 10" day kn than the FT3 at  and years

7 i ' . .

2.813x 10’ day kn?. The M detected by the CWT is larger The 10yr mean MD value per grid cell over Antarctica ob-
than the FT3 because melting events detected by the CWigineq with the FT3 method is plotted vs. the CWT method
are continuous and do not contain short-duration intermittent yr mean MD in Fig. 3d. Results of a linear least-squares
non-melting classifications as in the FT3 melting records.regression and correlation analysis show that the results
This is also a factor in MD differences; however, the dif- 5¢ the two algorithms are highly correlated £ .897, p <
ference in MD can also be explained by the omission 0f0.001) with a root-mean-squared error (RMSE)08 days.
smaller duration melting events by the CWT as shown in air-The C\WT method finds a lesser MD than the ET3 approach
temperature comparisons at the Butler Island, Uranus Glaci€gyer areas that experience a melting season shorter than the

and Limbert AWS. The inclusion of short-duration events in aan value of 34 days of both methods. The opposite is true
the FT3 record will greatly reduce the mean MD. The total

melting extent, defined as the total surface area of Antarctica
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. ntarcic Mean Mt Duraton, 1999-2009 Emprical Cumulatve Distrbution Functon light of a visible difference in MD over large ice shelves can

--------- ow be attributed to the greater melting extent found by the FT3,
compared to the CWT, over areas experiencing short melting
durations. The melting index over the Antarctic Peninsula is
8.3 % larger for the FT3 than the CWT (the relative differ-
ence is defined a1 1 — |v||2|/% (M1 + MI5)).

When observing the seasonal melt initiation over the

Antarctic Peninsula, we find that the mean MO date from
the FT3 to be day 1 (e.g., 1 January) and the mean MO
for the CWT is day 342. The MF dates for the CWT and
FT3 over the peninsula are day 46 and day 33, respectively.
The FT3 approach estimates a substantially longer (22 days)
mean melting season for the Antarctic Peninsula compared to

L — L the CWT and most of this difference is due to the estimates
melt duration [days] melt duration [days] of MO.

: . .. Ananalysis of selected backscattering time series during
Fig. 4. (a) A histogram of all observed seasonal melt duration in h i | ith . IV i d i
days for the years 2000 through 2009 for the wavelet-based mel_[ e melting season a opg with regionally integrated melting
detection method (CWT) and a fixed-threshold method (FT3). It is'S Presented to show difference between the CWT and FT3
found that the observations for the CWT are shifted towards longer@lgorithms. For the Antarctic Peninsula during the 2004
durations due to the exclusion of short-duration melting events.2005 melting season, FT3 values (Fig. 5a, solid grey line)
(b) An empirical cumulative density function of observed melting exhibit an early season (November, 2004) peak in ME reach-
duration. ing an extent of up te~ 80 % of the yearly maximum for a

period of ~ 8 days. This transient melting event is not ob-
served in the time series of melting extent from the CWT
for MD greater than 34 days, where the CWT method showsapproach as melt (Fig. 5a, dotted black line). A time series
longer melt durations. of backscatter from within the region and over this same pe-
An analysis of the distribution of melt-duration occur- riod is shown in Fig. 5c. Melting is indicated by a shaded
rences, as shown in Fig. 4a, shows that the CWT algorithmyegion for the CWT method, and by the location of the 3dB
finds more longer MDs relative to the FT3 and that the FT3threshold for the FT3 approach in Fig. 5c, we observe that
is much more likely to detect short-duration events. Closethe CWT excludes several melting events at the beginning
to 5% of MD values found by the FT3 are 10 days or Iess, of the season (outside of the shaded area) that correspond
Wh||e f0r the CWT method th|S accounts for Iess thal’l 1% Ofto the |arge increase in region_wide me'“ng extent as Shown
all detected melting events (Fig. 4b). The inclusion of short-by the FT3 (Fig. 5a). This omission by the CWT here is
duration melting events using a fixed threshold leads to derepresentative of the differences in melting extent observed
creased mean MD value. The majority (>50 %) of MDs for regionally. Much of difference between methods over the

the FT3 method are under 27 days, compared to a 37-dapeninsula can be attributed to non-sustained short-term melt-
MD for the CWT method. Both methods show better agree-jng/refreezing events, as shown in Fig. 5a, before and after

ment for longer MD, where about 20 % of all MDs for both the period when most of the melting occurs. Additionally, it

0.035

0.03

0.015

observational frequency (norm.)
o
o
S

o
2

0.0051 §

methods are 60 days or longer. is clear that the MO date for most of the Antarctic Peninsula
) determined using the FT3 approach (defined as the first melt-
4.2.2 Regional results ing event greater than three days) will correspond to the brief

. o . . November melting event that, as shown in Fig. 5a, may be
Detailed results are presented in this section for the Antarctic,., o a1 \weeks prior to the main melting events. The omis-

Pﬁninsqlasndéhe (_:rc;]astal area of Dronr;]ing M"EUd Land (ha§ions of melting events during transitional periods by the
shown In Fg. ). | 1ES€ Tegions are cnosen because NEXWT method is also indicated in the AWS validation of the
exhibit the largest differences n regionally integratehlD Butler Island, Limbert and Uranus Glacier AWS records.

or season length between algorithms. The maximum in absolut&AMD between the FT3 and

Over_the Antarctic Peninsula, seasonal_ mean MD VaI'CWT method (Fig. 3c) is observed over areas of east Antarc-
ues estimated by the CWT and FT3 are similar. The meani.o near the Donning Maud Land. HerMD averages

g/llD dvaluef obtair?e('j:_frrg m the CVr\:TTe;]pproach Iisd'55 %ay.s an?—ZS days. This difference can be attributed to both differ-
ays from the approach. The spatial distribution oty o i the in mean season length (defined as the contin-

A.MD values obtained with the two approaches (Fig. 3c) in- uous period between MO and MF) and the time that melt-
dicates that the CWT shows generally larger MD values over,

the | hel  the Antarctic Peninsula than th biai ing is sustained through a season. Differences in mean sea-
€ Ice shelves ot the Antarclic Feninsula than tnose obtained, , 5| length account for onky 14 % of the observed MD
with the FT3 approach. The similarity in mean MD in the
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Fig. 5. (a)A time series of total integrated melt extent for 2004—2005 estimated using the FT3 and CWT methods over the Antarctic Peninsula
(Section P) andb) during the 2001-2002 melting season for Dronning Maud Land (Section M). Backscattering time series are plotted for
(c) a representative pixel location for the Antarctic Peninsula during the 2004—-2005 austral sumifiinodining Maud Land during the
2001-2002 austral summer to illustrate the results of melt classification by of CWT (shaded) and FT3 methods (threshold indicated).

1 are difficult to validate without further information and are

90% a weakness of fixed-threshold algorithms in varying snow
08 property and temperature regimes. In the CWT methodology,
sustained deviations from wintertime conditions will be de-
tected and classified as melt until an additional refreeze tran-
sition occurs, regardless of intermittent non-sustained (nega-
o tive a) fluctuations in backscatter.
A time series of ME ana° for Dronning Maud Land
0 = are shown in Fig. 5b and d. Here, the CWT method finds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
duration [days] a greater regionally integrated MI with respect to the FT3

) N - ) ) method. A time series of® chosen from within Dronning
Fig. 6. The empirical probability density function (bar) and cumu- Maud Land, as in Fig. 5c. This backscatter series indicates

lative density function (Ime). of continuous melting 'perlods persea-. -+ the FT3 method will classify multiple melt-refreeze
son observed over Antarctica (not the total per-pixel seasonal dif-

0 .
ference) for the 2003-2004 and 2005-2006 season that are foun%ve_mS asy Chaf‘ges rapldly_ around the threshold_ valge,
using a FT3 but rejected in by CWT. while the CWT will record a single melting event. This will

lead to estimates of a shorter MD by the FT3. It is found
that this case is representative of the majority of regions with

—AMD. Melting events as shown in Fig. 5d will not result in
found between methods. The percentage of melt days Pelonsiderable differences in MO or ME dates.

melting season length (calculated as (MF-MO)/MD) is 65 % An estimate of the average length of MD omitted by the

for the FT3 method and close to 95% for the CWT ap- CWT (i.e., the minimum number of days where the CWT
proach. This important difference can be partly attributedwi” detect melting) is determined empirically from melt-

to threshold values that underestimate the actual backscafﬁg records over the Antarctic Peninsula. Figure 6 shows the

tering response to ir_lcreasing Iiguid water content and as g, mylative sum (lines) and histogram (bars) of the length
result backsgatter with melting is close in magnltude_to theOf melting days obtained from the two approaches over the
to seqsonal N backscatter thres.hold (g.g., 3dB). With S'9°Antarctic Peninsula for two selected years of 2003-2004 and

nal noise, a fixed-threshold algorithm will alternate between,qnc_5606: these seasons are selected as an example of a rel-

cIaSS|f|cat|on3 ohf mbeltlﬂg and r(ar]l‘reerz]elo?sAtl)acksqattler ﬂ,ucétively low and high mean melting index, respectively. It is
tuates around the backscalter threshold. Alternatively, SlmTmportant to note that this is not an analysis of total MD per

ilar fluctuations in backscatter could be attributed to rap'dseason, as shown in Fig. 4, but rather the length of a period

_melt—refree_ze events in areas where the liquid water Comerﬁuring the melting season where FT3 detects any melting
is not sustained through diurnal refreeze cycles. These cases

probability
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Fig. 8. (a) The time series of total melt index (MI), in day Kqrfor
the Antarctic continent plotted for the years 1999 through 2009 de-
rived from the FT3 and CWT methods on an enhanced-resolution
QUIkSCAT active microwave data set along with estimates from the
MTO09 and M+K30 methods and an SSM/I data @) The corre-

200 300 400 500 600 700 800 lation between the FT3, QuikSCAT data set Ml estimates and the
elevation [m] CWT, M+K30 and MT09 methods is indicated using a linear re-
gression.

Fig. 7. An analysis of the difference in melting index
(AMI=MIgT3—MIcwT) estimates from the FT3 and CWT meth-
ods at a range of elevations for the entire Antarctic continent (red
line) as well as the Antarctic Peninsula (black line) and Dronning 4.3 Comparison with results from passive
Maud Land (blue line). microwave measurements

We compare melting records from passive microwave SSM/I

event and CWT does not. During the 2003-2004 season ; ; - ;
. Observations using approaches proposed in the literature
~60% of MD values differ by only one days 20% show with the outputs of both the CWT and FT3 methods.

differences of t.WO days, with the remaining vaIue_s differing The SSM/I-derived melting is produced using two meth-
by more than six days{90 % of observations are six days or ods. The first is a fixed-threshold approach as in Zwally

Iesi,%. -gh's S|xc-jd_aydurf_;1t|on IS slltr_nllar;[o(;he t;amri_orgl flite:mg and Fiegles (1994), here denotedH80K. The second data
methods used in previous metling Studies fo eliminate ran-gq, jq produced using a dynamic electromagnetic modeling-
sient melting events (e.g., three days; Tedesco et al.,

2007)'based detection approach as in Tedesco (2009), here de-
noted MTQ9. Outputs from both methods are projected onto
the 2.225km QuikSCAT grid using nearest-neighbor inter-

Figure 7 shows results concerning the difference betweeolation. Enhanced—resolut!on passive micrc_)wave brightpess
the outputs of the two approaches as a function of eleval€mperatures generated using the SIR algorithm are available
tion for the Antarctic Peninsula, Dronning Maud Land and for Antarctica (Long and Stroeve, 2011). Melting records
the whole of Antarctica. For the Dronning Maud Land re- based on these data would reduce scaling discrepancies be-
gion, the melt index difference between the two methodstWeen the active and passive microwave melt records re-
(AMI = Ml gr3—MIlcwr) is negative, independent of eleva- Ported here and provide a more consistent analysis. This will
tion. For the Antarctic Peninsula, however, the mean differ-Pe explored in further StUd'ES- _

ence between methods is positive, and will vary with eleva- The values of seasonally integrated MI for Antarctica for
tion. For areas below 400 m a.s.I. the CWT method underestiPoth active and passive microwave methods are plotted in
mates MI with respect to the FT3 method. Conversely, above 19- 8a. The M-30K and CWT approaches show the most
400ma.s.l., the Ml difference becomes negative. Buildings'm”ar magnitude in seasonal Ml, where the relative differ-
on our previous analysis in this paper, we infer that for the®nce is 9%. This is only 2% greater than the difference be-
Antarctic Peninsula at lower elevations we find that the melttween the CWT and FT3 methods (7 %). There is a slightly
difference is due to the omission of short-duration melting 9reater relative difference between the FT3 an¢t30K of
events, while at higher elevations we find a that melt de-11%. The MT09 method finds on average a 40 % greater Ml

tection differences are more closely related to either shorfhan the FT3 method, and 359% greater than the CWT.
melt-refreeze cycles at high elevations or a lesser backscat- FOr individual seasons, all methods find a Ml maximum
ter response to snow wetness. This may indicate the need féfuring the 2004-2005 period. The active and passive meth-

terrain correction when using fixed-threshold methods. ods, however, do not agree on the year of minimum MI.
Indeed, both the CWT and FT3 approaches find a mini-

mum MI during the 1999-2000 seasons, while the passive
methods find a minimum during the 2008-2009 melting

4.2.3 Elevation
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season, where most of this difference is from the Antarc-sub-pixel variability due to the difference in spatial resolu-
tic Peninsula. Seasonally integrated melting indices derivedion as previously discussed. In Fig. 9c and d, we see that
using the passive microwave methods are well correlated larger component of the melt data set for the FT3 method
with the QuikSCAT-derived melting records. This relation- falls along the 1 1 line. The CWT method appears to under-
ship is shown in Fig. 8b. The best agreement between activestimate MD as compared to-MBOK, or vice versa. It also
and passive microwave records is found between the CWTappears that the CWT method finds greater MD for shorter
and M+30K, as indicated in Table 2a. Further, both MT09 durations, evident by a cluster of points 0 to 50 MD for CWT
and MH-30K have a greater degree of correlation and a lowerand 0 to 20 days for M30K. This relationship is similar
RMSE for the CWT than compared to the FT3. to observation between active microwave methods. The rel-
The spatial differences between the mean MD estimatedtively strong agreement between active and passive melting
using the M+-30K approach and the CWT and FT3 is shown indices, shown in Fig. 8a, indicates that the high sub-pixel
in Fig. 9a and b, respectively. These maps indicate spavariability is averaged out when integrated over the entire
tial patterns in the magnitude of difference between meth-data set.
0ods AMDg13 =M + 30K-FT3). Over large ice shelves (e.g.,
the Larsen and Amery ice shelvegy,MD pr3 is close to
+10 days (Fig. 9a). Over the same regions, D be- 5 Summary and conclusion
tween the M-30K and the CWT algorithms is close to
+20 days (Fig. 9b). The tendency for the passive microwaveThe use of a combined continuous wavelet transform and
data to overestimate active microwave estimates (close tonultiscale analysis is able to detect changes in the backscat-
410 or +20AMD in most cases) is usually bordered, to tering signal upon an increase in liquid water content. This
some degree, by an area of underestimation by the passiv@ethodology does not require an estimation of the expected
measurements. The majority of areas that exhibit meltingresponse to snowmelt and is therefore applicable to spatially
in Antarctica are generally at ice—ocean boundaries. For theariable snow characteristics and across instrumentation. It
Antarctic Peninsula (among other places) areas of melt occuhas also been found to be effective in the light of increased
adjacent to sharp contrasts in elevation. For many of thessignal noise. Multiscale analysis provides a quantifiable mea-
areas sub-pixel mixing will likely lead to a decrease in the sure of the nature of transitions in backscatter in terms of
observed brightness temperatures of some melting areas. Foelative persistence and rate of transition. This can be used
example, over the coastal regions of Dronning Maud Landin classification. Here we use multiscale analysis to separate
we find that the systematic occurrence of posithidD bor- sporadic from persistent melting events.
dered negativé\MD. These negativ&MDs are found adja- Estimated mean MD derived from the novel wavelet ap-
cent to ocean pixels and high elevations and are likely due tgroach and a more standard fixed-threshold method are very
a sub-pixel mixing effect. In another case, the relatively nar-well correlated,r =.897 (p < 0.001) with an RMSE of
row King George VI (lat—71.965, long—67.807) Ice Shelf, ~9 days. In mean MD, we found that there is as a 19%
located roughly east of Wilkens Ice Shelf (1at67.525, relative difference between methods, and the CWT method
long. —62.775), appears to increase the apparent MD of theaverages 13 days longer MD than the FT3. This difference in
surrounding high-elevation areas for the passive microwaveMD is largely due to the omission of shorter duration melting
case, resulting in a large positiveMD. Since mixed pixel  events, most of which are six days or less.
effects dominate the spatial differences between methods, it Measures of MI from both measures have a 5.5% rela-
is difficult to determine a relationship between MD methods tive difference, the CWT greater than the FT3. Areas where
over similar areas other than the positivel0 days (FT3) the CWT is greater in mean MD are found to have intermit-
and~ 20 days (CWT) reported previously. tent refreezing events or a backscatter response to liquid wa-
An analysis of correlation between colocated melting du-ter content that is close to or below the 3 dB threshold value
rations from active microwave data sets and the-3a0K with signal noise. This is found over much of Dronning Maud
method indicates that the FT3 has a higher degree of correld-and and at high elevations over the Antarctic Peninsula.
tion with the passive microwave M30K method Table 2b. It At a continental scale the mean melting season length
is also found that AMW methods find an RMSEefl8 days  (MF-MO) estimated in both methodologies agrees to within
in comparison with both the M30 and MT09. The rela- two days. On the Antarctic Peninsula, shorter duration melt-
tionship between spatially colocated data records are illusing events during the transitional periods are omitted by the
trated the Fig. 9c and d. A first-order least-squares regres€WT leading to a melt onset 12 days earlier detected by
sion between CWT and M30K shows an- 13-day positive  the FT3 method. This is illustrated during the 2004—2005
bias. There is an- 3-day positive bias between the FT3 and season, where the melt extent reache®0 % of its maxi-
M+30K from similar analysis. Artifacts that appear as ver- mum seasonal value for close to 8 days and the CWT method
tical striping of data points indicate a high degree of vari- does not detect melting over an equivalent extent until sev-
ability for many pixels with similar MD as detected using eral weeks later. The MO found by the CWT is closer in time
the M+30K. These are likely a result of a high degree of to the start of a sustained melting period. The FT3 defines
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Table 2. The correlation«) and the root-mean-squared error (RMSE) between surface melting data $ejséasonally integrated melting
index(b) and spatially coincident mean melting duration.

(@) CWT FT3 MH-30K MT09
CWT r 0.972 (p <0.001) 0.934p < 0.001) 0.931p < 0.001)
RMSE [dayx km?] 1.89x 10° 2.74x 10° 1.56x 107
FT3 - 0.922p=001) 0.911 p =0.002)
RMSE [dayx km?] - 3.10x 100 1.41x 107
(b) CWT FT3 MH-30K MT09
CWT r 0.897 (p <0.001) 0.664 p <0.001) 0.663 p < 0.001)
RMSE [day] 9 19 18
FT3 - 0782 <0.001) 0.672p <0.001)
RMSE [day] - 17 17
AMD » SSM/I (M+30K) — QuikSCAT (FT3) AMD » SSM/I (M+30K) — QuikSCAT (CWT)
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Fig. 9. The difference in average melt duratiocANID=MD s —MD quikscar) over the period of 1999-2009 between the up-sampled
passive microwave SSM/I data set, where melt is estimated using-#30approach, and the enhanced-resolution QuikSCAT scatterome-
ter data set, where melt is estimated using(#)¢-T3 and(b) CWT methods. Per-pixel scatterplots of average melt duration between SSM/I
(M+30K) and theg(c) FT3 and(d) CWT approaches.

MO coincident to the start of a transitional period of multi- greater agreement than the FT3 method. The FT3 method
ple freeze—thaw cycles. has a better agreement in general because of its ability to
From comparison with AWS we find that the FT3 has measure short-duration melting events, which are common
higher overall level of agreement with air-temperature mea-for several stations (e.g., Limbert). For the Pegasus South
surements, with a 66 % total agreement compared to théWS, it appears that as the melting season occurs with a
54 % from the CWT method. This is true for all AWS apart relatively low loss in backscatter with melting conditions,
from the Pegasus South station, where the CWT has a 10 % is therefore never consistently under the 3dB threshold.
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Many of these above-zero temperature events are not longlexandrescu, M., Gibert, D., Hulot, G., Lemouel, J. L., and
lasting in nature, and to evaluate the CWT method solely Saracco, G.: Detection of Geomagnetic Jerks Using Wavelet
using agreement assessments does not indicate the true util-Analysis, J. Geophys. Res.-Sol. Ea., 100, 12557-12572,
ity of this approach to create a record of sustained melting 90i:10.1029/95JB00314.995.
events. Ashcraft, I. S. and Long, D. G.: Comparison of methods for
Compared to M-30K, a passive microwave-derived ap- ~ Melt detection over Greelnlarj]d ;Sing acéive ang7p§zs6i;e szi;-s
. . . . L crowave measurements, Int. J. Remote Sens., 27, — ,
proalch, botr;]actlvr? mlcroyva\{ehmelt|r:)g recdorr(]js find a s_n::.llar d0i*10.1080/01431160500534465006.
yearyMl_'W ?ret e FT3iswithin11 /oa_n the CWT within Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Munneke,
9 % relative difference. These methods find a greater level of p k "van den Broeke, M. R., and Hosking, J. S.: Trends in
disagreement with a dynamic thresholding approach, MTO9. Antarctic Peninsula surface melting conditions from observa-
The CWT methods find a greater overall agreement in tem- tions and regional climate modeling, J. Geophys. Res.-Earth,
poral trend for both PMW methods, for the-M0OK method 118, 315-330, 2013.
r=.943 (p < 0.001) with CWT andr = .922 (p = 0.001) Bromwich, D. H. and Nicolas, J. P.: Sea-Level Rise Ice-sheet uncer-
for the FT3 method. Spatially, we find that comparison is tainty, Nat. Geosci., 3, 596-597, db.1038/nge094€010.
dominated by a mixed pixel effect, making it difficult to de- Chen, J. L., Wilson, C. R., and Tapley, B. D.: Interannual variability
termine the difference between melt duration on a per-pixel of Greenland ice losses from satellite gra\{lmetry, J. Geophys.
basis. The FT3 method has a higher degree of spatial correla: Re_S"SJO!'FFe}" 116, 507](406' oum.10289/2_0101b’0i|0772\3(9(:<112.0 10
tion with passive microwave (M30K) approaches than the omiso, .- O_ar 0ceans Irom space, Springer, Vew York, 296,
. R R - Daubechies, |.: Ten lectures on wavelets, Society for Industrial and
CWT with s_|gn|flf:ant variability in AMW—derNed MD for_ Applied Mathematics, Philadelphia, Pa., 1992.
similar passive microwave measurements. Since PMW pixel$qydeswell, J. A.: Atmospheric science — The Greenland
are~ 10 times the scale of the spatially enhanced QUIkKSCAT  |ce Sheet and global sea-level rise, Science, 311, 963-964,
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the total area. mote, 39, 291-302, ddif.1109/36.905232001.
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