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Abstract. Recent melt events on the Greenland ice sheet
(GrIS) accentuate the need to constrain estimates of sea
level rise through improved characterization of meltwater
pathways. This effort will require more precise estimates of
the volume of water stored on the surface of the GrIS. We
assessed the potential to obtain such information by map-
ping the bathymetry of supraglacial lakes and streams from
WorldView2 (WV2) satellite images. Simultaneous in situ
observations of depth and reflectance from two streams and
a lake with measured depths up to 10.45 m were used to
test a spectrally based depth retrieval algorithm. We per-
formed optimal band ratio analysis (OBRA) of continuous
field spectra and spectra convolved to the bands of the WV2,
Landsat 7 (ETM+), MODIS, and ASTER sensors. The field
spectra yielded a strong relationship with depth (R2

= 0.94),
and OBRAR2 values were nearly as high (0.87–0.92) for
convolved spectra, suggesting that these sensors’ broader
bands would be sufficient for depth retrieval. Our field mea-
surements thus indicated that remote sensing of supraglacial
bathymetry is not only feasible but potentially highly accu-
rate. OBRA of spectra from 2 m-pixel WV2 images acquired
within 3–72 h of our field observations produced an opti-
mal R2 value of 0.92 and unbiased, precise depth estimates,
with mean and root mean square errors< 1 % and 10–25 %
of the mean depth. Bathymetric maps produced by applying
OBRA relations revealed subtle features of lake and channel
morphology. In addition to providing refined storage volume

estimates for lakes of various sizes, this approach can help
provide estimates of the transient flux of meltwater through
streams.

1 Introduction

Recent accelerated melting of the Greenland ice sheet (GrIS)
(Tedesco et al., 2013), including a record melt season in
2012 (Nghiem et al., 2012; Bennartz et al., 2013), under-
scores the need to improve our understanding of the ice
sheet’s hydrology and thus constrain estimates of the cur-
rent and future contributions of the GrIS to sea level rise.
These estimates are subject to a number of significant uncer-
tainties, many related to the role of meltwater on the surface
of the ice sheet. More specifically, two fundamental ques-
tions remain unresolved: (1) how much water is stored in
supraglacial lakes and streams? and (2) how is this water
transferred from the surface to the interior and/or base of the
ice sheet, and at what rate? The limited information avail-
able for supraglacial water bodies hinders efforts to deter-
mine the volume of meltwater present on the surface of the
GrIS and hence to develop estimates of meltwater storage
and flux. Incorporating this type of information into a hy-
drologic budgeting framework would help to quantify the
proportion of melt that is retained within and/or beneath
the ice sheet and that which propagates to proglacial rivers
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and ultimately the ocean (Rennermalm et al., 2013). Moti-
vated by these challenges, this study used simultaneous field
measurements and high spatial resolution commercial satel-
lite image data to evaluate the feasibility of measuring the
bathymetry of Greenland’s supraglacial lakes and streams via
spectrally based remote sensing.

Remote sensing is a valuable tool for monitoring the GrIS,
with a variety of instruments used to detect and character-
ize melt (e.g.,Nghiem et al., 2012; Tedesco et al., 2013, and
references therein). Analysis of satellite images, for exam-
ple, has provided long-term, synoptic information on pat-
terns of meltwater storage and drainage, establishing the im-
portance of supraglacial lakes as temporary reservoirs (e.g.,
Liang et al., 2012). Storage volumes have been inferred from
remotely sensed data by identifying lakes, measuring their
areas, and estimating their depths on the basis of empiri-
cal relationships between depth and reflectance (e.g.,Fitz-
patrick et al., 2013). Although several previous studies have
mapped the locations of supraglacial streams (e.g.,Colgan
et al., 2011; McGrath et al., 2011; Yang and Smith, 2013)
or the bathymetry of supraglacial lakes (e.g.,Box and Ski,
2007; Sneed and Hamilton, 2007; Tedesco and Steiner, 2011)
from optical image data, none have attempted to retrieve wa-
ter depth in supraglacial streams.

Spectrally based methods of bathymetric mapping are well
established in coastal environments, where decades of re-
search have yielded insight on the radiative transfer processes
governing the interaction of light and water (e.g.,Lyzenga,
1978; Philpot, 1989; Maritorena et al., 1994). In addition to
depth, the reflectance from a water body depends on the op-
tical properties of the water column and the albedo of the
bottom.Tedesco and Steiner(2011) quantified these two pa-
rameters by collecting field measurements of depth and re-
flectance from a supraglacial lake on the GrIS; these data
were also used to relate bathymetry to spectral reflectance
for individual bands of the Landsat 7 (ETM+) and Moder-
ate Resolution Imaging Spectroradiometer (MODIS) satel-
lites. A related study used in situ observations of depth and
optical properties from a melt pond to verify the underly-
ing assumptions of theSneed and Hamilton(2007) depth
retrieval algorithm: negligible amounts of sediment or or-
ganic matter; a water surface undisturbed by waves; a lack
of inelastic scattering; a flat, homogeneous substrate; and
optically deep water (e.g., from the ocean) for estimating
the volume reflectance of the water column. Field data sup-
ported the first three assumptions, while the role of sub-
strate heterogeneity was ambiguous and deep-water observa-
tions were shown to be unnecessary; the analysis confirmed
the validity of estimating melt pond depth via remote sens-
ing (Sneed and Hamilton, 2011). Similarly, Fitzpatrick et al.
(2013) used echo sounding, along with topographic surveys
of a drained supraglacial lake, to calibrate reflectance values
extracted from MODIS image pixels to depth. The resulting
equation was applied to water-classified pixels to yield depth

estimates, which were then integrated over the supraglacial
lake area to calculate water storage volumes.

Although these early studies were encouraging, previous
research also identified a number of issues and limitations
that must be addressed. For example,Tedesco and Steiner
(2011) showed that bathymetry inferred from satellite im-
ages could be sensitive to variations in bottom reflectance
and/or water column optical properties.Sneed and Hamilton
(2011) also identified substrate heterogeneity (e.g., cryconite
patches) as a potential complicating factor in passive opti-
cal depth retrieval. Moreover, the coarser spatial resolutions
of other satellites such as Landsat 7 (30 m), MODIS (250 m),
and the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER, 15 m) are too coarse for depth esti-
mates along lake margins and can produce biased results due
to the presence of ice within mixed pixels. Larger pixel sizes,
particularly for the widely used MODIS instrument, also re-
strict bathymetric mapping to relatively large supraglacial
lakes and precludes analysis of the streams that deliver melt-
water into the ice sheet via moulins. Also, aside from the
observations ofSneed and Hamilton(2011) and Tedesco
and Steiner(2011) on lakes up to 3.0 m and 4.5 m deep, re-
spectively, coincident in situ measurements of depth and re-
flectance for validating spaceborne bathymetry are lacking.
Modeling studies provide an alternative means of estimating
water storage volumes (e.g.,Luthje et al., 2006; Leeson et al.,
2012), but this approach is subject to various uncertainties as
well (e.g.,Tedesco et al., 2012).

This study addressed these shortcomings by applying
spectrally based depth retrieval methods developed in shal-
low marine settings (e.g.,Dierssen et al., 2003) and adapted
to alluvial rivers (e.g.,Legleiter and Overstreet, 2012) to the
GrIS. More specifically, we evaluated the performance of a
band ratio-based algorithm expected to be robust to varia-
tions in bottom albedo and water column optical properties
(Stumpf et al., 2003; Legleiter et al., 2009). To assess the fea-
sibility of this approach, we obtained concurrent, co-located
field measurements of depth and reflectance in two meltwater
streams and a large lake, with measured depths ranging 0.31–
10.45 m. Two WorldView2 (WV2) satellite images acquired
within 3–72 h of our ground-based observations were used
to assess the accuracy of image-derived depth estimates. Be-
cause WV2 provides higher spatial resolution (2 m pixels for
multispectral data) relative to Landsat 7, MODIS, or ASTER,
this sensor could help refine estimates of supraglacial storage
by providing depth information from small lakes. In addi-
tion, WV2 data offer the possibility of mapping supraglacial
streams, which represent not just a static storage volume but
rather a transient flux conveying meltwater to moulins.

Ultimately, we seek to support development of a flexi-
ble, spectrally based approach to mapping the bathymetry
of supraglacial lakes and streams that can serve as a central
component of integrated workflows for characterizing the hy-
drology of the GrIS. Our investigation was motivated by the
following objectives, which serve to organize the paper:
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Fig. 1. Map (a) indicating the location of study area in southwest-
ern Greenland. WorldView2 images of three primary field sites:(b)
Olsen River,(c) Lake Napoli, and(d) Cold Creek. See Table1 for
more information on each site.

1. Use field spectra and depth measurements from the
surface of the GrIS to assess the feasibility of spec-
trally based bathymetric mapping of supraglacial lakes
and streams.

2. Develop robust algorithms for retrieving depth infor-
mation, and hence water storage volumes and fluxes,
from high-resolution satellite image data.

3. Assess the accuracy of image-derived depth estimates
and identify the potential limitations associated with
this approach.

2 Methods

2.1 Study area

Our study area was located in a portion of the ablation zone
in southwestern Greenland (Fig.1a) that generally features
numerous supraglacial lakes and streams during the summer
melt season. Field data and satellite images were acquired
from three primary field sites described in Table1. The first
stream we sampled, referred to as the Olsen River, consisted

Fig. 2. Photographs of field sites on the surface of the Greenland
ice sheet.(a) Remote-controlled drone boat used to collect simul-
taneous measurements of depth and reflectance, shown here along
the Olsen River.(b) Olsen River, looking downstream toward the
ice bar where the channel curves to the right.(c) Overview of Lake
Napoli, taken from a helicopter, showing wave-cut platforms associ-
ated with former shorelines on the up-glacier (left) side of the lake.
(d) Cold Creek, looking downstream.

of a broad, shallow channel where meltwater exited a lake
transitioning to a narrower, deeper morphology confined by
high banks of ice (Fig.1b, 2a). The channel also featured
a curve around an “ice bar”, shown in Fig.2b, analogous
to the point bars found along meandering terrestrial rivers.
Our second site, referred to as Lake Napoli, was roughly cir-
cular in shape, with an area of 3.05× 106 m2 and a maxi-
mum measured depth of 10.45 m. A series of parallel, north–
south trending ridges evident on the lakebed in a WV2 scene
(Fig. 1c) were interpreted as wave-cut platforms associated
with former shorelines on the east (up-glacier) side of the
lake (Fig.2c). The western shore of the lake was more irreg-
ular, with a complex bottom topography. Our final sampling
location, referred to as Cold Creek (Fig.1d), was a shallow,
wide, slow-flowing outlet channel from a small lake; several
mid-channel ice bars were present in this stream.

2.2 Field data collection and analysis

Field observations from these three supraglacial water bodies
were obtained using a small, unmanned boat similar to that
employed byTedesco and Steiner(2011) but with a num-
ber of significant upgrades. The new motorized drone boat,
a specially customized Oceanscience Z-Boat 1800 (Fig.2a),
was operated from shore via a remote control, which ensured
safety of personnel in case of a sudden drainage event. This
platform was small enough to fit inside a helicopter for trans-
port onto the ice sheet but large enough to accommodate the
instrument payload. Designed as a hydrographic survey ves-
sel, the drone boat could be operated at up to 1 km distance
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Table 1. Study sites on the surface of the Greenland ice sheet (GrIS) from which field-based measurements of depth and reflectance and
WorldView2 satellite images were acquired.

Site Latitude
Longitude
Elevation
(m a.s.l.)

Meltwater
surface
area (m2)

Mean
channel
width
(m)

Number
of field
data

Mean
depth
(m)

Max
depth
(m)

Field data
collection

Image
acquisition

Olsen 67◦7′5.7′′ 30 785 32.3 3264 1.08 3.16 7/20/2012 7/18/2012
River −48◦19′19.3′′

1504
Lake 66◦54′9.0′′ 3 048 258 n/a 4383 4.53 10.45 7/21/2012 7/18/2012
Napoli −48◦6′2.7′′

1589
Cold 67◦10′49.5′′ 14 155 67.5 1164 0.93 1.66 7/23/2012 7/23/2012
Creek −48◦45′53.5′′

1335

from the remote control, and the rechargeable battery sys-
tem provided sufficient power for deployments up to several
hours in duration. Maneuverability of the boat was defined by
maximum speeds of 4–5 m s−1 and minimum turning radius
of 4 m. Owing to the potential interference of the boat’s hull
with spectral measurements, the plastic hull was given a spe-
cial flat black finish to minimize reflectance. Measurement
locations were determined using a Trimble R8 GPS mounted
on the boat. The GPS data collector also communicated with
an Ohmex SonarMite 235 KHz echo sounder that measured
water depths with an accuracy of±0.025 m at a sampling fre-
quency of 1 Hz. Because the drone boat was driven at low ve-
locities (∼ 1 m s−1), this system provided very dense bathy-
metric coverage.

Measurements of upwelling spectral radianceLu(λ) at
each wavelengthλ were made using an Analytical Spectral
Devices (ASD) FieldSpec3 spectroradiometer with a spec-
tral sampling interval of 1 nm for visible and near-infrared
(NIR) wavelengths from 350 to 1025 nm; only data from 400
to 900 nm were considered due to low signal-to-noise out-
side this range (Tedesco and Steiner, 2011). The instrument
was secured inside the boat’s watertight hull and connected
via fiber optic cable to a fore optic with a 5◦ field of view
mounted on a boom extending ahead of the boat to minimize
self-shading effects. We attempted to navigate so as to avoid
configurations for which the boat might cast a shadow within
the field of view of the spectroradiometer, but in a small num-
ber of cases shadows could not be avoided. The fore optic
was placed immediately above the water surface and pointed
downward to ensure a consistent nadir-viewing geometry.
Our sampling strategy thus differed from that ofTedesco and
Steiner(2011), who made reflectance measurements under-
water to avoid the confounding effects of reflectance from
and transmittance through the air–water interface. In this
study, we reasoned that because remotely sensed data also
are subject to these effects, field spectra recorded from above
the water surface would provide a more direct means of as-

sessing the potential for mapping bathymetry from satellite
images. The boat-based spectroradiometer was re-calibrated
periodically during each deployment by pointing the fore op-
tic at a Spectralon reference panel, which served to set the in-
tegration time, account for the instrument’s dark current, and
establish the conversion from raw digital counts to spectral
radiance units.

A simultaneous time series of downwelling spectral irra-
dianceEd(λ) was recorded on shore by an ASD HandHeld2
spectroradiometer. This instrument was located within 400 m
of all boat-based measurements from Olsen River and Cold
Creek and within 800 m of the boat on Lake Napoli. Over
these sub-kilometer distances, differences in solar zenith an-
gle between the shore- and boat-based sensors were negligi-
ble. To capture incoming radiation from throughout the upper
hemisphere, the on-shore spectroradiometer was equipped
with a cosine receptor oriented skyward. Data from the boat-
and shore-based ASD’s were synchronized and remote sens-
ing reflectanceRrs(λ) calculated as the ratio ofLu(λ) mea-
sured on the boat toEd(λ) recorded on shore. Reflectance
R(λ) was obtained by multiplyingRrs by π , assuming a
Lambertian bidirectional reflectance distribution function.
Time stamps were used to pair these reflectance data with
the depth measurements and GPS positions.

2.3 Image data acquisition and processing

To assess the potential for spaceborne mapping of
supraglacial bathymetry, we examined two WV2 satellite im-
ages. This sensor provides higher spatial and spectral reso-
lution than more widely used platforms such as Landsat 7
(ETM+), MODIS, or ASTER with 2 m pixels for each of
eight spectral bands. In addition to standard blue, green, red,
and NIR bands, WV2 includes coastal (400–450 nm), yel-
low (585–625 nm), and red edge (705–745 nm) bands that
were expected to be useful for depth retrieval from shal-
low meltwater streams. WV2’s longest wavelength band
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(860–1040 nm) might be helpful for discriminating water
from ice along lake and channel margins but was excluded
from the depth retrieval analysis because strong absorption
by pure water in this portion of the spectrum implies small
Lu(λ) values and poor signal-to-noise for water pixels, par-
ticularly in deeper areas.

WV2 images from our study sites were acquired on 18
and 23 July 2012, within 3–72 h of field data collection (Ta-
ble 1). Images were orthorectified and projected to a polar
stereographic coordinate system using a code developed by
the Polar Geospatial Center at the University of Minnesota.
Radiometric coefficients for each band were included in the
WV2 metadata and used to convert raw digital counts to
radiance. Atmospheric correction was performed using the
Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-
cubes (FLAASH) algorithm based on the MODTRAN4 ra-
diation transfer code (Adler-Golden et al., 1999). Inputs to
FLAASH included the radiance image, scene date and lo-
cation, ground elevation and sensor altitude, spectral band
configuration, visibility (40 km), and standard models for the
atmosphere (sub-arctic summer) and aerosols (rural). By per-
forming a series of iterative calculations to estimate column
water vapor, FLAASH generated atmospherically corrected
images in units of apparent surface reflectanceR(λ).

Linking specific pixels from these images to individual
field measurements required precise spatial referencing of
the remotely sensed data. Orthorectification of the WV2 im-
ages for our Lake Napoli and Cold Creek sites was highly ac-
curate, with all of our boat-based field measurements plotting
within the water bodies depicted in the scene. For the Olsen
River, however, the initial geo-referencing was in error by
several meters, with many of our field data located outside
the stream on the image. To refine the spatial referencing,
we manually digitized a channel polygon on the image and
compared this feature to a polygon enveloping the field data.
An iterative transformation procedure described byLegleiter
(2012) was then used to shift the image into alignment with
our field observations.

To isolate the meltwater present in each image, we cre-
ated masks based on NIR reflectance thresholds. The longest
wavelength NIR band was displayed as a grayscale image
and the contrast stretch adjusted interactively to identify
an appropriate cutoff value for distinguishing water from
ice. The initial threshold-based mask was refined through
morphological opening, segmentation, and closing (Legleiter
et al., 2011). The resulting masks were applied to the re-
flectance images and a 3× 3 pixel Wiener filter used to
smooth the in-stream portion of each scene (Legleiter, 2013).

2.4 Spectrally based depth retrieval

Quantitative relationships between water depthd and
spectral reflectanceR(λ) provide a basis for mapping
supraglacial bathymetry from passive optical image data. Al-
though the upwelling radiance recorded by a remote detector

also is influenced by several other factors, the effect of depth
can be isolated using measurements from multiple spectral
bands. More specifically, under appropriate conditions, out-
lined below, and for certain combinations of wavelengths, the
image-derived quantity

X = ln

[
R(λ1)

R(λ2)

]
(1)

is linearly related to depth. The physical principles un-
derlying depth retrieval via band ratios were described,
for example, byDierssen et al.(2003) for coastal settings
and Legleiter et al.(2004, 2009) for gravel-bed rivers; the
premise of this study is that similar radiative transfer pro-
cesses operate in the supraglacial environment as well.

To summarize, the total radianceLT(λ) measured above
an optically shallow water body is the sum of contributions
from the bottom, water column, water surface, and atmo-
sphere. Of these components, only the radiance reflected
from the bottomLB(λ) is directly related to depth.LB(λ)

also depends on the reflectanceRb(λ) of the bottom itself,
but for an appropriate pair of bands the ratioRb(λ1)/Rb(λ2)

tends to be nearly constant across bottom types. More-
over, spectral differences inRb(λ) for a given substrate are
small, on the order of a few percent, relative to the order-
of-magnitude increase in attenuation by the water column
as wavelength increases from the blue into NIR. The trans-
fer of radiant energy through the water column is controlled
by various absorption and scattering processes that impart a
color, or volume reflectance ,Rc(λ), to the water itself; these
processes are summarized in terms of an effective attenu-
ation coefficient,K(λ). In clear water free from high con-
centrations of suspended sediment or organic material,K(λ)

is driven primarily by absorption by pure water (Legleiter
et al., 2009). Analysis of water samples collected from an
East Greenland melt pond bySneed and Hamilton(2011)
confirmed that suspended or dissolved, organic or inorganic,
particulate matter was minimal and had no significant influ-
ence on radiative transfer within the water column.

Legleiter et al.(2009) presented a scaling argument that
in shallow, clear water bodies with highly reflective sub-
strates,LT(λ) is dominated byLb(λ) and the other radi-
ance components can be considered negligible. Beginning
from an expression forLT(λ) presented byPhilpot (1989),
Legleiter et al.(2009) showed that under these circumstances
the logarithm of the ratio of the radiances (or, equivalently,
reflectances sinceR = πLT/ED) measured in two spectral
bands, denoted by numeric subscripts, can be simplified to
yield a linear equation relating the radiometric quantityX to
the water depthd:

X = ln

[
LT1

LT2

]
≈ (K2 − K1)d + ln

[
(Rb1− Rc1)

(Rb2− Rc2)

]
+ A, (2)

where the dependence on wavelength of all quantities except
for depth has been suppressed for clarity. The slope term in
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this equation depends on the difference in attenuation be-
tween the two bands;X increases with depth forK2 > K1
because the radiance in the more strongly absorbing bandλ2
decreases more rapidly as depth increases than doesLT1. The
intercept term accounts for the “bottom contrast”Rb−Rc be-
tween the substrate and water column as well as a constantA

that depends on the downwelling spectral irradianceED(λ)

and transmission across the air–water interface and through
the atmosphere. If the optical properties of the water column
remain uniform throughout the lake or stream reach, the only
quantity in Eq. (2) expected to vary spatially on a pixel-by-
pixel basis is the one of interest,d; the remotely sensed vari-
ableX is thus well suited for bathymetric mapping (Legleiter
et al., 2009).

Depth retrieval via this method involves identifying an ap-
propriate pair of wavelengths and calibrating a relation be-
tweend andX. A technique called optimal band ratio anal-
ysis, or OBRA (Legleiter et al., 2009), accomplishes both of
these objectives by performing regressions ofd on X for all
possible combinations of numeratorλ1 and denominatorλ2
bands. The optimal band ratio is the one yielding the high-
estR2, with the corresponding regression equation serving
to calibrateX values to depth. Because regressions are per-
formed for all possible pairs of wavelengths, OBRA also al-
lows spectral variations in the strength of thed vs. X rela-
tionship to be visualized as a matrix ofR2(λ1,λ2) values.

We conducted OBRA for both field spectra recorded from
the boat and image spectra from the WV2 satellite. For the
field spectra, we used depths measured by the echo sounder
at the same time as the reflectance data. To assess the feasi-
bility of retrieving depth from multispectral image data with
relatively broad bands, we also convolved the original field
spectra, sampled every 1 nm, with the spectral response func-
tions of WV2, Landsat 7, MODIS, and ASTER and repeated
the OBRA for the convolved spectra. Although this study
focused on WV2 images, conducting OBRA for the other,
more widely used sensors provided a means of assessing
whether strong depth–reflectance relations could be obtained
from coarser spectral resolution data. For OBRA of the
WV2 image spectra, all depth measurements located within a
given pixel were averaged and a mean depth assigned to the
pixel center. Reflectance spectra for the field data locations
were then extracted from the masked, filtered WV2 image
and used as input to OBRA. Because Lake Napoli featured
depths over 10 m, we also performed a quadratic version of
OBRA that included bothX andX2 terms in each regression;
Dierssen et al.(2003) found that such a quadratic formulation
provided more accurate depth estimates in deeper areas.

Linear and quadratic OBRA were performed for the origi-
nal and convolved field spectra and for the WV2 image spec-
tra for each site individually and for a merged data set aggre-
gated across all three sites. For the merged field data set and
each of the images, calibration relationships were derived
from a randomly selected subset (50 %) of the reflectance
spectra and collocated depth measurements. The other half

of each data set was retained and used to assess the accu-
racy of image-derived depth estimates in terms of mean error,
root mean square errors (RMSE), and regression of observed
(field-based) vs. predicted (image-derived) depths (Pineiro
et al., 2008). In addition, we applied OBRA relations to the
WV2 images to produce bathymetric maps, which were in-
spected for realistic spatial patterns and general agreement
with our field observations.

3 Results

3.1 Depth–reflectance relations from field spectra

To assess the feasibility of inferring the depth of supraglacial
water bodies from their spectral characteristics, we used field
measurements of depth and reflectance to perform OBRA for
each field site individually and for a merged data set (Ta-
ble 2). Moderately strongX vs. d relations were observed
for both streams, but correlations between band ratio val-
ues and water depth were much greater for Lake Napoli
and the merged data set. The weaker OBRA relations for
the streams could in part be a consequence of the limited
range of depths measured in these shallow channels (0.31–
4.45 m), particularly Cold Creek (0.31–1.69 m), whereas the
Lake Napoli and merged data sets encompassed depth obser-
vations up to 10.45 m. In addition, reflectance spectra from
the streams might have been influenced to a greater degree
by factors other than depth, including the localized effects
of cryconite substrates with darker bottom albedo, cracks in
the ice bed, variable water surface roughness, shadows, and
floating pieces of slush.

For all three sites, the numerator and denominator wave-
lengths identified via linear OBRA were very close to one an-
other, implying that the greatest sensitivity to depth occurred
in narrow portions of the spectrum, ranging from 580 nm
for Lake Napoli to 660 nm for the Olsen River. Inspection
of the OBRA matrices shown in Fig.3, however, indicated
that a broader range of wavelengths throughout the visible
portion of the spectrum would provideX vs. d relations
nearly as strong as the optimal band ratios. For the Olsen
River and Cold Creek, blue and green wavelengths less than
550 nm were of limited value as denominator bands due to
efficient penetration of light through water in these bands.
In these shallow channels, changes in depth translated into
only small changes in reflectance in this portion of the spec-
trum, whereas stronger absorption of red and NIR light re-
sulted in greater decreases in reflectance for a given increase
in depth. Conversely, greater depths in Lake Napoli dictated
that shorter wavelengths capable of penetrating to the bot-
tom were more useful than red and NIR bands in which the
radiance signal saturated due to nearly complete absorption
in deeper water.

For the merged data set comprised of observations from
shallow streams as well as deeper areas of the lake, the
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Table 2. Summary of optimal band ratio analysis (OBRA) of field spectra and depth measurements from three field sites on the surface of
the GrIS and for the merged data set aggregated over the three sites.

Site Calibration
data

Spectrum
typea

Sensor OBRA
typeb

OBRA
R2

λc
1 λd

2 SEe SE

(count) (nm) (nm) (m) (%)

Olsen River 2371 Cont. ASDf Linear 0.80 655 659 0.30 28
Cold Creek 781 Cont. ASD Linear 0.61 593 594 0.16 18
Lake Napoli 2424 Cont. ASD Linear 0.90 581 582 0.38 8
Merged 2788g Cont. ASD Linear 0.92 583 604 0.47 31

Cont. ASD Quad. 0.94 584 599 0.43 29
Conv. WV2 Linear 0.89 545 605 0.55 37
Conv. WV2 Quad. 0.92 545 605 0.49 33
Conv. Landsath Linear 0.85 499 669 0.65 43
Conv. Landsat Quad. 0.88 499 669 0.60 40
Conv. MODIS Linear 0.88 550 658 0.60 40
Conv. MODIS Quad. 0.89 550 658 0.56 37
Conv. ASTER Linear 0.86 531 638 0.65 43
Conv. ASTER Quad. 0.87 531 638 0.61 41

a Cont.: continuous field spectra, or Conv.: field spectra convolved to sensor bands.
b Linear or quadratic formulation of OBRA.
c λ1: numerator wavelength for optimal band ratio.
d λ2: denominator wavelength for optimal band ratio.
e Regression standard error for optimal band ratio.
f Analytical Spectral Devices spectroradiometer used to measure field spectra.
g For merged data set, half of the data were used for calibration and half reserved for validation.
h More specifically, “Landsat” refers to the Landsat 7 (ETM+) sensor.

addition of a quadratic term to the OBRA formulation pro-
duced a marginal improvement in the strength of theX vs.d
relation (R2

= 0.94). In this case, a pair of wavelengths in the
yellow portion of the spectrum, 584 and 599 nm, were identi-
fied as optimal, but the OBRA matrix in Fig.3d indicated that
many other band combinations hadR2 values nearly as high;
λ1 < 600 nm yielded strong correlations betweenX and d

when paired with 470< λ2 < 720 nm.
These results suggested that broader wavelength bands,

as opposed to essentially continuous field spectra, would be
sufficient for depth retrieval. To test this possibility, we con-
volved the field spectra from the merged data set to match the
spectral response functions of the WV2, Landsat 7, MODIS,
and ASTER sensors and performed OBRA of the convolved
spectra. For all four sensors and for both the linear and
quadratic formulations of OBRA, the reduced spectral res-
olution resulted in only a slight decrease in the strength of
the relationship betweenX andd (Table2 and Fig.4). The
WV2 sensor’s green and yellow bands were optimal, con-
sistent with the wavelengths selected from the original field
spectra. Even for the Landsat 7, MODIS, and ASTER sen-
sors having only three or four visible/NIR bands, the OBRA
R2 values were nearly as high as for the 7-band WV2 system.
Figure4 indicates that for the latter three instruments, defin-
ing X using green and red bands yielded the strongest linear
relations with depth. These results imply that multispectral
imaging systems, including Landsat 7, MODIS, and ASTER
as well as WV2, have adequate spectral resolution for bathy-

metric mapping. Because the OBRAR2 values for all three
sensors were similar, the primary advantage of WV2 would
be enhanced spatial resolution, but our results indicate that
robust depth–reflectance relations can be derived for Landsat
7, MODIS, and ASTER data as well. Although these sensors
have coarser pixel sizes that would restrict analysis to larger
water bodies, the broader spatial and more frequent tempo-
ral coverage of Landsat 7 and MODIS make them useful for
scaling up and examining more extensive areas of the GrIS
over longer time periods. Irrespective of the remote sensing
system employed, our field measurements of depth and re-
flectance provided direct, on-the-ground evidence confirm-
ing the feasibility of spectrally based depth retrieval from
supraglacial water bodies.

3.2 Mapping supraglacial bathymetry from satellite
image data

To more directly evaluate whether reliable depth informa-
tion could be inferred from passive optical image data, we
coupled field measurements of depth with spectra extracted
from two WV2 images that were acquired within 3–72 h of
field data collection. Table3 and Fig.6 summarize the re-
sults of linear and quadratic OBRA performed for each site
individually and for a merged data set aggregated across the
three sites. Strong to very strong relationships between the
image-derived quantityX and water depthd were observed
in all cases, with OBRAR2 values ranging from 0.79 to
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(a) Olsen River: OBRA of field spectra
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Fig. 3.Optimal band ratio analysis (OBRA) of field spectra for each study site and for a merged data set aggregated across the three sites.

0.93. Accuracy assessment involved applying OBRA regres-
sion equations to a validation sub-sample of each data set.
The difference between field-measured and image-derived
depths was less than 1 % of the mean depth in all cases,
indicating that depth estimates were unbiased on average.
Small root mean square errors, ranging from 10 to 26 % of
the mean depth for each site, implied that depth estimates
were precise as well. Similarly, regressions of observed vs.
predicted depths showed that remote bathymetric mapping
of supraglacial lakes and streams was accurate, withR2 val-
ues from 0.78 to 0.93. Moreover, OP regression intercept and
slope coefficients near 0 and 1, respectively, indicated that
image-derived depths were not subject to any kind of system-
atic bias. The results of our depth retrieval accuracy assess-
ment compare favorably to those reported byFitzpatrick et al.
(2013). In that study, a depth–reflectance relation based on a
single MODIS band yielded an OP regressionR2 value of
0.79 and a typical error of 1.47 m for four lakes with depths
up to 12 m.

For the individual sites, linear OBRA yieldedR2 values
nearly as high as the quadratic version of the algorithm, im-
plying that the addition of anX2 term was not necessary
on a site-by-site basis. For the merged data set, however,
the broader range of field-measured depths, including some
in excess of 10 m, introduced mild curvature to the relation
betweenX andd (Fig. 5a); a quadratic function thus pro-

vided a better overall fit. Introducing anX2 term prevented
negative depth estimates in shallow water, a common prob-
lem in terrestrial rivers (Legleiter et al., 2009), and severe
under-prediction of depth in deeper areas. Validation of the
quadratic OBRA relation for the merged data set via the OP
regression shown in Fig.5b showed good overall agreement
between observed and predicted depths (R2

= 0.93) but con-
siderable scatter about the 1-to-1 line, with a tendency to
underestimate the greatest depths. The distinct clustering of
points from the Olsen River vs. Cold Creek on both the cali-
bration and validation plots in Fig.5 was due at least in part
to the location of the two streams on different WV2 images,
which were processed separately to units of apparent surface
reflectance. Because these sites were located on separate im-
ages and the majority of the merged data set was drawn from
the deeper waters of Lake Napoli, the quadratic OBRA re-
lation based on data from all three sites yielded low OPR2

values when applied to the data from each individual stream:
0.25 for the Olsen River and 0.14 for Cold Creek. Apply-
ing the merged relation to the data from Lake Napoli alone
resulted in a much higher OPR2 of 0.90.

A potentially important advantage of OBRA relative to
other depth retrieval approaches that are based on individual
bands is an explicit focus on spectral variations in the nature
and strength of the relationship between the image-derived
quantityX and water depth. The information present in the
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(b) Quadratic OBRA of field spectra convolved to Landsat 7 bands
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(a) Quadratic OBRA of field spectra convolved to WV2 bands
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Fig. 4.Quadratic optimal band ratio analysis (OBRA) of field spectra aggregated across the three sites and convolved to the sensor bands for
(a) WV2, (b) Landsat 7,(c) MODIS, and(d) ASTER.

OBRA matrices shown in Fig.6, for example, can help to
guide selection of an appropriate combination of bands. For
our data from the GrIS, a different set of bands was identified
as optimal for each site and for the merged data set (Table3).
Moreover, the OBRA matrices showed that the number of
bands useful for depth retrieval and the utility of specific
bands varied appreciably among data sets.

For the Olsen River the red / NIR ratio was optimal but was
associated with anX vs. d relation with a negative slope,
whereas a positive relation was expected. The selection of
a NIR band also was not anticipated due to strong absorp-
tion of these wavelengths by pure water. In this case, both
the strong correlation with NIR reflectance and the negative
slope of theX vs. d relation can be explained in terms of
adjacency effects. The presence of bright ice next to dark
water, scattering by the atmosphere, and mixed, 2 m pixels
representing a large fraction of the mean channel width all
contributed to higher NIR reflectance near the banks, where
depths were shallow. In the absence of such confounding ef-
fects, NIR reflectance would be much lower and would not
vary significantly with changes in depth. In fact, OBRA of
field spectra, which were less influenced by these pixel-scale,
atmospheric issues, indicated that NIR wavelengths were not
useful for depth retrieval. For image spectra subject to adja-

cency effects, however, NIR reflectance acted as a proxy for
distance from the bank and was thus correlated with depth.

For Cold Creek, the red edge and NIR bands did not yield
high X vs. d regressionR2 values because most of our ob-
servations from this broad, shallow channel were collected
farther from the banks. Because the Olsen River was much
narrower, a greater proportion of pixels from that site were
subject to adjacency effects, which were most pronounced
in the NIR because reflectance from the water was lowest
at these longer wavelengths. Figure6a also indicates, how-
ever, that the blue/yellow band ratio would yield anR2 value
nearly as high and would be less influenced by adjacency ef-
fects.

Even for the larger Lake Napoli, the optimal band ratio in-
cluded a NIR denominator and yielded a negative slope for
theX vs. d relation, suggesting that for some images, such
as that which included the Olsen River and Lake Napoli, ad-
jacency effects associated with atmospheric scattering could
be pervasive. For the merged data set pooled across the three
field sites and two images, some NIR band combinations
yielded moderateR2 values, but the ratio of the WV2 sen-
sor’s coastal and green bands stood out as optimal, with a
positive relation betweenX andd (Fig. 5a). Because these
wavelengths penetrated more efficiently through the water,
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Table 3.Accuracy assessment for depth retrieval from WV2 satellite images of supraglacial water bodies on the GrIS.

Site Calibration data OBRAa OBRA λc
1 λd

2 ME ME RMSE RMSE OPe OP int.f OP
(count) typeb R2 (nm) (nm) (m) (%) (m) (%) R2 (m) slope

Olsen 1632 Linear 0.79 660 832 0.007 0.62 0.28 26 0.79 0.01 1.00
River Quad. 0.82 480 605 0.006 0.56 0.27 25 0.80 0.01 0.99
Cold 574 Linear 0.79 425 660 −0.001 −0.12 0.10 11 0.78 0.00 1.00
Creek Quad. 0.80 425 660 −0.002 −0.16 0.10 10 0.79 −0.01 1.01
Lake 2192 Linear 0.91 545 725 −0.031 −0.67 0.73 16 0.90 −0.01 1.00
Napoli Quad. 0.93 545 832 −0.012 −0.25 0.61 13 0.93 −0.02 1.00
Merged 4398 Linear 0.75 425 545 0.023 0.80 1.17 42 0.77 0.01 1.01

Quad. 0.92 425 545 −0.002 −0.05 0.65 23 0.93 0.007 1.00

a OBRA: optimal band ratio analysis.
b Linear or quadratic formulation of OBRA.
c λ1: numerator wavelength for optimal band ratio.
d λ2: denominator wavelength for optimal band ratio.
e OP: observed vs. predicted regression.
f int.: intercept of regression equation.

reflectances within the stream or lake were relatively high
and more similar to the banks, making these bands less sen-
sitive to adjacency effects.

By allowing for curvature in theX vs.d relation, quadratic
OBRA could provide robust relationships less susceptible to
these issues and more useful for depth retrieval. In addition
to the quantitative accuracy assessment summarized above,
we also inspected bathymetric maps produced by applying
OBRA regression equations to the WV2 images. An example
from the Olsen River is shown in Fig.7, along with the field
measurements used for calibration. For this site, the band ra-
tio selected via linear OBRA, which included a NIR denom-
inator, resulted in a noisy, speckled depth map due to low
reflectance and thus poor signal-to-noise in the NIR band.
Quadratic OBRA, in contrast, identified the blue/yellow band
combination as optimal and resulted in a much smoother,
spatially coherent bathymetric map. The red tones in Fig.7
indicate shallow depths in the broad upper reach and over

the ice bar where the channel curves to the right (Fig.2b).
The close-up in Fig.7 also highlighted a deeper pool along
the opposite bank just downstream of this bar, reminiscent of
the bar-pool morphology common in terrestrial rivers. Sim-
ilarly, a transect (Fig.8a) across a straight segment of the
Olsen River near the lower end of our study reach captured
the gross, U-shaped morphology of the channel. Agreement
between image-derived depths and field surveys was gen-
erally good for this cross section but the remotely sensed
bathymetry was biased shallow and failed to detect a cou-
ple of small streambed irregularities evident in the field data.
Nevertheless, our spectrally based approach, applied to high-
resolution images, appeared capable of providing detailed
information on the depth and morphology of supraglacial
streams. A second transect (Fig.8b) drawn from Lake Napoli
exhibited very close correspondence between field surveys
and image-derived depths along a traverse from the shore to-
ward the center of the lake that spanned a range of depths up
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(b) Cold Creek: OBRA of image spectra
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(a) Olsen River: OBRA of image spectra
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Fig. 6.OBRA of WV2 image spectra for each study site and for a merged data set aggregated across the three sites.

to 10 m; these results indicated that accurate depth retrieval
was possible in deeper melt ponds than reported in previ-
ous field studies (e.g.,Tedesco and Steiner, 2011; Sneed and
Hamilton, 2011; Fitzpatrick et al., 2013). The combination
of improved spatial resolution and more reliable bathymetric
information across a broader range of depths can thus enable
refined estimates of meltwater storage volumes on the sur-
face of the Greenland ice sheet.

4 Discussion

The volume, spatial distribution, and flux of meltwater on
the surface of the ice sheet are important aspects of Green-
land’s hydrologic system. Improved methods of characteriz-
ing these components could thus help to constrain estimates
of the contribution of the GrIS to sea level rise. In this study,
we evaluated the potential to retrieve information on water
depth, and hence storage volumes, in supraglacial lakes and
streams from multispectral satellite images. To make this
assessment, we made coupled field observations of depth
and reflectance in coordination with the near-simultaneous
acquisition of WV2 images. A spectrally based depth re-
trieval algorithm developed for terrestrial rivers, called op-
timal band ratio analysis (OBRA), provided strong relation-

ships between radiometric quantities and water depth for (1)
essentially continuous spectra measured directly in the field;
(2) field spectra convolved to match the response functions of
the WV2, Landsat 7, MODIS, and ASTER sensors; and (3)
spectra extracted from specific WV2 image pixels. Valida-
tion of image-derived depth estimates indicated that remotely
sensed data can be used to measure supraglacial bathymetry
with a high degree of accuracy (ME< 1 % of mean depth)
and precision (RMSE 10 – 23 % of mean depth, Table3)
across a broad range of depths up to 10.45 m. Similar re-
sults were reported byFitzpatrick et al.(2013), who esti-
mated depths in large lakes from MODIS band 1 reflectance
values, but the use of higher resolution satellite images in
this study allowed more detailed depth information to be re-
trieved from smaller water bodies. For example, bathymet-
ric maps of meltwater streams produced from WV2 images
were spatially coherent and hydraulically reasonable, reveal-
ing subtle features of the channel morphology. In addition to
enabling refined estimates of storage volumes in lakes, this
approach also opens up new possibilities for characterizing
the transient flux of meltwater through stream channels to
moulins and hence the interior and/or base of the ice sheet.

Though encouraging, our results also pointed to several
key limitations of remote sensing techniques. Ideally, a gen-
eral, robust relationship between depth and reflectance could

www.the-cryosphere.net/8/215/2014/ The Cryosphere, 8, 215–228, 2014



226 C. J. Legleiter et al.: Remote sensing of supraglacial bathymetry

Fig. 7. Field measurements of depth from the Olsen River used for calibration(a, c) and image-derived bathymetry produced by applying
the calibration equation from quadratic OBRA to the WV2 image(b, d). Flow is from right to left.

be identified, calibrated, and applied to the entire ice sheet.
This goal remains elusive, however, due to a number of com-
plicating factors. For example, the disparity between OBRA
of field spectra and OBRA of image spectra implies that these
depth–reflectance relations are scale dependent. Contrary to
our expectations, the optimal band ratio was more strongly
related to depth for spectra extracted from 2 m image pix-
els than for spectra measured directly in the field. This find-
ing suggests that some of the factors considered bySneed
and Hamilton(2011), such as heterogenous substrates, wa-
ter surface roughness, shadows, and slush, were localized ef-
fects that introduced variability to the field spectra but were
essentially averaged out over the scale of an image pixel.
In general, agreement between field and image spectra was
poor, even after atmospheric correction of the image data,
with the image spectra tending to have higher reflectance
values. In addition, the unexpected selection of NIR bands
and negativeX vs. d relations resulting from OBRA of im-
age spectra suggest that adjacency effects were salient in
the remotely sensed data. These effects can be mitigated by
choosing shorter wavelength band combinations in which re-
flectance from the water is greater, but establishing a calibra-
tion relation applicable across images could prove difficult.
For example, we found that applying a quadratic OBRA re-
lation based on data drawn from all three of our sites yielded
low OPR2 values when applied to either of two streams lo-
cated on separate images. These results imply that a general,
image-based depth–reflectance relation might not provide re-
liable bathymetric information for individual sites, particu-

larly shallow streams, and that site-specific calibration would
be preferable, if not necessary. In theory, field spectra col-
lected across a range of depths could be used to define a gen-
eral depth–reflectance relationship in the absence of mixed
pixels or atmospheric effects. We were unable to achieve this
goal in this initial study, however. Instead, our results point
to the need for careful calibration of field measurements and
image pixel values to consistent radiometric quantities and
for accurate atmospheric correction of remotely sensed data.

If these issues can be resolved, our results indicate that
spectrally based remote sensing of supraglacial bathymetry
could provide information on meltwater storage and flux with
an unprecedented level of detail. This study demonstrated the
ability to resolve subtle morphologic features, such as the
former shorelines of Lake Napoli evident in the WV2 image
shown in Fig.1c or the ice bar on the Olsen River prominent
in Fig. 7d, from high spatial resolution image data. Captur-
ing the associated variations in depth, rather than averaging
over coarser pixel sizes, would enable more precise estimates
of meltwater storage and flux and thus support focused in-
vestigations that emphasize the spatial distribution of lakes,
streams, and moulins for a given time period. Similarly, the
finding, based on OBRA of convolved field spectra, that
Landsat 7, MODIS, and ASTER have sufficient spectral res-
olution for bathymetric mapping bodes well for larger scale,
longer term studies. Although these sensors have coarser spa-
tial resolution that would limit such analyses to larger wa-
ter bodies, our results indicate that accurate depth retrieval

The Cryosphere, 8, 215–228, 2014 www.the-cryosphere.net/8/215/2014/



C. J. Legleiter et al.: Remote sensing of supraglacial bathymetry 227

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Distance from left end point (m)

D
e

p
th

 (
m

)

(a) Olsen River transect

 

 

Field survey

Image-derived

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

12

Along-track distance (m)

D
e

p
th

 (
m

)

(b) Lake Napoli transect

 

 

Field survey

Image-derived

Fig. 8. Transects comparing field surveys and image-derived depth
estimates obtained via quadratic OBRA for(a) a cross section of the
Olsen River and(b) a boat track from the shore toward the center of
Lake Napoli.

should be possible and could facilitate monitoring meltwater
on the surface of the GrIS.

5 Conclusions

This study demonstrated, for the first time, the feasibility
of spectrally based depth retrieval from high spatial resolu-
tion commercial satellite images of supraglacial lakes and
streams on the GrIS. Given instrumentation with sufficient
spatial resolution, optical remote sensing can thus be used to
estimate accurately the volume of water stored in not only
large lakes but also smaller melt ponds that might go un-
detected by sensors with coarser pixel sizes. In addition,
such data can be used to measure the depth of supraglacial
streams and hence characterize the transient flux of meltwa-
ter through channels. Future work will focus on addressing
the calibration issues identified above, establishing a general
relation between depth and reflectance, developing an inte-
grated workflow for scaling up this type of analysis to larger

areas of the GrIS, and incorporating the resulting information
on meltwater storage and flux into a hydrologic budgeting
framework.
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