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Abstract. In this study we analyzed the relations between
terrain characteristics and snow depth distribution in a small
alpine catchment located in the central Spanish Pyrenees.
Twelve field campaigns were conducted during 2012 and
2013, which were years characterized by very different cli-
matic conditions. Snow depth was measured using a long
range terrestrial laser scanner and analyses were performed
at a spatial resolution of 5 m. Pearson’sr correlation, mul-
tiple linear regressions (MLRs) and binary regression trees
(BRTs) were used to analyze the influence of topography on
the snow depth distribution. The analyses were used to iden-
tify the topographic variables that best explain the snow dis-
tribution in this catchment, and to assess whether their contri-
butions were variable over intra- and interannual timescales.
The topographic position index (index that compares the rel-
ative elevation of each cell in a digital elevation model to
the mean elevation of a specified neighborhood around that
cell with a specific shape and searching distance), which has
rarely been used in these types of studies, most accurately
explained the distribution of snow. The good capability of
the topographic position index (TPI) to predict snow dis-
tribution has been observed in both, MLRs and BRTs for
all analyzed days. Other variables affecting the snow depth
distribution included the maximum upwind slope, elevation
and northing. The models developed to predict snow dis-
tribution in the basin for each of the 12 survey days were
similar in terms of the explanatory variables. However, the
variance explained by the overall model and by each topo-
graphic variable, especially those making a lesser contribu-
tion, differed markedly between a year in which snow was
abundant (2013) and a year when snow was scarce (2012),
and also differed between surveys in which snow accumula-

tion or melting conditions dominated in the preceding days.
The total variance explained by the models clearly decreased
for those days on which the snowpack was thinner and more
patchily. Despite the differences in climatic conditions in the
2012 and 2013 snow seasons, similarities in snow distribu-
tions patterns were observed which are directly related to ter-
rain topographic characteristics.

1 Introduction

Assessing the snow distribution in mountain areas is impor-
tant because of the number of processes in which snow plays
a major role, including erosion rates (Pomeroy and Gray,
1995), plant survival (Keller et al., 2000; Wipf et al., 2009),
soil temperature and moisture (Groffman et al., 2001), and
the hydrological response of mountain rivers (Bales and Har-
rington, 1995; Barnett et al., 2005; Liston, 1999; Pomeroy et
al., 2004). As mountain areas are highly sensitivity to global
change (Beniston, 2003), snow accumulation and melting
processes are likely to be subject to marked changes in com-
ing decades, affecting all processes influenced by the pres-
ence of snow (Caballero et al., 2007; López-Moreno et al.,
2011, 2012b; Steger et al., 2012). For these reasons, much
effort has been devoted to understanding the main factors
that control the spatial and temporal dynamics of snow (Egli
et al., 2012; López-Moreno et al., 2010; Mott et al., 2010;
Schirmer et al., 2011).

One of the main difficulties in snow studies is obtaining
reliable information of the variables that describe snow dis-
tribution, including snow depth (SD), snow water equivalent
(SWE) and snow covered area (SCA). Manual measurements
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have traditionally been used to provide information on the
distribution of snowpack, with different sampling strategies
having been applied at various spatial scales (Jost et al., 2007;
López-Moreno et al., 2012a; Watson et al., 2006). However,
manual sampling is not feasible for large areas because of the
time involved, especially when SWE measurements are also
acquired. In the last decade the use of airborne laser scan-
ners (ALSs) (Deems et al., 2006) and terrestrial laser scan-
ners (TLSs) (Prokop, 2008), both of which are based on li-
dar (light detection and ranging) technology, have provided
for major advances in obtaining data on the SD distribution
at unprecedented spatial resolutions. These developments
have enabled studies of several factors that in the past have
been only marginally considered, including scaling issues
(Fassnacht and Deems, 2006; Mott et al., 2011; Schirmer
and Lehning, 2011; Trujillo et al., 2007), the detailed dy-
namics of snow accumulation and ablation (Grünewald et
al., 2010; Schirmer et al., 2011; Scipión et al., 2013), and
snow transport processes (Mott et al., 2010). In addition, the
high density measurements provided by lidar technologies
are a valuable resource for detailed investigation of the link-
age between snow distribution and topography. In the past,
this linkage has mostly been studied using manual measure-
ments, and hence with generally limited spatial and temporal
resolution (López-Moreno et al., 2010).

Previous studies have highlighted the marked control of to-
pography on snow distribution in mountain areas (Anderton
et al., 2004; Erickson et al., 2005; Lehning et al., 2011; Mott
et al., 2013), and the importance of vegetation and wind ex-
posure (Erxleben et al., 2002; Trujillo et al., 2007). The most
commonly used approach has been to develop digital eleva-
tion models (DEMs) that describe the spatial distribution of
elevation, from which other terrain variables are derived such
as slope, terrain aspect, curvature, wind exposure or shelter-
ing, and potential solar radiation. This enables one to analyze
the linear or nonlinear relation of these variables to punctual
SD or SWE values to be established (Grünewald et al., 2010;
Schirmer et al., 2011). Various statistical methods have been
applied for this purpose, including linear regression models
(Fassnacht et al., 2003; Hosang and Dettwiler, 1991), gener-
alized additive models (GAMs) (López-Moreno and Nogués-
Bravo, 2005), and binary regression trees (BRTs) (Breiman,
1984) which have been widely applied in a diversity of re-
gions (Elder et al., 1991; Erxleben et al., 2002; McCreight et
al., 2014).

The extent to which topographic variables explain snow
distribution can change during the snow season; the vari-
ability of terrain characteristics can drive processes related
to the spatial variability of snow accumulation (snow blow-
ing, terrain curvature) (Lehning et al., 2008), or affect the
energetic exchange between terrain and the snowpack (tem-
perature, incoming solar radiation), so the importance of to-
pographic variables is modified during the season (Molotch
et al., 2005). In addition, during a snow season the ter-
rain changes markedly (is smoothed) by snow accumulation

(Schirmer et al., 2011). However, few studies have systemat-
ically analyzed the intra- and inter-annual persistence of the
relation between snow distribution and topography. Recent
studies have assessed whether the influence of topography
is constant among different years, e.g., the similarities ob-
served at the end of the accumulation season (Schirmer and
Lehning, 2011; Schirmer et al., 2011), or the consistent frac-
tal dimensions in two analyzed years (Deems et al., 2008);
in both cases there was a relation with the dominant wind di-
rection, which highlights the predictive ability of topographic
variables.

The main focus of this study was to assess the influence
of topography on the spatial distribution of snowpack and its
evolution over time. The high temporal and spatial density
of the data set collected during the study enabled analysis of
the main topographic factors controlling snow distribution,
and assessment of whether topographic control of the snow-
pack varied during the snow season and between years hav-
ing very contrasting climatic conditions. For this purpose, we
conducted 12 surveys over 2012 (6) and 2013 (6) in a small
mountain catchment representing a typical subalpine envi-
ronment in the central Spanish Pyrenees, and obtained high-
resolution SD measurements using lidar technology with a
TLS.

2 Study area and snow and climatic conditions

The Izas experimental catchment (42◦44′ N, 0◦25′ W) is lo-
cated in the central Spanish Pyrenees (Fig. 1). The catchment
is on the southern side of the Pyrenees, close to the main di-
vide (Spain–France border), in the headwaters of the Gállego
river valley, and ranges in elevation from 2000 to 2300 m
above sea level. The catchment is predominantly east-facing,
with some areas facing north or south, and has a mean slope
of 16◦. There are no trees in the study area, and the basin is
mostly covered by subalpine grasslands dominated byFes-
tuca eskiaand Nardus stricta, with rocky outcrops in the
steeper areas. Flat, concave and convex areas occur in the
basin.

The climatic conditions are influenced by the proxim-
ity of the Atlantic Ocean, with the winters being humid
compared with zones of the Pyrenees more influenced by
Mediterranean conditions. The mean annual precipitation is
2000 mm, of which snow accounts for approximately 50 %
(Anderton et al., 2004). The mean annual air temperature is
3◦C, and the mean daily temperature is < 0◦C for an average
of 130 days each year (del Barrio et al., 1997). Snow covers a
high percentage of the catchment from November to the end
of May.

The two years analyzed in the study represent climatic ex-
tremes during recent decades. Severe drought occurred dur-
ing 2012, leading to snow accumulation well below the long-
term average. The thickness of the snowpack, measured at
the automatic weather station (AWS, Fig. 1), during winter
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showing the positions of the scan stations and the automatic meteorological station. The two 835 
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838 

Figure 1. Location of the Izas experimental catchment, and the digital elevation model showing the positions of the scan stations and the
automatic meteorological station. The two images in the bottom part of the figure, from Scan Station 1, show the terrain characteristics with
(1) and without snow cover (2).

in this year was less than the 25th percentile of the avail-
able historical data series of this AWS (1996–2011) (Fig. 2).
Only at the end of spring did late snowfall events increase
the amount of snow, but this rapidly melted. The opposite
occurred in 2013, a year in which the deepest snowpack and
the longest snow season of recent decades were recorded.
Winter and spring in 2013 were extremely humid, with tem-
peratures mostly between the 25th and 75th percentiles of
the AWS historical series. SD accumulation was very high
between February and June (exceeding the 75th percentile).

In some areas of the basin snow lasted until late July, which
is one month longer than in most of the preceding years
for which records are available. Regarding net solar radia-
tion data (shortwave), no measurements were available be-
fore December 2011, However, the annual evolution has been
tracked on Fig. 2 (bottom) showing a clear increase of in-
coming solar radiation while snow season advance, with high
variability due to meteorological factors.
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Figure 2. Daily average temperature, snow depth and net solar radiation (shortwave) at the automatic weather station (AWS) for the 2012
(left) and 2013 (right) snow seasons. The continuous lines represent the daily values for 2012 and 2013, and the dashed lines show the 25th
and 75th percentiles of historical daily series (1996–2011). The vertical dashed lines show the TLS survey days. Note that during some
surveys no snow was present at the AWS, but some areas of the Izas experimental catchment were covered by snow.

3 Data and methods

3.1 Snow depth measurements

During the study period high-resolution SD maps (Fig. 3)
were generated using a long range TLS (Riegl LPM-321),
which enables safe acquisition of SD information with short
acquisition times from remote areas, compared with mea-
surements obtained manually. This technique has been ex-
tensively tested (Prokop et al., 2008; Revuelto et al., 2014;
Schaffhauser et al., 2008), and systematically applied to the
study of snow distribution in mountain terrain (Egli et al.,
2012; Grünewald et al., 2010; Mott et al., 2013; Schirmer et
al., 2011). In a previous study, the mean absolute error in the
most distant areas of the catchment was less than 10 cm (Re-
vuelto et al., 2014), which is consistent with errors reported
in previous studies (Grünewald et al., 2010; Prokop, 2008;
Prokop et al., 2008; Schaffhauser et al., 2008).

TLS provides high-resolution three-dimensional informa-
tion on the terrain. Nevertheless, error sources need to be
considered because they can have large effects on the mea-
surements. To reduce the influences of instability on the TLS
(originated through small displacements of the tripod be-

cause the TLS vibrates while it is operating), which leads to
misalignment with reference points and atmospheric change,
a well-defined protocol must be applied. The protocol ap-
plied in this study for generating high-resolution SD maps
with a 1 m cell size was described by Revuelto et al. (2014).
This protocol is based on the following main points: data
collection; which includes experimental setup design and in-
formation acquisition by the scanning procedure; and data
processing, when data is filtered, quality checked and the
SD maps generated. Mainly, the methodology was based on
differences between DEMs obtained with snow coverage in
the study area and a DEM taken at 18 July 2012, when the
catchment had no snow cover. Twelve SD maps at a spa-
tial resolution of 5 m were generated for the 2012 and 2013
snow seasons (Fig. 3). In each year three surveys were under-
taken from February to April (2012: 22 February, 2 April, 17
April; 2013: 17 February, 3 April, 25 April), and three were
undertaken from May to June when intense melting condi-
tions dominated (2012: 2, 14 and 24 May; 2013: 6, 12 and
20 June). The average SD and SCA, and the maximum SD
are shown in Table 1. It shows that much lower SD and SCA
were observed in 2012 compared to 2013.
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Figure 3. Spatial distribution of snow depth in the Izas experimental catchment in the surveys undertaken in 2012 and 2013.
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Table 1.Summary statistics of the snowpack distribution and the snow covered area of the basin. Note that the snow covered area is expressed
as a % of the total area surveyed by the TLS, and the mean SD is the average of all SDs not including zero values.

Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/0517/02 03/04 25/04 06/06 12/06 20/06

Mean SD (m) 0.72 0.58 0.60 0.97 0.71 0.70 2.98 3.22 2.53 2.28 2.09 1.61
Max SD (m) 5.5 3.8 5.3 6.1 4.4 4.3 10.9 11.2 10.1 9.6 8.9 7.9
SCA (%) 67.2 33.5 94.1 98.8 30.9 18.9 98.8 100.0 96.3 86.4 77.1 67.0

3.2 Digital elevation model and topographic variables

From the two scan stations located in the study area (Fig. 1),
86 % of the total area of the catchment was surveyed using
the TLS. DEMs of 1 m grid size were initially obtained from
point clouds of varying density in different areas, but always
with a minimum of 1 point m−2 (Revuelto et al., 2014). Some
of the predictor variables cannot be calculated where data
gaps occur in the DEM (e.g., the topographic position index),
and others require a DEM with a greater surface than the area
scanned during the study (e.g., to calculate the potential so-
lar radiation, including the shadow effect from surrounding
topography, or to calculate the maximum upwind slope pa-
rameter, topographic information for distances up to 1200 m
is included from the exterior limit of the DEM obtained with
the TLS). Thus, a DEM having a 5 m grid size, available from
the Geographical National Institute of Spain (Instituto Ge-
ográfico Nacional,http://www.ign.es), was combined with
the snow-free DEM obtained using the TLS resampled from
1 to 5 m resolution (the empty raster of the Geographical Na-
tional Institute was used for the resampling, averaging all val-
ues within each cell). The 1 m grid-size SD maps were also
resampled to 5 m to enable matching of the two different data
sources.

To characterize the terrain characteristics, eight variables
were derived from the final DEM, including (i) elevation (El-
evationor Elev.), (ii) slope (Slope), (iii) curvature (Curva-
ture or Curv.), (iv) potential incoming solar radiation under
clear sky conditions (Radiationor Rad.), (v) easting expo-
sure (Eastingor East.), (vi) northing exposure (Northing or
North.), (vii) the topographic position index (TPI) and (viii)
maximum upwind slope (Sx).

Elevation was obtained directly from the DEM, while
the other variables were calculated using ArcGIS10.1 soft-
ware. This software calculatesSlopeas the maximum rate of
change in value from a specific cell to that of its neighbors
(15 m× 15 m window size), andCurvature is determined
from the second derivative of the fitted surface to the DEM in
the direction of maximum slope of the terrain for the neigh-
bors cells (15 m× 15 m window size too).Radiationwas ob-
tained using the algorithm of Fu and Rich (2002) and re-
ported in Wh m−2 based on the average conditions for the 15-
day period prior to each snow survey. This algorithm calcu-

lates the potential incoming solar radiation (shortwave) under
clear sky conditions, which may strongly differ from the real
radiation as a consequence of cloud cover. This measure pro-
vided the relative difference in the extraterrestrial incoming
shortwave solar radiation among areas of the catchment for
a given period under given topographical conditions (Fass-
nacht et al., 2013). In this way,Radiationcan be considered
as a good proxy of the spatial distribution of incoming solar
energy within the study area.EastingandNorthingexposure
were calculated directly as the sine and cosine, respectively,
of the angle between direction north and terrain orientation
or aspect. It provided information on the east (positive)/west
(negative) exposure and the north (positive)/south (negative)
exposure.

TheTPI provides information on the relative position of a
cell in relation to the surrounding terrain at a specific spatial
scale. Thus, this index compares the elevation of each cell
with the average cell elevation at specific radial distances as
follows (De Reu et al., 2013; Weiss, 2001):

T PI = zo − z̄ (1)

z̄ =
1

nR

∑
i∈R

zi, (2)

wherezo is the elevation of the cell in whichTPI is calculated
and z̄ is the average elevation of surrounding cells obtained
from Eq. (2) for a radial distanceR. For each pixel theTPI
was calculated for 5, 10, 15, 25, 50, 75, 100, 125, 150 and
200 m radial distances (scale factors).

For specific wind directions, the maximum upwind slope
parameter, averaged for 45◦ upwind windows (S̄x; Winstral
et al., 2002) provided information on the exposure or shelter-
ing of individual cells at various distances, resulting from the
topography. Rather than considering the contribution for the
dominant wind directions (Molotch et al., 2005),S̄x(Sxfur-
ther on) values for eight directions were selected and directly
related to the SD. The directions were 0◦ for north (N), 45◦

for northeast (NE), 90◦ for east (E), 135◦ for southeast (SE),
180◦ for south (S), 225◦ for southwest (SW), 270◦ for west
(W) and 315◦ for northwest (NW). ForSx, the searching dis-
tances (Winstral et al., 2002) considered were 100, 200, 300
and 500 m. These distances were selected to enable assess-
ment of the range at whichSxexhibited greatest control on
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SD dynamics, as has occurred in previous studies (Schirmer
et al., 2011; Winstral et al., 2002).

3.3 Statistical analysis

The 12 SD maps at 5 m spatial resolution were related to each
of the topographic variables considered (including the 40Sx
combinations, and the 9 distances forTPI). The large num-
ber of cells for which SD data were available enabled robust
correlations between topography and snow distribution to be
obtained, and provided a very large data set for training and
validating the SD distribution models.

Pearson’sr coefficients were obtained between SD and
each topographic variable. Using the whole data set, each
variable was correlated, for all available points, with the SD
value for the specific survey day. Given the large amount
of data for surveys, the degrees of freedom for correla-
tion analyses were very high and hence they can account
for statistically significant correlations even with very low
correlation coefficients. Moreover, the use of a very dense
data set of observations may have associated problems de-
rived from spatial autocorrelation (Koenig, 1999). For re-
ducing effects derived from spatial autocorrelation, we fol-
lowed a Monte Carlo procedure, in which 1000 random sam-
ples of 100 SD cases were extracted from the entire data set
(an average of 20 000 SD measurements for each day) and
correlated with topographic variables for assessing signifi-
cance. A threshold 95 % confidence interval (α < 0.05) was
used to assess the significance of correlations (r = ±0.197,
based on 100 cases). The spatial scales ofSx and TPI for
which SD showed a higher correlation, 200 and 25 m respec-
tively, were selected for further analysis (not presented in the
manuscript).

To assess the explanatory capacity when all topographic
variables were considered simultaneously, two statistical
models were used: (1) multiple linear regressions (MLRs)
and (2) binary regression trees (BRTs). A wide variety of re-
gression analyses for interpretation of much more complex
spatial data are available with greater capacity than MLRs
and BRTs to deal with spatial autocorrelation issues and the
nonlinear nature of the relationship between predictors and
the response variable (Beale et al., 2010). However, in this
study we used MLRs and BRTs because these methods have
been and are still widely used in snow studies, and because
both enable to isolate accurately the weight of each indepen-
dent variable within the model, which was the main objec-
tive of this research, rather than deriving models with maxi-
mum predictive capacity. Prior to running the models, a prin-
cipal component analysis (PCA) was applied to the entire
data set for detecting correlations between independent vari-
ables that could originate multicollinearity in MLR and BRT.
This analysis (not shown) grouped the topographic variables
in three components, showing thatTPI and Curvatureare
highly correlated with PCA component one, and alsoNor-
thing and Radiation (but in this case with opposite signs)

presented high correlation with component two of the PCA.
TPI andNorthingshowed both higher correlations with their
respective components and in general higher Pearson’sr co-
efficients with SD thanCurvatureandRadiation(see result
section). Therefore,CurvatureandRadiationwere discarded
as predictors in MLR and BRT analyses.

1. Multiple linear regressionestimates the linear influence
of topographic variables on SD. Despite its simplicity
and the rather limited capability under nonlinear con-
ditions (López-Moreno et al., 2010), MLR was used to
quantify the relative contribution of each variable to the
entire SD distribution model. SD was calculated from
the topographic variables at a specific location and day.
The threshold for a variable to enter in the model was
set atα < 0.05. Beta coefficients (obtained dividing the
standardized units of the coefficients by the mean value
of each variable) were used to compare the weight of
each variable within the regression models. As a first
step, a reduced data set (1000 cases) was randomly ex-
tracted to avoid an excessive number of observations
that may lead to spurious identification of statistically
significant predictor variables. A stepwise procedure
was used to obtain these variables from the random ex-
traction. The variables determined for each survey were
used to obtain the final model, but using the entire data
set (except 5000 cases for model validation), forcing
variables entrance in models.

2. Binary regression treeshave been widely used to model
snowpack distribution from topographic data (Erxleben
et al., 2002; Molotch et al., 2005). These are non-
parametric models that recursively split the data sam-
ple, based on the predictor variable that minimizes the
square of the residuals obtained (Breiman, 1984). One
BRT was created for each sampling date. The BRTs
were run until a new split was not able to account for
1 % of the explained variance, or when a node had less
than 500 cases; a maximum of 15 terminal nodes was
set to reduce tree complexity. As there were no over-
fitting problems associated with sample size, 15 000
cases were used to grow the trees and 5000 cases were
used for validation. By scaling the explained variance
of each variable introduced into each BRT (based on
the % of the total explained variance by the BRT), we
were able to compare the relative importance of each
topographic variable between the different models.

Coefficients of determination (r2) and Willmott’s D statis-
tic were used to assess the ability of each model to pre-
dict SD over an independent random sample of 5000 cases.
Willmott’s D was determined using Eq. (3) (Willmott, 1981):
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D = 1−

N∑
i=1

(Pi − Oi)

N∑
i=1

(∣∣Pi − Ō
∣∣ + ∣∣Oi − Ō

∣∣)2
, (3)

whereN is the number of observations,Oi is the observed
value,Pi is the predicted value, and̄O is the mean of the
observed values. The index ranges from 0 (minimum) to 1
(maximum predictive ability).

4 Results

4.1 Single correlations

Table 2 shows the correlation between SD andSx for the
eight wind directions at a distance of 200 m (identified as
the best correlated searching distance in previous analysis).
Despite differences in magnitude, the correlations for sur-
veys carried out at the beginning of the season (22 Febru-
ary 2012 and 17 February 2013) in each year showed that
SD was clearly affected by N and NW wind directions. The
contribution of N and NW wind directions is clearly evident
for the surveys on 17 February 2013 (Fig. 4, where wind
roses with average wind speeds and direction, for the 15-day
period before each survey, are presented), when greater SD
was recorded in the leeward slopes from a northerly direc-
tion (Fig. 3, northerly areas of the maps). In the two years of
the study, a correlation with W and SW wind directions was
observed to increase progressively during the snow season
(Fig. 4 and Table 2 correlations). In 2013 this phenomenon
was less marked because of the greater SD accumulation at
the beginning of the snow season accompanied with NW di-
rection winds, which resulted in only moderate changes in
the Sx for the most strongly correlated wind directions. It
was also observed that in both study years once the snow
had started to melt (the last three surveys in each season)
the snow distribution did not change in relation toSxdirec-
tions. The best correlatedSxdirections for each survey are
in good agreement with wind roses main directions (Fig. 4).
These directions are for the following survey days: 315◦ for
22 February 2012, 270◦ for 2 and 17 April 2012 and 225◦

for the three surveys in May 2012; in 2013, 315◦ was the
best correlated direction for 17 February, and 270◦ for the
other five surveys of the snow season.

Correlations between the best correlatedSxdirection for
each day and SD were compared with correlations between
SD and the other topographic variables (Table 3). This
showed thatSxhad one of the greatest coefficient of correla-
tion with SD (range 0.22–0.56). The correlations were higher
during the accumulation periods, especially in the 2013 snow
season, with a reduction in correlations values occurring dur-
ing the melt period at the end of each snow season.

The TPI at 25 m showed the highest correlation with SD
for the 12 sampled days. During 2012 the mean correlation
values ranged from−0.32 to−0.58 for those surveys during
which snow accumulation dominated in the days preceding
the surveys. Ther values were closer to the significance level
for the surveys where the preceding days were dominated by
melting conditions (14 and 24 May). In 2013, theTPI was
more highly correlated with SD than in 2012, with Pearson’s
r coefficients <−0.6 for all survey days.Curvaturealso had
a high correlation with SD, and similar toTPI with a 25 m
searching distance was significantly correlated on all the sur-
vey dates, but unlike theTPI, the correlation ofCurvature
with SD did not decrease during the snowmelt periods. The
significant correlations ofTPI andCurvaturewith SD high-
light the importance of terrain curvature on the SD distribu-
tion. The importance of terrain curvature at different scales
for SD distribution is clearly evident in Fig. 3, which shows
that higher SD values were usually found for concave areas,
which showed snow presence until the end of each snow sea-
son.

The correlation betweenElevationand SD varied among
survey days (Table 3). The correlations were usually positive,
but only statistically significant (or approaching significance)
for days when melting dominated (the last two surveys in
2012 and 2013).Slopewas relatively weakly correlated with
SD during the 2012 snow season. In 2013 the correlation was
greater, and was statistically significant for all days. Simi-
larly to Elevation, the correlation betweenSlopeand SD was
variable between the two study years, and showed a similar
temporal pattern toEasting, probably because of the pres-
ence of steeper areas on the east-facing slopes.

The correlation betweenNorthingand SD was rarely sta-
tistically significant, highly variable and contributed to ex-
plaining SD in very different ways in 2012 and 2013. In 2012
no correlation between SD andNorthing was found during
the accumulation period, but during the melting period a
slight positive correlation was observed, as snow remained
longer on north-facing slopes. The 2013 snow season started
with a large precipitation event dominated by strong winds
from a northerly direction, leading to high levels of snow
accumulation on the south-facing slopes. This explains the
strong and statistically significant negative correlation of SD
with Northing for 17 February 2013. This event influenced
the rest of the season (as evident in Table 2 for 2013), but a
progressive decrease in its influence was evident for the fol-
lowing survey days.Radiationhad an almost opposite influ-
ence on SD to that observed forNorthing. During the melting
period, for each year, the Pearson’sr correlation between SD
andRadiationwas negative, indicating a thinner snowpack
on the most irradiated slopes. This relation was statistically
significant at the end of the 2013 snow season. However, dur-
ing the accumulation period in 2013, statistically significant
and positive correlations were observed withNorthing and
Radiation, which are connected to the strong snow redistri-
bution by winds from N-NW directions.
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Table 2.Pearson’sr coefficients between SD andSx, calculated for the eight studied wind directions over the survey days.

Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

Sx0◦ 0.19 0.13 0.09 −0.11 0.06 −0.01 0.51* 0.40* 0.31* 0.23* 0.22* 0.20*
Sx45◦ 0.15 −0.02 0.00 −0.16 −0.08 −0.09 0.36* 0.25* 0.17 0.12 0.12 0.12
Sx90◦ 0.12 −0.14 −0.07 0.11 −0.11 −0.03 −0.15 −0.15 −0.10 −0.09 −0.09 −0.10
Sx135◦ 0.02 −0.05 0.05 0.26* 0.01 0.11 −0.27* −0.19 −0.10 −0.06 −0.06 −0.06
Sx180◦ 0.02 0.14 0.15 0.38* 0.17 0.21* −0.19 −0.08 0.02 0.08 0.08 0.12
Sx225◦ 0.12 0.29* 0.26* 0.44* 0.32* 0.23* 0.06 0.18 0.26* 0.29* 0.29* 0.31*
Sx270◦ 0.20* 0.33* 0.34* 0.26* 0.27* 0.21* 0.48* 0.52* 0.49* 0.45* 0.42* 0.43*
Sx315◦ 0.22* 0.26* 0.27* 0.01 0.22* 0.12 0.56* 0.50* 0.41* 0.34* 0.32* 0.33*

* Correlations that were statistically significant (α < 0.05) in at least half of the samples (500 out of 1000 samples) from the Monte Carlo approach, and boldr

coefficients represent the best correlatedSxdirection for a specific survey day.

Table 3.Pearson’sr coefficients between SD and the topographic variables.

Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

Elev. 0.09 0.26* 0.16 0.10 0.29* 0.19 0.09 0.18 0.13 0.18 0.21* 0.26*
Slope 0.06 0.18 0.02 −0.03 0.20* 0.03 0.25* 0.27* 0.20* 0.20* 0.21* 0.26*
Curv −0.44* −0.45* −0.47* −0.49* −0.41* −0.37* −0.39* −0.40* −0.40* −0.39* −0.38* −0.38*
North −0.06 0.00 0.04 0.19 0.07 0.11 −0.38* −0.27* −0.19 −0.09 −0.06 −0.11
East. 0.09 0.21* 0.13 0.13 0.13 0.11 0.25* 0.26* 0.27* 0.22* 0.18 0.14
Rad 0.05 0.04 −0.06 −0.22* −0.12 −0.11 0.36* 0.21* 0.10 −0.09 −0.12 −0.23*
TPI 25 −0.56* −0.46* −0.54* −0.58* −0.40* −0.32* −0.66* −0.68* −0.68* −0.66* −0.63* −0.61*
Sx 0.22* 0.33* 0.34* 0.44* 0.32* 0.23* 0.56* 0.52* 0.49* 0.45* 0.42* 0.43*

* Correlations that were statistically significant (α < 0.05) in at least half of the samples (500 out of 1000 samples) from the Monte Carlo approach, and boldr coefficients represent
the best correlated topographic variable for a specific survey day.

4.2 Multiple linear regression and binary regression
tree models

Figure 5 shows the Willmott’sD values and the coefficients
of determination (r2) obtained in the comparison of observed
and predicted values using MLRs and BRTs for a data set re-
served for validation (5000 cases). The MLRs producedr2

values ranging from 0.25 to 0.65 and Willmott’sD values
ranging from 0.60 to 0.88, while the BRTs producedr2 val-
ues ranging from 0.39 to 0.58 and Willmott’sD values rang-
ing from 0.72 and 0.85. For both methods the relations be-
tween the observed and predicted values were stronger for
2013. Accuracy decreased at the end of the snow season,
when the snowpack was mostly patchy across the basin; this
was particularly the case for the end of the 2012 season.
Overall, the performance of the MLRs was more variable
than that of the BRTs, which were more constant amongst the
various snow surveys. For those days on which the models
were most accurate in predicting SD variability, the MLRs
showed slightly better scores than the BRTs. However, for
days on which the accuracy between predictions and obser-
vations was lower, the BRTs provided better estimates than
the MLRs. For 2012, slightly better results were obtained us-
ing MLRs, while the opposite occurred in 2013. Neverthe-

less, only large differences in the accuracy of each model
were evident by the end of 2012 snow season, in the two last
surveys, which were characterized by thin and patchy snow-
pack.

As shown for single correlations, theTPI variable ex-
plained most of the variance in MLR models developed for
all analyzed days (Table 4). The contribution of the other
variables varied markedly among surveys, particularly when
the two years were compared. In most cases,Elevationwas
the second most important variable explaining the SD dis-
tribution in 2012, followed bySxandSlope. The other vari-
ables made a much smaller contribution, or were not included
in the models. The contribution ofElevationwas much less
in 2013, and it was not included in three of the six surveys,
whereas in 2012 it was included in all surveys. For the en-
tire 2013,Sx was the second most important variable, fol-
lowed byEasting, which had an almost negligible influence
in 2012.Northing was only included in the models for the
surveys carried out during periods dominated by snow ac-
cumulation, and was not included in the models during the
periods dominated by melting.

Figure 6 shows two examples of BRTs, obtained for 2 May
2012 (upper panel) and 3 April 2013 (bottom panel), which
accounted for the largest amount of snow accumulation in

www.the-cryosphere.net/8/1989/2014/ The Cryosphere, 8, 1989–2006, 2014



1998 J. Revuelto et al.: Topographic control of snowpack distribution in a small catchment

Figure 4. Wind roses from the automatic weather station placed at the catchment obtained for a 15-day period.

both years. The variableTPI determined the first branching
point, and this occurred in the majority of the trees obtained
(not shown). After the first branching, other variables were
significant in the model, includingSx and TPI for 2 May
2012, andSxandNorthing for 3 April 2013, demonstrating
the importance of these variables in the subsequent branch-
ing of the trees.

The relative importance (scaled from 0 to 100) of each to-
pographic variable in each BRT is shown in Table 5. This
shows thatTPI was the first most important variable explain-

ing SD for all survey days. For the 2012 snow season,TPI
explained more than 67 % of the total explained variance
in all BRTs, and 75 % during the accumulation period (the
first three surveys). Thus, for most of the survey days the
variance explained by the other variables was < 30 %. Fur-
thermore,TPI was in all cases the first split variable (which
accounted from a 23 to a 30 % of the explained variance),
with a critical value that ranged from−0.67 m to−0.43 m
and an average value of−0.54 m. The second most impor-
tant variable explaining the SD distribution in 2012 differed
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Figure 5. Willmott’s D andr2 values between the observed and predicted SD, based on the multiple linear and binary regression models for
all survey days.

Table 4.Multiple linear regression beta coefficients for each independent variable and sampled day.

Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/05 17/02 03/04 25/04 06/06 12/06 20/06

TPI −0.69 −0.53 −0.60 −0.59 −0.48 −0.40 −0.78 −0.72 −0.73 −0.80 −0.74 −0.72
Sx 0.11 0.28 0.26 0.20 0.16 0.36 0.31 0.43 0.37 0.38 0.31
Elev. 0.09 0.22 0.34 0.27 0.27 0.35 0.14 0.08 0.13
Slope −0.25 −0.29 −0.24 −0.21 −0.21 −0.10 −0.14 −0.16 −0.09 −0.15
North −0.22 0.13 −0.16 −0.12 −0.11 −0.11
East. 0.10 0.29 0.25 0.25 0.31 0.23 0.20
r2 0.45 0.31 0.40 0.47 0.33 0.25 0.65 0.63 0.60 0.60 0.57 0.51

amongst survey days. Thus,Sxwas the second most influen-
tial variable during May (except for 24 May 2012), follow-
ing the largest snowfall in the season (which occurred the 1
May 2012), andElevationwas the most important variable in

the other surveys during 2012.Northingalso had an evident
influence during the two first surveys of the year, but subse-
quently had minimal explanatory capacity, as was the case
for all the other variables. In 2013TPI was also the main
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Figure 6: Binary regression tree obtained for 2 May 2012(top) and 3 April 2013 (bottom). 858 
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Figure 6. Binary regression tree obtained for 2 May 2012 (top) and 3 April 2013 (bottom). The final nodes (with ellipses) show the predicted
SD in the zone having the specified terrain characteristics. At each branch point, one topographic variable is considered; if the value is less
than the specified value, the left branch is selected, but if it is equal to or greater than the specified value, the right branch is selected.

contributor to the total explained variance, exceeding 50 %
for almost all survey days, and approaching or > 70 % during
the snowmelt period. For this year, alsoTPI was the first split
variable in nearly all BRT, with critical values ranging from
−0.47 to−0.15 m and an average value of−0.28 m; except
for the 13 February 2013, in whichSxwas the first split vari-
able. The influence ofSxwas more important in 2013 than
in the previous year. At the beginning of 2013 the contribu-
tion of Sx to the total explained variance was almost 46 %,
and remained > 20 % for the rest of the snow season. An
exception was the last survey, when melting dominated and
its effect declined to 12 %. When snow was not mobilized
for long periods by wind (no changes on the best correlated
wind direction ofSxare observed), the SD distribution was
more dependent on variables related to terrain curvature (TPI
andCurvature). During 2013,Elevationcontributed approx-
imately 5 % to the total explained variance during the entire
snow season.Northingmade a significant contribution to the
model (14.7 %) only one day (3 April 2013), and a smaller
contribution on the following survey day (25 April 2013).
When included in the BRTs, the other variables (Easting,

Radiation) made minor contributions to the total explained
variance.

Figure 7 shows the mean contribution of each topographic
variable vs. the coefficient of variation from the twelve sur-
veys for the different statistical approaches considered in this
study (Pearson’sr coefficients, beta coefficients of the MLRs
and the contribution to the explained variance for each BRT).
Clearly, TPI is the most important variable to explain the
snow distribution in the catchment, but it is also the variable
that exhibits a lower variability between the different surveys
(CV < 0.2). Besides it has been introduced as predictor for
MLRs and BRTs in all studied days.Sx is the next variable
in importance to explain snow distribution, being introduced
as predictor in the majority of the modelled days (11 and 10
out of 12 days for MLRs and BRTs, respectively). It shows
a low temporal variability when correlation’s coefficients are
calculated (CV= 0.24), but the variability in its contribution
to MLRs and BRTs increases noticeably, with CV values of
0.35 and 0.59, respectively. The rest of the variables show a
much lower mean contribution for explaining snow distribu-
tion and a high temporal variability in their explanatory role.
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Table 5.Contribution of the various topographic variables to the explained variance of SD distribution in the binary regression tree models
for 2012 and 2013. Values have been rescaled from 0 to 100.

Snow season 2012 Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/0517/02 03/04 25/04 06/06 12/06 20/06

TPI 83.2 78.8 75.0 71.7 74.0 66.9 49.1 56.4 64.4 71.2 69.9 77.5
Sx 4.6 12.7 13.4 10.8 45.9 23.1 23.0 21.8 20.1 12.5
Elev. 5.7 6.8 13.2 9.1 8.2 15.2 5.0 5.7 5.0 3.3 5.9 5.4
Slope 1.7 5.4 5.7 6.5 3.2 7.0 2.1
North 9.3 8.1 1.5 1.3 14.7 4.3 2.4 2.9 3.6
East. 1.2 1.3 1.1 1.0
r2 0.56 0.42 0.52 0.54 0.46 0.39 0.58 0.56 0.55 0.54 0.53 0.51

Lower CV values are observed for MLRs, ranging the major-
ity between 0.3 and 0.4, than for BRTs models, ranging the
majority between 0.4 and 0.8.

5 Discussion

The distribution of snow in mountain areas is highly variable
in space and time, as shown for Izas experimental catchment
during two consecutive years. Many meteorological and to-
pographic parameters affect the snow distribution and its evo-
lution through time with different weights subjected to sev-
eral factors. In this context, we demonstrated that terrain
characteristics significantly affect SD distribution in a sub-
alpine catchment. Also we have shown that its effect evolved
during the snow accumulation and melting periods over two
years having highly contrasting climatic conditions and snow
accumulation amounts

Many studies have analyzed the spatial distribution of SD
in mountain areas considering both, intra- and inter- an-
nual variability of the topographic control on the snowpack
distribution (Anderton et al., 2004; Erickson et al., 2005;
López-Moreno et al., 2010; McCreight et al., 2014). Other re-
searches have also focused their attention in long-term inter-
annual snow distribution analyses (Jepsen et al., 2012; Sturm
and Wagner, 2010; Winstral and Marks, 2014). The results of
these previous works have highlighted the difficulties in fully
explaining the distribution of snow in complex mountainous
terrain. In addition, results differ among studies, and suggest
that different variables govern the distribution of snowpack
among areas as consequence of their different characteris-
tics and geographical settings. These differences include sur-
face extension, the altitudinal gradients, the importance of
wind redistribution, the presence or absence of vegetation
and the topographic complexity as concluded by Grünewald
et al. (2013) in a study where seven study sites across the
world were considered.

Most of the topographic variables investigated in this study
have been included in previous studies, includingElevation,
Slope, Radiation, CurvatureandSx.Other variables, in par-
ticularTPI, have received little attention in previous research

(López-Moreno et al., 2010). We showed thatTPI at a scale
of 25 m had the greatest capacity to explain the SD distri-
bution in the study catchment.Curvature(which refers to a
smaller spatial scale of terrain curvature when compared with
TPI) is also highly correlated with the SD distribution, but
not as much asTPI. This reinforces the importance of con-
sidering terrain curvature at various scales for explaining the
SD distribution in mountain environments. The correlation
between snowpack and theTPI decreased during melting pe-
riods, whereas the correlation withCurvatureremained con-
stant. This suggests that snow accumulates more in small
deep concavities, but is shallower at the end of the season
in wider concave areas that were identified by the 25 mTPI
scale. This effect was evident at the end of the snow sea-
son, when snow was present only in deep concavities, as
shown in Fig. 3. To explain the snow distribution, Anderton
et al. (2004) compared the relative elevation of a cell with the
terrain over a 40 m radius, and observed that this had a major
role on SD distribution, which sustain curvature importance
at different scales.

The maximum upwind slope (Sx; Winstral et al., 2002) has
also been identified as a key variable explaining snow distri-
bution, improving the results obtained when it is introduced
into models. Our results, 200 m searching distance forSx,
is comparable with those of other studies that have shown
that the optimum searching distance for correlatingSxwith
the SD distribution is 300 m (Schirmer et al., 2011), which
is not a large difference for the considered distances in this
work reaching 500 m. As it is observed from the reported
wind information, Izas experimental catchment has W-NW
dominant wind direction what is consistent with the best cor-
relatedSxdirections. For this reason, theSxpreferred direc-
tion for each date was selected, and showed that there were
intra-annual shifts in the most highly correlated direction.
The change in the most importantSxdirection was similar
between the 2012 and 2013 snow seasons; it started with a
northerly component and evolved to a dominant westerly di-
rection. We also found a decrease in the correlation between
Sxand the snow distribution at the end of each snow season,
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Figure 7.Mean contribution of topographic variables to models and Pearsons’r coefficients vs. the coefficients of variation for all considered
surveys. Upper panel shows Pearson’sr coefficients; middle panel shows beta coefficients of the multiple linear regression; and the bottom
panel shows the contribution to the explained variance to the binary regression trees. Each graph point is accompanied with its variable, and
in the case of MLR and BRT, in brackets the number of days in which each variable was included in models.

when melting conditions dominated. This is consistent with
the findings of previous studies (Winstral and Marks, 2002).

Sxparameter takes into account sheltering effects with to-
pographic origin in relation to wind directions. SD distri-
bution maps show higher SD amounts in leeward slopes,
located in E-SE slopes.TPI is not able to explain snow
drifts, because this index considers the topographic charac-
teristics in all directions. Nevertheless, terrain characteristics

at the study site in relation to SD distribution have shown a
higher importance ofTPI when compared toSx. The most
plausible explanation accounting for this result is that the
basin has a rather reduced size, shows the same general as-
pect (SE facing) and topography is relatively gentle. Under
such conditions, during wind blowing events snow is ac-
cumulated in all wide concavities of the basin (represented
by TPI) independently of its specific location. Nonetheless,
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wind redistribution will be affected by a combination of local
topography and main wind directions; which makes it neces-
sary to consider theSxparameter. As it has been observed,
this effect lasts in time until the melting season has advanced.

Only for two days (22 February 2012 and 2 April 2012)
was there no contribution (or it was minor) ofSxto explain
SD distribution, according to BRTs and MLRs. On these days
Northingwas introduced into the models, and was found to
explain some of the variance ofSxfrom the northerly direc-
tion, the best correlated direction for these days (Table 2).

AlthoughElevationhas been found to largely explain the
snow distribution in areas having marked altitudinal differ-
ences (Elder et al., 1998; Erxleben et al., 2002; Molotch and
Bales, 2005), in our study no strong association was found
between SD andElevation, with significant correlations oc-
curring only during the snowmelt period. This is because of
the low elevation range of the study area (300 m). During
the accumulation period the entire catchment is generally
above the freezing height. However, during spring the 0◦C
isotherm shifts to higher elevations, which may lead to differ-
ent melting rates within the basin. Despite the relatively weak
correlation betweenElevationand SD, this variable was in-
troduced as a predictor in the MLRs and BRTs for most of
the days analyzed. Similarly, López-Moreno et al. (2010) re-
ported that elevation was of increasing importance as the grid
size increased. Anderton et al. (2004) also informed about the
importance of elevation to explain snowpack distribution in
the same study area. The results of the present study suggest
the increase in importance ofElevationat the end of the snow
season, and particularly when it is considered in combination
with other topographic variables in MLR and BRT models.

Slopehas a weak explanatory capacity for snow distribu-
tion, probably because the slope in most of the catchment is
not steep enough to trigger gravitational movements includ-
ing avalanches and slush during the snowmelt period, which
could thin the snowpack on the steepest slopes (Elder et al.,
1998). Most likely, some ofSlopeexplanatory capacity is in-
cluded onRadiationexplanatory capacity, because it affects
solar light incident angle, besides the steeper areas of the
catchment are in south facing zones. Nevertheless, quanti-
fying such kind of effects is highly difficult due to the high
complexity of SD dynamic in mountain terrain.

Radiation, NorthingandEastingshowed no close correla-
tion with the snowpack distribution; their relationships with
SD were variable over time, with statistically significant cor-
relations occurring on some days and only weak correlations
on other days. The results suggested thatRadiationandNor-
thing (which showed almost opposite patterns) may be re-
lated to SD for two different reasons. During the accumula-
tion period in 2013 heavy snowfalls associated with northerly
winds led to the accumulation of deep snow on south-facing
areas (more irradiated), whereas during the snowmelt period
the greater exposure of the southern slopes to solar energy
led to a positive (negative) correlation withNorthing(Radia-
tion). This phenomenon was also observed by López-Moreno

et al. (2013), using a physically based snow energy balance
model in the same study area. Moreover, the high and oppo-
site correlation betweenNorthingandRadiationobtained in
PCA results (not shown in the manuscript), was showing a
potential problem of multicollinearity. Thus, onlyNorthing
was considered for MLRs and BRTs (the same occurred with
TPI andCurvature, being only considered in statistical mod-
els theTPI). Although Northing did not show a significant
correlation with SD during accumulation periods; when the
surveys were closer to the snowmelt period, the negative cor-
relation of this variable with SD was more evident, possibly
due to the increase of the difference in the energetic exchange
between sun exposed and shaded areas. The importance of
Northingin MLR models, combined with the contribution of
Eastingduring the accumulation period may be related to the
high snow redistribution originated by wind directions from
N-NW directions. Therefore, terrain aspect relation with SD
distribution (considered withNorthingandEasting) in winter
is tightly related to the accumulation patterns resulting from
wind redistribution, whereas in spring they were associated
with the unequal distribution of solar radiation, which leads
to higher melting rates on the most irradiated slopes, which
has shown better explanatory capacity thanRadiationat Izas
Experimental catchment.

The MLRs and BRTs provided reasonably high accuracy
scores when observed and predicted SD data were compared.
The scores were comparable, and in some cases better, to val-
ues reported in previous researches using similar methods.
As an example, Molotch et al. (2005) reportedr2 values be-
tween 0.31 and 0.39 using BRT; and Winstral et al. (2002),
who considered different number of terminal nodes of BRT,
obtained an optimal tree size of 16 nodes data set with an
r2 value close to 0.4. Moreover results presented here were
obtained from a separate data set, and data used to create the
models were not considered for testing, thanks to the large
available data set. One reason for the improvement may be
the use of theTPI as a SD predictor, as this variable has not
been considered in previous studies. Nevertheless, it should
be noted that the study sites considered in other studies, could
differ in terms on complexity of terrain, and also in SD ac-
cumulation amounts. For the 12 survey days theTPI had the
greatest explanatory capacity in both approaches. However,
based on comparison of the different dates and surveys, the
other variables made more varying contributions, as a result
of the different roles they play during the snow accumulation
and melting periods, and the wind conditions during the main
snowfall events. The models had less capacity to explain spa-
tial variability of the snowpack when the snow was thinner
and patchy. The BRT and MLR approaches were consistent
with respect to error estimates. The results obtained using
each approach were comparable, so the trends in the vari-
able ranking with both models for each survey day were sim-
ilar. Only during conditions of snow scarcity did the BRT ap-
proach demonstrate better capability to relate SD to topogra-
phy. This is probably a consequence of the greater capacity of
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BRTs to take account of the nonlinear response of the snow-
pack to topography, and the occurrence of sharp thresholds
typical of days when the snowpack is patchy (López-Moreno
et al., 2010; Molotch et al., 2005).

Despite model results differ between survey days and
years, the most important variable,TPI, is always present
in the models and their contribution to the total explained
variances show very low CV values. Other variables with an
also important role to explain SD distribution (i.e.,Sx) are in-
cluded in most of the models as predictors showing their in-
fluence on snowpack distribution, although their contribution
to the final models changes noticeably amongst different sur-
veys. Moreover for 2012 and 2013 a consistent inter-annual
distribution of the snowpack in the catchment is observed;
the areas of maximum SD and the location of snow free
zones were consistent between both years of the study, and
more importantly there is a strong consistency of the effect
of topography on SD. This spatial consistency of snowpack
has implications for soil dynamics and plant cycles, because
some parts of the basin will tend to remain free of snow cover
during longer periods favoring the presence of temporary
frozen soils, and reducing the isolation effect of snowpack to
the plants (Keller et al., 2000; Pomeroy and Gray, 1995). Be-
sides, it suggests that the information acquired from TLS dur-
ing several years could be useful to design long-term mon-
itoring strategies of SD in the basin based on few manual
measurements in representative points according their terrain
characteristics.

6 Conclusions

The TPI at a 25 m searching distance was the best topo-
graphic variable, and the most persistent in time, for ex-
plaining SD distribution in the Izas experimental catchment.
This suggests the importance of including this index in fu-
ture snow studies, and the need to establish the best searching
distance for relating this variable to SD distribution at other
study sites. The maximum upwind slope (Sx) at a searching
distance of 200 m was also an important variable explain-
ing the SD distribution, but its influence varied markedly
between years and surveys, depending of the specific wind
conditions during and after main snowfall events. Neverthe-
less,Sx has shown a similar evolution pattern for the best
correlated direction in the two analyzed snow seasons. The
influence of the other topographical variables on the spa-
tial distribution of SD was lower, and showed higher intra-
and inter-annual variability. The total variance explained by
BRTs and MLRs clearly decreased for periods on which the
snowpack was thinner and more patchily. The results from
BRTs and MLRs models were consistent in terms of vari-
ables importance ranking, and the explanatory capacities of
the main variables were similar for all surveys. ExceptTPI,
that showed very low coefficient of variations for the two
approaches, the variability of the contribution of each to-

pographic variable for the different surveys was noticeably
lower for MLRs than for BRTs.
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