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Abstract. We carried out a study to monitor the time evolu-
tion of microstructural and physical properties of snow dur-
ing temperature gradient metamorphism: a snow slab was
subjected to a constant temperature gradient in the vertical
direction for 3 weeks in a cold room, and regularly sampled
in order to obtain a series of three-dimensional (3-D) im-
ages using X-ray microtomography. A large set of properties
was then computed from this series of 3-D images: density,
specific surface area, correlation lengths, mean and Gaus-
sian curvature distributions, air and ice tortuosities, effec-
tive thermal conductivity, and intrinsic permeability. When-
ever possible, specific attention was paid to assess these
properties along the vertical and horizontal directions, and
an anisotropy coefficient defined as the ratio of the verti-
cal over the horizontal values was deduced. The time evo-
lution of these properties, as well as their anisotropy coeffi-
cients, was investigated, showing the development of a strong
anisotropic behavior during the experiment. Most of the com-
puted physical properties of snow were then compared with
two analytical estimates (self-consistent estimates and dilute
beds of spheroids) based on the snow density, and the size
and anisotropy of the microstructure through the correlation
lengths. These models, which require only basic microstruc-
tural information, offer rather good estimates of the prop-
erties and anisotropy coefficients for our experiment with-
out any fitting parameters. Our results highlight the interplay
between the microstructure and physical properties, show-
ing that the physical properties of snow subjected to a tem-
perature gradient cannot be described accurately using only

isotropic parameters such as the density and require more
refined information. Furthermore, this study constitutes a de-
tailed database on the evolution of snow properties under a
temperature gradient, which can be used as a guideline and a
validation tool for snow metamorphism models at the micro-
or macroscale.

1 Introduction

Natural snowpacks are frequently subjected to temperature
gradients induced by their environment. Due to temperature
differences in the snowpack, the morphology of snow at the
microscale, i.e., the snow microstructure, quickly evolves
with time. This metamorphism, called temperature gradient
(TG) metamorphism, is mainly characterized by the reorga-
nization of ice along the gradient direction by sublimation of
the warmest parts of the grains, water vapor transport across
the air pores, and its deposition on the coldest zones of the
ice matrix (Yosida et al., 1955; de Quervain, 1973; Colbeck,
1997; Flin and Brzoska, 2008). In terms of snow type, this
leads to faceted crystals and depth hoar, which constitute of-
ten the weakest layers of the snowpack. Experimental and
theoretical studies such as those of Yosida et al. (1955), de
Quervain (1973), Akitaya (1974), Marbouty (1980), Colbeck
(1983a, b), Fukuzawa and Akitaya (1993) and Satyawali
et al. (2008) provide a good base of knowledge on TG meta-
morphism, with descriptions of the evolution of the snow
grains mostly based on photographs. With the development
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of X-ray microtomography for snow (Brzoska et al., 1999a;
Schneebeli, 2000; Coléou et al., 2001; Lundy et al., 2002;
Pinzer and Schneebeli, 2009a; Chen and Baker, 2010), very
precise studies related to TG metamorphism are now avail-
able. Up to now, two different approaches have been used:
the static approach, where the metamorphism of a homoge-
neous snow slab can be monitored by imaging different im-
pregnated snow samples collected in the slab (Flin and Br-
zoska, 2008; Srivastava et al., 2010), and the dynamic or
in vivo approach, which gives access to the grain to grain
evolution of the same snow sample by time-lapse tomogra-
phy (Schneebeli and Sokratov, 2004; Pinzer and Schneebeli,
2009b; Pinzer et al., 2012). They allow for a better under-
standing of the mechanisms involved and highlight the im-
pact of snow microstructure on its physical and mechanical
properties.

In particular, snow properties are often expressed as func-
tions of snow density such as for the effective thermal con-
ductivity (Yen, 1981; Sturm et al., 1997; Calonne et al., 2011;
Lowe et al., 2013) or the intrinsic permeability (Shimizu,
1970; Jordan et al., 1999; Courville, 2010; Zermatten et al.,
2011; Calonne et al., 2012), leading to simple parameter-
izations that can be used to estimate properties in snow-
pack models, e.g., Crocus (Brun et al., 1989) and Show-
pack (Lehning et al., 1999). However, Schneebeli and Sokra-
tov (2004) and Satyawali et al. (2008) have shown that dur-
ing TG metamorphism, the effective thermal conductivity
of snow evolves without significant changes in density, but
only because of the ice/pore reorganization. Such studies
suggest that there is a need to refine the parameterizations
of snow properties, at least for snow subjected to temper-
ature gradients. In addition, as recently shown for the ef-
fective thermal conductivity (Calonne et al., 2011; Shertzer
and Adams, 2011; Riche and Schneebeli, 2013), the intrin-
sic permeability (Calonne et al., 2012), or the effective va-
por diffusion (Calonne et al., 2014), this type of snow ex-
hibits anisotropic behavior and requires more systematic in-
vestigations. Recently, Lowe et al. (2013) proposed a refined
parameterization of the effective thermal conductivity ten-
sor of snow based on anisotropic second-order bounds. Their
results show the importance of taking into account the mi-
crostructural anisotropy for the estimation of the effective
thermal conductivity during TG metamorphism.

We propose addressing these issues by studying the evo-
lution of snow morphology together with several physical
properties during a typical experiment of TG metamorphism.
The main objective consists in better understanding the rela-
tionships between the snow microstructure and its properties.
In this context, our paper focuses on the description of the
time evolution of a snow slab of 294 kgm~—23 subjected to a
vertical temperature gradient of 43 Km~1 in a cold room at
—4°C. The temperature and gradient values were chosen to
observe a significant but not extreme evolution of the snow
in a reasonable time (3 weeks of experiment). Moreover,
these experimental conditions are in the range of conditions
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frequently encountered by natural alpine snowpacks. Snow
specimens were regularly sampled from the snow slab and,
after treatment, scanned by X-ray microtomography to ob-
tain a set of 3-D images showing the time evolution of the
snow microstructure. Then, computations were performed on
the 3-D images to estimate various geometrical and physical
properties. Whenever possible, specific attention was paid to
assess these properties in the x, y, and z directions; z be-
ing along the direction of gravity and of the macroscopic
temperature gradient. In addition, following the approach of
Lowe et al. (2013), we present two anisotropic analytical es-
timates for the determination of the physical properties of
snow based on the knowledge of basic microstructural infor-
mation (porosity, correlation lengths in the x, y, and z direc-
tions). This offers interesting possibilities for the improve-
ment of the parameterizations of snow properties.

The new contributions of this study lie in the following
points: (i) a wide range of snow properties (mean and Gaus-
sian curvature distributions, directional correlation lengths,
specific surface area, air and ice tortuosities, intrinsic perme-
ability, effective thermal conductivity) are investigated dur-
ing the same experiment; (ii) the time evolution of most prop-
erties computed in the x, y, and z directions is provided,
allowing monitoring the anisotropy of properties with time;
and (iii) the physical properties computed on 3-D images are
compared with those determined by anisotropic analytical es-
timates based on basic microstructural properties.

2 Materials and methods
2.1 Experimental setup and 3-D images

Natural snow was collected at Chamrousse (1800 m, French
Alps) on 22 February 2011 and stored at —20 °C for 2 weeks.
This snow was then sieved in a cold room at —5°C to ob-
tain a horizontal snow slab of 100 cm length, 50 cm width,
and 14 cm height, composed of rounded grains (RG; Fierz
et al., 2009) at 300+ 15kgm—2 (result from macroscopic
density measurements). The snow slab was confined at the
base and the top between two copper plates whose temper-
ature was controlled by a thermoregulated fluid circulation.
The whole system was insulated with 8 cm thick polystyrene
plates. An illustration of the experimental setup is given in
Fig. 1. Isothermal conditions at —5°C were first applied
to the snow slab during 24 h. This aimed at sintering snow
grains whose bonds may have been destroyed by sieving.
During the following 3 weeks, the temperature of the cold
room was held at —4°C and the upper and lower copper
plates were maintained at —7 and —1 °C, respectively, gen-
erating a steady vertical temperature gradient of 43Km~!
through the snow slab.

The snow slab was sampled using a cylindrical core drill
approximately every 3 days over the 3 weeks, leading to
seven samples in total at the end of the experiment. Macro
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Figure 1. Photograph in cold room of the apparatus designed to
control and monitor temperatures at the top and bottom of a snow
slab. The front and side vertical polystyrene plates were removed
from the device for visualization purposes.

photographs of snow particles were also taken to characterize
snow type. During the sampling operation, the temperature
of the cold room was temporarily held at —7 °C (temperature
of the upper copper plate) in order to minimize the change of
boundary conditions of the snow slab. The polystyrene plates
and the upper copper plate were then temporarily removed in
order to access the snow slab. The samples were taken in
the middle height of the layer and at a minimum distance
of 5¢cm from edges and from regions already sampled. The
air gap created by the sampling was systematically refilled
with freshly sieved snow to prevent strong modifications of
the thermal field of the snow slab. Immediately after sam-
pling, each snow specimen was put in a plastic box and im-
pregnated with 1-chloronaphthalene. This organic product, in
liquid state above —15°C, was poured along the box walls,
slowly filling the open pores of snow. Then, the sample was
frozen in an iso-octane bath cooled by dry ice (—78°C) to al-
low for the solidification of the 1-chloronaphthalene. The im-
pregnation is required to stop the metamorphism of the snow
microstructure and consolidate the snow sample for further
machining processes. The absorption properties of the ice,
air and 1-chloronaphthalene ensure a good contrast between
these three components for the X-ray tomographic acquisi-
tion. Cylindrical snow cores were extracted from the sam-
ples by machining with a press drill which is mounted on a
lathe and operated in a cold room at —30 °C. Each snow core
was then glued to the upper part of a copper sample holder
by a droplet of 1-chloronaphthalene and sealed into a Plexi-
glas cap. The prepared samples were finally stored at —20°C
until the tomographic acquisitions.

Each core was scanned using the conical X-ray microto-
mograph of the 3SR lab set with an acceleration voltage of
75kV and a current of 100 pA. As this microtomograph op-
erates in an ambient temperature room, the snow core was
placed in a specially designed cryogenic cell composed of
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Figure 2. lllustration of the cryogenic cell used during the tomo-
graphic acquisition.

a Peltier module, which maintains a regulated temperature
of around —30°C at the bottom part of the copper sample
holder. Figure 2 shows a schematic of this cell. A continuous
dry and cold air circulation between the sample holder and
the double-wall Plexiglas chambers of the cell prevents the
deposition or condensation of water vapor on their sides. In
addition, the heat generated by the Peltier module is dissi-
pated by water circulation. The whole system is able to ro-
tate 360° during the acquisition. Each tomographic acqui-
sition lasted around 2 h during which 1200 radiographs of
the entire impregnated snow sample were taken. Horizontal
cross sections of the sample were reconstructed from radio-
graphs using DigiXCT?! software. Image processing was then
applied to the grayscale, reconstructed images to obtain bi-
nary images representative of the ice-pore arrangement (Flin
et al., 2003; Lesaffre et al., 2004; Hagenmuller et al., 2013).
The method used consists of the following steps: (i) remov-
ing the remaining air bubbles and associating them with the
pore phase, (ii) smoothing and thresholding, and (iii) visual
verifications and 3-D post processing. One can refer to the
section “Three or more materials”, pp.862-863, of Hagen-
muller et al. (2013) for detailed information on the exact pro-
cedure applied. We finally obtained seven binary 3-D images,
extracted in the middle of the whole reconstructed volumes
and showing the microstructural evolution of the snow slab
with time. The 3-D images have a voxel size of 8.4 or 9.7 ym
and a volume size of 5.93, 9.23 or 9.7% mm?. Detailed infor-
mation for each image is given in Table 1.

2.2 Computation of structural properties
2.2.1 Density

Snow porosity ¢ (dimensionless), also called volume fraction
of air, was estimated from 3-D images using a standard voxel

IDigiXCT: http://www.digisens3d.com/en/
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Table 1. Microstructural and physical properties computed from 3-D images. Snow types are given according to the international classifica-

tion (Fierz et al., 2009).

Name
Snow type
Length size of 3-D image (mm)
Voxel size of 3-D image (um)
Time under temperature gradient (h)
Density ps (kgm—3)
Porosity ¢ (-)

0A 1A 2A 3A 4A 5G 7G
RG RG FC DH DH DH DH
5.9 5.9 5.9 5.9 5.9 9.7 9.2
8.4 8.4 8.4 8.4 8.4 9.7 9.7
0 73 144 217 313 409 500
315 275 283 275 315 286 310
0.657 0.700 0.692 0.700 0.656 0.688  0.622

Mean curvature H — upward surfaces Average (mm~1)

Standard deviation (mm~1)

Mean curvature H — downward surfaces ~ Average (mm~—1)

4.6 43 3.4 2.3 1.0 1.4 0.8
8.3 9.0 9.6 8.9 8.5 8.1 8.4
4.7 4.5 3.2 25 1.2 15 0.9
8.4 9.2 9.1 9.6 9.3 8.8 9.2

Standard deviation (mm—1)

Gaussian curvature /C — all surfaces Average (mm—z) -814 -312 -240 -193 -188 -—-190 -183
Standard deviation (nm—2) 284.7 2468 2287 2082 1940 1739 1841
$SA (m?kg™1) x 274 228 208 182 152 150 135

y 265 226 205 182 152 148 134
z 292 247 210 182 146 149 133
SSA (m?kg™1) (x+y+2)/3 277 234 208 182 150 149 134
Correlation length ¢ (um) X 70 95 104 128 146 160 181
y 73 98 109 133 147 160 182
z 66 91 112 143 174 202 225
Air tortuosity 5 (-) x 073 077 073 071 066 066  0.63
y 074 077 074 071 065 066  0.63
z 071 076 076 076 073 073 071
Ice tortuosity T (<) x 021 009 008 008 014 012 0.6
y 022 009 009 008 013 012 015
z 019 012 016 015 025 021 027
Thermal conductivity k (Wm=1K=1)  x 022 014 014 014 019 016 0.0
y 023 014 014 014 018 017 0.9
z 021 015 018 018 025 021  0.26
Permeability K (x 10~9 m2) x 076 175 195 298 271 377 392
y 078 174 195 289 261 370  3.95

0.70 1.64 2.02 3.08 3.18 4.39 4.84

counting algorithm. Snow density ps (in kg m—3) was simply
deduced from ¢ as ps = pi(1 — ¢), where p;j is the ice density

equal to 917 kgm~3.

2.2.2 Specific surface area SSA

The specific surface area estimates along the x, y and z di-
rections, denoted by SSA,, SSA, and SSA, (in m?kg™1),
were computed from 3-D images, using a stereologic method
(Arakawa et al., 2009; Flin et al., 2011):

2N 2N,

2N,
SSA, = L—X SSA, =+ -
Ps

and SSA,; = E’ 1)
S

ps’
where N, Ny, and N, are the total number of intersections
between air and ice along parallel testing lines in the x, y,

and z directions, respectively, through the entire volume, and
L is the total length of the testing lines (in m). We recall that
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the z direction corresponds to the direction of gravity and
of the macroscopic temperature gradient. In the following,
we use the vector SSA = (SSA,, SSA,, SSA;), where SSA,
is called the vertical component while the average value of
SSA, and SSA,, noted SSA,,, is called the horizontal com-
ponent. The orientation of this vector in the (x, y, z) coordi-
nate system is thus a way to estimate the degree of anisotropy
of the snow surfaces. In addition, averaging the three compo-
nents of SSA yields a precise estimate of the usual scalar
SSA (Berryman, 1998; Flin et al., 2011) provided x, y, and z
are aligned with the potential anisotropy axes of the sample.
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Figure 3. Two-point probability function S (r) for the whole range of r (left panel) and magnified (right panel) in the x (blue), y (green) and
z directions (red), obtained from the 3-D image referred to as 7G in Table 1. Solid and dashed lines correspond, respectively, to the values
computed from Eq. (3) and to the results of the expression S (rg) = (¢ — #?) exp(—rg/lcy) + #2 with g = (x, v, 2).

2.2.3 Two-point probability function and correlation
lengths

At a given time, within 3-D images of snow, we can define
the following characteristic function of the air phase:

I“(x)=[

where x is a position vector within the sample. The one- and
two-point probability functions for the air phase are then de-
fined as

1
0

if x lies in the air phase
if x lies in the ice phase ,

S1=(I(x)),
Sa(r) = (I°(x)1*(x + 1)),

2
©)

where r is a vector oriented in the x, y or z direction of the
image and the angular brackets denote the volume average.
So(r) is also called the two-point correlation function or the
autocorrelation function. For statistically homogeneous me-
dia, Sy is simply equal to the porosity (¢) and S, depends
on r. In general, S, has the following asymptotic properties
(Torquato, 2002):

S2r=0)=581=9,

lim S2(r) = ¢,

(4)
(®)

As an illustration, dashed lines in Fig. 3 show the two-point
probability function computed over a 3-D image of a snow
sample after 500 h of metamorphism (referred as image 7G in
Table 1) along the x, y and z directions in blue, green and red,
respectively. As proposed by Léwe et al. (2011, 2013), by
fitting the S»(r) function along the coordinate axes 8 = (x,
y, z) to an exponential S2(rg) = (¢ — ¢2) exp (—rp/lc,) + ¢°
(solid lines in Fig. 3), one obtains a correlation length /¢, (in
um) in the x, y, and z directions noted /¢, Ic, and I¢_, respec-
tively. [, is called the vertical component. The average value
of I, and [, is called the horizontal component and noted
le,,- The vector I = (e, Ley, I¢,) is often used to characterize
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the typical sizes of the heterogeneities in the microstructure,
i.e., to define the characteristic lengths of an ice grain and a
pore without distinction.

2.2.4 Mean and Gaussian curvatures

At a given point on the surface of a 3-D object, the shape is
characterized by two principal curvatures, k1 and «2, which
correspond to the maximum and minimum values of normal
curvature at this point. Negative, zero and positive values of
k1 and «» define concave, flat and convex lines on the ice
surface, respectively. The mean curvature 7 (in m~1) and
Gaussian curvature X (in m—2) are used to define the surface
geometry with
K1+ K2
H= >
K = «k1k.

(6)
Y]

The signs of the mean and Gaussian curvatures characterize
the surface shape. For the mean curvature, negative, zero and
positive values correspond to concave, flat and convex sur-
faces of ice, respectively. For the Gaussian curvature, neg-
ative, zero, and positive values represent saddle-shaped sur-
faces (typically bonds between ice grains), flat or cylindri-
cal surfaces, and dome-shaped surfaces (convex or concave),
respectively.

Many techniques have been proposed to estimate mean
and Gaussian curvatures on either triangular or digital sur-
faces (Brzoska et al., 1999b; Nishikawa et al., 2001; Rieger
etal., 2002; Zhang et al., 2002; Ogawa et al., 2006; Pottmann
et al., 2009, e.g.,). Curvature estimations usually imply spe-
cific accuracy issues since these estimators are particularly
sensitive to noise and digitization effects. This is mainly due
to the fact that curvatures are second-order derivatives ob-
tained on a discrete grid. In our approach, the mean ()
and Gaussian (K) curvatures are adaptively computed from
the largest relevant neighborhoods, limiting their digitization
noise (see Flin et al., 2004; Brzoska et al., 2007; Wang et al.,
2012 for details). In short, we rely on the following definition
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for H and K (Sethian, 1999), where the mean curvature can
be defined as the divergence of the normal vector field n(p)
at point p

V-n(p)
H(p) = —=, (8)
and the Gaussian curvature as

M(p)
K(p) = ——=, 9

"= N0 C))

with
M(p) =d? (dyyd oz~ d2,)

+d)zy ( X)CdZZ dzxz)

+d2 (daadyy — d2)

+2d,dy (dxzd}z dx}d,zz)

+2d ,d ; (dxydxZ dyzd,xx)

+2d d ; (dxvdyz dxzd,yy) (10)
and

2

N(p) = (¢4 +d% +d2)", (12)

where d is the signed distance map at p and d ., d,, and d ;
denote the partial derivatives of d along the x, y and z coor-
dinates, respectively. For H (Eqg. 8), the normal vector field
n(p) could also have been expressed as a partial derivative
of d. However, we use a specific normal vector estimation
as proposed by Flin et al. (2005). Such an approach is based
on an adaptive computation of the normal vector field us-
ing volumetric information obtained from the signed distance
map. This gives us a precise estimation of H while decreas-
ing the sensitivity of this formula to digitization effects (see
Flin et al., 2004). For K, we simply use Egs. (9)-(11) where
local estimations KC(p) are averaged on the neighborhoods
obtained for the adaptive analysis of H (Wang et al., 2012).

2.3 Computations of tortuosity, effective thermal
conductivity and permeability tensors

The full 3-D tensors of tortuosity = (dimensionless) of effec-
tive thermal conductivity k (in Wm~1 K1) and of intrinsic
permeability K (in m?) were computed from 3-D images. For
that purpose, specific boundary value problems arising from
the homogenization process (Auriault et al., 2009; Calonne
et al., 2014) have been numerically solved on representative
elementary volumes (REVS) extracted from 3-D images of
snow by using the software Geodict?, based on a finite dif-
ference method (Thoemen et al., 2008). We define the REV
with a side length / by © wherein Qj and 2, are the domains
occupied by the ice and the air, respectively, and where T’
denotes the common boundary.

2Geodict: http://www.geodict.de
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To compute the effective thermal conductivity tensor K,
the following boundary value problem was solved (Auriault
et al., 2009; Calonne et al., 2011, 2014):

V - (ki (Vti + 1)) = 0 within Q;j, (12)
ti—ta=00nT, (14)
(ka(Vta+ D) —ki(Vti+1)-n=00nT, (15)
|Q|/(ta+t)d§2 0, (16)

where | is the identity tensor, n is the outward vector nor-
mal to the ice surface and the two periodic vectors ¢; and
t, are unknown. These two vectors characterize the fluctua-
tions of the temperature field in the ice and air phase which
are induced by a given macroscopic gradient of temperature
VT applied on the REV. Finally, as in Calonne et al. (2011),
ka=0.024Wm~1K~1 and kj =2.107Wm~—1 K1 stand for
the thermal conductivity of air and ice at 271 K, respectively.
The effective thermal conductivity tensor K is defined as

1

= @ /ka(Vta—l— I)dS2~|—/ki (Vti+hHd2 | . @an
Qa Q;

The tortuosity tensor of the air phase z, and of the ice phase
T; are obtained by solving the same above boundary value
problem (Egs. 12—-16) assuming that k, = 1 and kj = 0 for 75,
and k; =0 and kj = 1 for ;. These tensors are defined as

Ta =

/(Vta+l)d§2 Ti= —/(Vt.+|)d$2 (18)
|€2al

Let us remark that for snow the air tortuosity is simply
linked to the effective diffusion tensor for the water va-
por by D =¢ D ta, Where Dy, (in m2s~1) is the molec-
ular diffusion coefficient of the vapor in air at the pore
scale. If we assume that the porous medium consists of an
equivalent tortuous capillary of total length I/, in contrast
with the REV length [/, it can be shown that, by definition,
0<taox(I/1')% <1 (Bear, 1972). Consequently, 7, tends to-
ward 0 or 1 when the air structure is highly tortuous or
straight, respectively (the same is true for ¢; and the ice
structure). The tortuosity is also often defined as = o< (I/1)
(Kaempfer et al., 2005), so that our tortuosity definition cor-
responds to the inverse of rfz.

The tensor K of intrinsic permeability was obtained by
solving the following boundary value problem (Calonne
etal., 2012):

uAv —Vp —Vp=_0within Qq, (19)
V - v = 0 within Q, (20)
v=0onT, (21)

www.the-cryosphere.net/8/2255/2014/
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where v and p (with (p)=0) are the periodic unknowns
which represent, respectively, the fluid velocity and the pres-
sure fluctuation in a REV induced by a given macroscopic
gradient of pressure V p. u is the dynamic viscosity of air
(in Pas). It can be shown that v=—(1/u)bV p, where b
is a second order tensor which characterizes the variation
of the fluid velocity at the pore scale over a REV induced
by a given macroscopic gradient of pressure (Auriault et al.,
2009). Consequently, the permeability tensor is defined as

K:i/bdsz. 22)
IQIS2

As the non-diagonal terms of the tensors tj, 4, k and K
are negligible compared to the diagonal terms (the x, y and
z axes of 3-D images correspond to the principal directions of
the microstructure, z being along the direction of the gravity
and of the temperature gradient), we only focus on the latter
ones. In the following, we denote as *, ., and  the vertical
component, the average of the two horizontal components
(xx and *,), and the average of the three components of any
tensor % (i.e., Tj, T4, k or K), respectively. Moreover, for the
sake of simplicity, x,, and  are called the horizontal and the
average components, respectively.

2.4 Computations of anisotropy coefficients

The anisotropy coefficient A(x) was computed for each of
the microstructural and physical properties mentioned above,
except for density and curvatures. This coefficient is defined
as the ratio between the vertical component over the hori-
zontal one, such as A(%) =x;/xyy, Where x=1Issa, I, Tj,
T4, k or K. The property is considered isotropic if it ex-
hibits a coefficient A(x) close to 1, otherwise the property is
anisotropic. Note that, since SSA,, characterizes the vertical
surfaces while SSA; describes the horizontal ones, we study
the anisotropy coefficient of the vector Issa = (1/SSA,,
1/SSA,, 1/SSA;) to be consistent with the other coefficients.

2.5 Readjustment in density

After sieving, the density of the snow slab exhibited slight
spatial inhomogeneities (300+15kgm—2, from macro-
scopic measurements with a corer). In order to focus only on
the evolution of snow properties driven by the temperature
gradient, readjusted values of effective thermal conductivity
and permeability, k" and K", were computed as if the density
was homogeneous in the snow slab and equal to 294 kgm—3
(average of the density values computed from 3-D images)
using the regression proposed in Calonne et al. (2011, 2012),

respectively, as follows:

www.the-cryosphere.net/8/2255/2014/

o _ kx k™ (ps)

= 23
kTt (p294) (3)
K Kﬁt
r_ i_t—(pS), (24)
K™ (p294)
with ps as the computed snow density, p294 =294 kg m—3,
kM(ps) =2.5 x 1076 p2 —1.23 x 10~ ps + 0.024 and

K(p5) = 3.0 x rZ exp(—0.0130 x ps) where the equivalent
sphere radius res = 3/(SSA x pj). In this way, we obtained
readjusted thermal conductivity (ky, k3, k) and permeability

(K}, Ky, K7) values for a density of 294 kg m~3.
2.6 Analytical estimates based on ellipsoidal inclusions

We used two analytical estimates based on ellipsoidal in-
clusions to estimate the physical properties of snow in the
x, y and z directions: the self-consistent estimates and the
dilute beds of spheroids. These estimates require basic mi-
crostructural information, which are the volume fraction of
each phase (¢, 1 — ¢) and the inclusion aspect ratio and size.
These latter were obtained from the 3-D images, and we
chose to describe the inclusion characteristics using the cor-
relation lengths (lc,, lc,, Ic.)-

2.6.1 Self-consistent estimates: effective thermal
conductivity and air tortuosity

The snow microstructure is considered here as a macroscop-
ically anisotropic composite, which corresponds to an as-
semblage of isotropic ellipsoidal inclusions of air and ice
with a major axis collinear with the z direction, of same as-
pect ratio a/b, with volume fractions (¢, 1 — ¢) and ther-
mal conductivities (ka, ki), (see Fig. 4). Since the correlation
lengths (lc, , lc,, Ic.) characterize the typical sizes of the het-
erogeneities (air and ice without distinction), it seems rea-
sonable, in a first order of approximation, to assume that the
aspect ratio is given by a/b = (lc, +Ic,)/(2lc.). According
to the self-consistent scheme (Bruggeman, 1935; Hill, 1965;
Budiansky, 1965; Willis, 1977; Torquato, 2002), each type of
inclusion is successively embedded in a homogeneous equiv-
alent medium, i.e., an infinite matrix whose effective thermal
conductivity k¢ is the unknown to be calculated, which is a
way to capture the connectivity of both phases. The solution
of equations for an isolated inclusion then gives an implicit
relation which can be solved for this effective property. In
the present case, the self-consistent estimate of the effective
thermal conductivity k¢ verifies the following implicit rela-
tion (Torquato, 2002):

& (kal — k) (14 AIKE] ™ (kal - ksc))_1 +(1—¢)
(ki =) (14+ ATRE] ™ (it - kSC))fl =0, (25)

with ki =2.107Wm~1 K~ and k, =0.024 Wm~1 K1, and
where A is the depolarization tensor for an ellipsoid in a
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Figure 4. Schematic representation of the microstructure corre-
sponding to the two-point bounds and the self-consistent scheme.
Effective thermal conductivity versus ice volume fraction when
b/a=1.45: self-consistent estimates (black curves), two-point
lower (blue curves) and upper (red curves) bounds.

matrix with an effective thermal conductivity k¢. When k5¢
is transverse isotropic, the depolarization tensor A is defined
in the (x, y, z) frame as (Giraud et al., 2007; Kushch and
Sevostianov, 2014)

0 0 0
A= 0 o0 o0 |, (26)
0 0 1-20

with

_ 1 _ v -1 2 _ )
Q_Z(l—yz)(l mtan ( ye—1

ify >1, (27)
0= 1 1_ y? In 1—{—\/1 y2

T20-)\ 27 1oV

ify <1, (28)

where y is linked to the aspect ratio of the ellipsoid and
anisotropy ratio of k* by y = (a/b) x (k35 /k3°).

Thus, from Egs. (25) and (26), the horizontal and vertical
components of k% are written as follows:

The Cryosphere, 8, 2255-2274, 2014

Study of a TG metamorphism of snow from 3-D images

kSC — kSC — kSC
X y Xy
_ —(ka(p— Q) +ki((1—¢)— 0) — /A, 29)
B 20-1) ’
o ~ka(@— (1-20)) +ki((1 - ¢) — (1-20))) ~ VA;
: 20(1-20)-1) ’
(30)
where
Ay =(ka(® — Q) + ki(1 — ¢) — 0))?
— 4(Q — 1) Qkiky, (31)
A, =(ka(p — (1 —20)) +ki(L — p) — (L —20)))?
—4(1-20) — 1(1 — 2Q)kika. (32)

The self-consistent estimate of the air tortuosity tensor 73°
can be easily deduced from Eq. (25) with k3 =1 and k; =0:

F=¢ Kk (ka=1, ki=0), (33)
with 3% =137 =13 =¢ ko (ks =1, k=0) and

2 =¢ Lk (ka=1, ki=0). Let us remark that in the
particular case described above, the depolarization tensor
of Eg. (26) is equal in both phases and Eq. (25) is invariant
under the simultaneous interchanges ka <> kj and ¢ <> 1 — ¢,
meaning that each phase is treated symmetrically.

As an illustration, Fig. 4 shows the behavior of k3° = k3’
and kZ° vs. the ice volume fraction for 5/a = 1.45. In thls flg-
ure, the two-point bounds for anisotropic composites (Willis,
1977) are also shown. The corresponding microstructure of
the lower bounds can be viewed as ellipsoidal inclusions of
ice of the same aspect ratio (b/a) dispersed within the air ma-
trix, as shown in the upper-left part of Fig. 4. Inversely, for
the lower bounds, the microstructure is seen as ellipsoidal in-
clusions of air of the same aspect ratio (b/a) dispersed within
the ice matrix (see upper-right part of Fig. 4). As expected, in
each direction, the self-consistent estimate lies between the
bounds: at low volume fractions of ice, the self-consistent
estimates and the lower bounds are very close; conversely,
at high volume fractions of ice, the self-consistent estimates
are quite similar to the upper bounds. Finally, Fig. 4 clearly
shows the anisotropy of the effective thermal conductiv-
ity induced by the anisotropy of the microstructure. The
anisotropy coefficient A(k*) is defined as k3°/k¢ and con-
sequently, from Egs. (29) and (30), is a functlon of the ratio
ki k4, the porosity ¢, and the aspect ratio b/a. In the partic-
ular case of Fig. 4, k; /k, ~100 and b/a = 1.45; so A(K®)
depends only on the porosity and ranges from 1 to 1.6 in the
whole range of the ice volume fraction.

2.6.2 Dilute beds of spheroids: permeability

The snow is seen as a dilute dispersion of ellipsoids of ice
in a matrix of air. The semiaxes of each ellipsoid are defined
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asa=(lc, +1c,)/4and b =Ic_/2. 1t can be shown (Torquato,
2002) that the permeability tensor estimate K€ is written in
the (x, y, z) frame as

92 fbja)y 0 0

G 0 f/a)y 0 |, (34)
-9 0 0 g(bja)
where
3 2 1+ xp
(b = 3o ((sxb L (1 - Xb) +2Xb)
ifb/a>1 (35)
_ 3 2 -1
rbfa) =gz ((14+35) a0~ o) = o)
ifb/a <1, (36)
and
3 1+xp

gb/a) = 72((14— )In(l—Xh)_ZXb)
if bja>1, (37)
st/ = s (4 - 1) O + )
ifb/a < 1, (38)

where x, and yx; are linked to the aspect ratio of the ellipsoid
as x2=—x2 = (a/b)? — 1. By definition, this estimation of
the permeability does not depend on the spatial arrangement
of the ellipsoids and consequently does not capture the real
tortuosity of the porous media induced by the connectivity of
both air and ice phases. In order to overcome this problem,
the following permeability tensor estimate K% is proposed
such as

Kdl — _L.acKeI (39)

K =K' =K =7 K3\,
where K¢ = K® =K and K¢ are the diagonal compo-
nents of K& in the (x, y, z) frame (see Eq. 34). This relation
allows for the recovery of an expression of the permeability
similar to the one of Carman—Kozeny (Bear, 1972): K%
h(¢) tad? = h(¢)d?2/t?, where h is a function of the poros-
ity and d. is a characteristic length of the microstructure.

3 Results

3.1 Time evolution of microstructural and physical
properties of snow

Figure 5 illustrates the time evolution of the snow mi-
crostructure during the experiment of temperature gradient
metamorphism. 3-D images obtained from X-ray tomogra-
phy are presented together with the corresponding vertical
cross section and photograph. The color coding of the 3-D
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images corresponds to the mean curvature field. For a better
visualization of the faceted shapes, the images are presented
“upside down”: the top of the images corresponds to the low-
est and warmest side of the physical sample. We observe
qualitatively that the initial rounded grains become bigger
and more angular and faceted with time. After about 200 h,
depth hoar is obtained showing characteristic striations on
the surface of grains (see photographs in Fig. 5). At the end
of the experiment, the ice structure is preferentially arranged
along the vertical direction, i.e., the direction of the temper-
ature gradient, as shown by the cross sections.

All the snow properties computed based on the 3-D images
are summarized in Table 1. The time evolution of snow den-
sity, specific surface area, correlation length, tortuosity of ice
and air, thermal conductivity and permeability are depicted
in Fig. 6. The blue, green and red symbols represent the x,
y and z values of the considered property, respectively. One
can observe the following:

— The snow density shows no significant evolution with
time and the average value over the experiment is
294 kgm~2 (porosity of 0.68). In detail, low variations
between 275 and 315kgm—2 are observed from one
image to another (Fig. 6a). As explained in Sect. 2.5,
these variations reflect the spatial heterogeneity initially
present in the sieved snow layer, and not a real-time evo-
lution generated by the temperature gradient conditions.

— The average value of the SSA estimates in the three di-
rections decreases continuously with time from 27.7 to
13.4m2?kg~1. Between 0 and 144h, the z estimates
are slightly higher than the horizontal ones (29.2 vs.
26.9m? kg1 at 0 h). After 144 h, values in the three di-
rections become very close to each other (Fig. 6b).

— The values of correlation length increase continuously
during the experiment, evolving from 71 to 181 um in
the x and y directions and from 68 to 228 um in the
z direction (Fig. 6¢).

— The values of air tortuosity (~ 0.7) are around 5 times
higher than those of ice tortuosity (~0.15) (Fig. 6d).
The overall evolution of both properties is low and can
be divided in two stages: the ice tortuosity decreases be-
tween 0 and 73 h and then slightly increases until the
end of the experiment, while the air tortuosity shows
the opposite trends during these two equal periods. Dur-
ing the second stage, the z values stand out and become
increasingly higher than the horizontal ones for both
phases.

— The raw values of the effective thermal conductivity,
which are referred as “computed” and depicted by the
dashed lines in Fig. 6e, exhibit the same variations as
the snow density, showing the strong relationship be-
tween these two variables. The values range between
0.14 and 0.26 Wm~1 K=, The solid lines in Fig. 6e,
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Figure 5. Microstructure evolution during the TG metamorphism. For each stage of the evolution, the following views are given: (i) 3-D
images of the snow samples where colors represent the mean curvature of the surfaces, ranging from —36 to 436 mm—1. Convexities,
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