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Abstract. In this study we analyzed the relations betweention or melting conditions dominated in the preceding days.
terrain characteristics and snow depth distribution in a smallThe total variance explained by the models clearly decreased
alpine catchment located in the central Spanish Pyreneedor those days on which the snowpack was thinner and more
Twelve field campaigns were conducted during 2012 andpatchily. Despite the differences in climatic conditions in the
2013, which were years characterized by very different cli-2012 and 2013 snow seasons, similarities in snow distribu-
matic conditions. Snow depth was measured using a longions patterns were observed which are directly related to ter-
range terrestrial laser scanner and analyses were performedin topographic characteristics.
at a spatial resolution of 5m. Pearson’sorrelation, mul-
tiple linear regressions (MLRs) and binary regression trees
(BRTs) were used to analyze the influence of topography on
the snow depth distribution. The analyses were used to ident Introduction
tify the topographic variables that best explain the snow dis-
tribution in this catchment, and to assess whether their contriAssessing the snow distribution in mountain areas is impor-
butions were variable over intra- and interannual timescalestant because of the number of processes in which snow plays
The topographic position index (index that compares the rel-a major role, including erosion rates (Pomeroy and Gray,
ative elevation of each cell in a digital elevation model to 1995), plant survival (Keller et al., 2000; Wipf et al., 2009),
the mean elevation of a specified neighborhood around tha$oil temperature and moisture (Groffman et al., 2001), and
cell with a specific shape and searching distance), which hathe hydrological response of mountain rivers (Bales and Har-
rarely been used in these types of studies, most accuratefyngton, 1995; Barnett et al., 2005; Liston, 1999; Pomeroy et
explained the distribution of snow. The good capability of al., 2004). As mountain areas are highly sensitivity to global
the topographic position index (TPI) to predict snow dis- change (Beniston, 2003), snow accumulation and melting
tribution has been observed in both, MLRs and BRTs forprocesses are likely to be subject to marked changes in com-
all analyzed days. Other variables affecting the snow deptting decades, affecting all processes influenced by the pres-
distribution included the maximum upwind slope, elevation ence of snow (Caballero et al., 2007; L6épez-Moreno et al.,
and northing. The models developed to predict snow dis-2011, 2012b; Steger et al., 2012). For these reasons, much
tribution in the basin for each of the 12 survey days wereéeffort has been devoted to understanding the main factors
similar in terms of the explanatory variables. However, thethat control the spatial and temporal dynamics of snow (Egli
variance explained by the overall model and by each topo€t al., 2012; Lopez-Moreno et al., 2010; Mott et al., 2010;
graphic variable, especially those making a lesser contribuSchirmer et al., 2011).
tion, differed markedly between a year in which snow was One of the main difficulties in snow studies is obtaining
abundant (2013) and a year when snow was scarce (2012jeliable information of the variables that describe snow dis-
and also differed between surveys in which snow accumulatribution, including snow depth (SD), snow water equivalent
(SWE) and snow covered area (SCA). Manual measurements
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have traditionally been used to provide information on the(Schirmer et al., 2011). However, few studies have systemat-
distribution of snowpack, with different sampling strategies ically analyzed the intra- and inter-annual persistence of the
having been applied at various spatial scales (Jost et al., 200Telation between snow distribution and topography. Recent
Lépez-Moreno et al., 2012a; Watson et al., 2006). Howeverstudies have assessed whether the influence of topography
manual sampling is not feasible for large areas because of this constant among different years, e.g., the similarities ob-
time involved, especially when SWE measurements are alsgerved at the end of the accumulation season (Schirmer and
acquired. In the last decade the use of airborne laser scan-ehning, 2011; Schirmer et al., 2011), or the consistent frac-
ners (ALSs) (Deems et al., 2006) and terrestrial laser scantal dimensions in two analyzed years (Deems et al., 2008);
ners (TLSs) (Prokop, 2008), both of which are based on li-in both cases there was a relation with the dominant wind di-
dar (light detection and ranging) technology, have providedrection, which highlights the predictive ability of topographic
for major advances in obtaining data on the SD distributionvariables.
at unprecedented spatial resolutions. These developments The main focus of this study was to assess the influence
have enabled studies of several factors that in the past havef topography on the spatial distribution of snowpack and its
been only marginally considered, including scaling issuesevolution over time. The high temporal and spatial density
(Fassnacht and Deems, 2006; Mott et al., 2011; Schirmepof the data set collected during the study enabled analysis of
and Lehning, 2011; Trujillo et al., 2007), the detailed dy- the main topographic factors controlling snow distribution,
namics of snow accumulation and ablation (Grinewald etand assessment of whether topographic control of the snow-
al., 2010; Schirmer et al., 2011; Scipion et al., 2013), andpack varied during the snow season and between years hav-
show transport processes (Mott et al., 2010). In addition, theng very contrasting climatic conditions. For this purpose, we
high density measurements provided by lidar technologiessonducted 12 surveys over 2012 (6) and 2013 (6) in a small
are a valuable resource for detailed investigation of the link-mountain catchment representing a typical subalpine envi-
age between snow distribution and topography. In the pasttonment in the central Spanish Pyrenees, and obtained high-
this linkage has mostly been studied using manual measureesolution SD measurements using lidar technology with a
ments, and hence with generally limited spatial and temporall LS.
resolution (Lopez-Moreno et al., 2010).

Previous studies have highlighted the marked control of to-
pography on snow distribution in mountain areas (Anderton2 Study area and snow and climatic conditions
et al., 2004, Erickson et al., 2005; Lehning et al., 2011; Mott
et al., 2013), and the importance of vegetation and wind ex-The Izas experimental catchment {42 N, 0°25 W) is lo-
posure (Erxleben et al., 2002; Trujillo et al., 2007). The mostcated in the central Spanish Pyrenees (Fig. 1). The catchment
commonly used approach has been to develop digital elevais on the southern side of the Pyrenees, close to the main di-
tion models (DEMSs) that describe the spatial distribution of vide (Spain—France border), in the headwaters of the Gallego
elevation, from which other terrain variables are derived suchriver valley, and ranges in elevation from 2000 to 2300 m
as slope, terrain aspect, curvature, wind exposure or shelteebove sea level. The catchment is predominantly east-facing,
ing, and potential solar radiation. This enables one to analyzevith some areas facing north or south, and has a mean slope
the linear or nonlinear relation of these variables to punctualbf 16°. There are no trees in the study area, and the basin is
SD or SWE values to be established (Grinewald et al., 2010mostly covered by subalpine grasslands dominateédsy
Schirmer et al., 2011). Various statistical methods have beetuca eskiaand Nardus stricta with rocky outcrops in the
applied for this purpose, including linear regression modelssteeper areas. Flat, concave and convex areas occur in the
(Fassnacht et al., 2003; Hosang and Dettwiler, 1991), genetasin.
alized additive models (GAMs) (L6pez-Moreno and Nogués- The climatic conditions are influenced by the proxim-
Bravo, 2005), and binary regression trees (BRTs) (Breimanijty of the Atlantic Ocean, with the winters being humid
1984) which have been widely applied in a diversity of re- compared with zones of the Pyrenees more influenced by
gions (Elder et al., 1991; Erxleben et al., 2002; McCreight etMediterranean conditions. The mean annual precipitation is
al., 2014). 2000 mm, of which snow accounts for approximately 50 %

The extent to which topographic variables explain snow(Anderton et al., 2004). The mean annual air temperature is
distribution can change during the snow season; the vari3°C, and the mean daily temperature is ¥@for an average
ability of terrain characteristics can drive processes relatedf 130 days each year (del Barrio et al., 1997). Snow covers a
to the spatial variability of snow accumulation (snow blow- high percentage of the catchment from November to the end
ing, terrain curvature) (Lehning et al., 2008), or affect the of May.
energetic exchange between terrain and the snowpack (tem- The two years analyzed in the study represent climatic ex-
perature, incoming solar radiation), so the importance of to-tremes during recent decades. Severe drought occurred dur-
pographic variables is modified during the season (Molotching 2012, leading to snow accumulation well below the long-
et al., 2005). In addition, during a snow season the terterm average. The thickness of the snowpack, measured at
rain changes markedly (is smoothed) by snow accumulatiorthe automatic weather station (AWS, Fig. 1), during winter
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=
=
&
£
I
™
o
2
=

2300

2250

2200

2150

MR T T T T T T T TS

2100

0 50 100 200m.
]

Figure 1. Location of the Izas experimental catchment, and the digital elevation model showing the positions of the scan stations and the
automatic meteorological station. The two images in the bottom part of the figure, from Scan Station 1, show the terrain characteristics with
(1) and without snow cover (2).

in this year was less than the 25th percentile of the availln some areas of the basin snow lasted until late July, which
able historical data series of this AWS (1996-2011) (Fig. 2).is one month longer than in most of the preceding years
Only at the end of spring did late snowfall events increasefor which records are available. Regarding net solar radia-
the amount of snow, but this rapidly melted. The oppositetion data (shortwave), no measurements were available be-
occurred in 2013, a year in which the deepest snowpack anébre December 2011, However, the annual evolution has been
the longest snow season of recent decades were recordelacked on Fig. 2 (bottom) showing a clear increase of in-

Winter and spring in 2013 were extremely humid, with tem- coming solar radiation while snow season advance, with high
peratures mostly between the 25th and 75th percentiles ofariability due to meteorological factors.

the AWS historical series. SD accumulation was very high

between February and June (exceeding the 75th percentile).
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Figure 2. Daily average temperature, snow depth and net solar radiation (shortwave) at the automatic weather station (AWS) for the 2012

(left) and 2013 (right) snow seasons. The continuous lines represent the daily values for 2012 and 2013, and the dashed lines show the 25t
and 75th percentiles of historical daily series (1996-2011). The vertical dashed lines show the TLS survey days. Note that during some
surveys no snow was present at the AWS, but some areas of the Izas experimental catchment were covered by snow.

3 Data and methods cause the TLS vibrates while it is operating), which leads to
misalignment with reference points and atmospheric change,
3.1 Snow depth measurements a well-defined protocol must be applied. The protocol ap-

plied in this study for generating high-resolution SD maps
with a 1 m cell size was described by Revuelto et al. (2014).
This protocol is based on the following main points: data

. i . i , collection; which includes experimental setup design and in-
which enables safe acquisition of SD information with short formation acquisition by the scanning procedure: and data

acquisition times from remote areas, compared with mea- rocessing, when data is filtered, quality checked and the

e e al Toon st 12 P20 5D maps generaed. Main, he methodology was ased on
Schaffhauser et al., 2008), and systematically applied to th differences between DEMSs obtained with snow coverage in

study of snow distribution in mountain terrain (Egli et al., the study area and a DEM taken at 18 July 2012, when the

s ) ) . catchment had no snow cover. Twelve SD maps at a spa-
2012; Granewald eF al., 2010; Mott et al., 2013; Schwmgr ettial resolution of 5m were generated for the 2012 and 2013
al., 2011). In a previous study, the mean absolute error in th

: %now seasons (Fig. 3). In each year three surveys were under-
most distant areas of the catchment was less than 10 cm (R?éken from Feb(rugry ,20 April (28/12_ 29 Februar)?/ 2 April, 17
vuelto et al., 2014), which is consistent with errors reportedApr”_ 2013: 17 February, 3 April 2'5 April), and ,three w;ere
g]rplzewmtjs |St;g'§§. (Se'wnfﬁ\:vald ft ?l"l 2%88 Prokop, 2008;undertaken from May to June when intense melting condi-
oxopetal, o, Scharihauser et al., ) . tions dominated (2012: 2, 14 and 24 May; 2013: 6, 12 and
TLS provides high-resolution three-dimensional informa- 20 June). The average SD and SCA, and the maximum SD
tion on the terrain. Nevertheless, error sources need to b re ShOW.n in Table 1g|t shows that mijch lower SD and SCA
considered because they can have large effects on the mea- : .
surements. To reduce the influences of instability on the TLSWere observed in 2012 compared to 2013.

(originated through small displacements of the tripod be-

During the study period high-resolution SD maps (Fig. 3)
were generated using a long range TLS (Riegl LPM-321),
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Figure 3. Spatial distribution of snow depth in the I1zas experimental catchment in the surveys undertaken in 2012 and 2013.
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Table 1. Summary statistics of the snowpack distribution and the snow covered area of the basin. Note that the snow covered area is expresse:
as a % of the total area surveyed by the TLS, and the mean SD is the average of all SDs not including zero values.

Snow season 2012 \ Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/q517/02 03/04 25/04 06/06 12/06 20/06
Mean SD (m) 0.72 0.58 0.60 0.97 0.71 0.70 2.98 3.22 2.53 2.28 2.09 1.61
Max SD (m) 55 3.8 5.3 6.1 4.4 4.8 10.9 11.2 10.1 9.6 8.9 7.9
SCA (%) 67.2 335 941 98.8 30.9 18/9 98.8 100.0 96.3 86.4 77.1 67.0

3.2 Digital elevation model and topographic variables lates the potential incoming solar radiation (shortwave) under
clear sky conditions, which may strongly differ from the real

radiation as a consequence of cloud cover. This measure pro-

From the two scan stations located in the study area (Fig. 1)yided the relative difference in the extraterrestrial incoming
86 % of the total area of the catchment was surveyed usm@hortwave solar radiation among areas of the catchment for
the TLS. DEMSs of 1 m grid size were initially obtained from & given period under given topographical conditions (Fass-
point clouds of varying density in different areas, but always nacht et al., 2013). In this walRadiationcan be considered
with a minimum of 1 point m2 (Revuelto et al., 2014). Some as & good proxy of the spatial distribution of incoming solar
of the predictor variables cannot be calculated where dat£nergy within the study arekastingandNorthingexposure
gaps occur in the DEM (e.g., the topographic position index),Were calculated directly as the sine and cosine, respectively,
and others require a DEM with a greater surface than the aregf the angle between direction north and terrain orientation
scanned during the study (e.g., to calculate the potential soF aspect. It provided information on the east (positive)/west
lar radiation, including the shadow effect from surrounding (negative) exposure and the north (positive)/south (negative)
topography, or to calculate the maximum upwind slope pa-€XPOsure.

rameter, topographic information for distances up to 1200m TheTPI provides information on the relative position of a
is included from the exterior limit of the DEM obtained with Cell in relation to the surrounding terrain at a specific spatial
the TLS). Thus, a DEM having a 5 m grid size, available from scale. Thus, this index compares the elevation of each cell
the Geographical National Institute of Spain (Instituto Ge- With the average cell elevation at specific radial distances as
ografico Nacionalhttp:/www.ign.ey, was combined with ~ follows (De Reu et al., 2013; Weiss, 2001):
the snow-free DEM obtained using the TLS resampled from

1 to 5 m resolution (the empty raster of the Geographical Na-TPI =272 @)
tional Institute was used for the resampling, averaging all val-

ues within each cell). The 1 m grid-size SD maps were also 1

resampled to 5m to enable matching of the two different datet = ng L—icR i 2

sources.
To characterize the terrain characteristics, eight variablesvherez, is the elevation of the cell in whichPlI is calculated

were derived from the final DEM, including (i) elevatidal{
evationor Elev), (ii) slope Slopg, (iii) curvature Curva-
ture or Curv), (iv) potential incoming solar radiation under
clear sky conditionsRadiationor Rad), (v) easting expo-
sure Eastingor East), (vi) northing exposureNorthing or
North)), (vii) the topographic position index PI) and (viii)
maximum upwind slope3X.

Elevation was obtained directly from the DEM, while

andz is the average elevation of surrounding cells obtained
from Eq. (2) for a radial distanc®. For each pixel th@PI
was calculated for 5, 10, 15, 25, 50, 75, 100, 125, 150 and
200 m radial distances (scale factors).

For specific wind directions, the maximum upwind slope
parameter, averaged for 4Gpwind windows §x; Winstral
et al., 2002) provided information on the exposure or shelter-
ing of individual cells at various distances, resulting from the

the other variables were calculated using ArcGIS10.1 softtopography. Rather than considering the contribution for the

ware. This software calculat&opeas the maximum rate of

dominant wind directions (Molotch et al., 2008)y (Sxfur-

change in value from a specific cell to that of its neighborsther on) values for eight directions were selected and directly

(15mx 15m window size), andCurvature is determined

related to the SD. The directions werefor north (N), 45

from the second derivative of the fitted surface to the DEM infor northeast (NE), 90for east (E), 135for southeast (SE),
the direction of maximum slope of the terrain for the neigh- 18%° for south (S), 225 for southwest (SW), 270for west

bors cells (15 mx 15 m window size too)Radiationwas ob-

(W) and 315 for northwest (NW). FoSx the searching dis-

tained using the algorithm of Fu and Rich (2002) and re-tances (Winstral et al., 2002) considered were 100, 200, 300
ported in Wh nT2 based on the average conditions for the 15-and 500 m. These distances were selected to enable assess-
day period prior to each snow survey. This algorithm calcu-ment of the range at whicBxexhibited greatest control on

The Cryosphere, 8, 19892006 2014
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SD dynamics, as has occurred in previous studies (Schirmeapresented high correlation with component two of the PCA.
etal., 2011; Winstral et al., 2002). TPI andNorthingshowed both higher correlations with their
respective components and in general higher Pearsaus
efficients with SD tharCurvatureand Radiation(see result
section). ThereforeCurvatureandRadiationwere discarded

3.3 Statistical analysis

The 12 SD maps at 5 m spatial resolution were related to eachs predictors in MLR and BRT analyses.

of the topographic variables considered (including th&s®0
combinations, and the 9 distances Td?l). The large num-

ber of cells for which SD data were available enabled robust 1. Multiple linear regressiorestimates the linear influence

correlations between topography and snow distribution to be
obtained, and provided a very large data set for training and
validating the SD distribution models.

Pearson’s: coefficients were obtained between SD and
each topographic variable. Using the whole data set, each
variable was correlated, for all available points, with the SD
value for the specific survey day. Given the large amount
of data for surveys, the degrees of freedom for correla-
tion analyses were very high and hence they can account
for statistically significant correlations even with very low
correlation coefficients. Moreover, the use of a very dense
data set of observations may have associated problems de-
rived from spatial autocorrelation (Koenig, 1999). For re-
ducing effects derived from spatial autocorrelation, we fol-
lowed a Monte Carlo procedure, in which 1000 random sam-
ples of 100 SD cases were extracted from the entire data set
(an average of 20000 SD measurements for each day) and
correlated with topographic variables for assessing signifi-
cance. A threshold 95 % confidence intervak(0.05) was
used to assess the significance of correlations £0.197,
based on 100 cases). The spatial scaleSxadnd TPI for
which SD showed a higher correlation, 200 and 25 m respec-

tively, were selected for further analysis (not presented in the 2.

manuscript).

To assess the explanatory capacity when all topographic
variables were considered simultaneously, two statistical
models were used: (1) multiple linear regressions (MLRS)
and (2) binary regression trees (BRTS). A wide variety of re-
gression analyses for interpretation of much more complex
spatial data are available with greater capacity than MLRs
and BRTs to deal with spatial autocorrelation issues and the
nonlinear nature of the relationship between predictors and
the response variable (Beale et al., 2010). However, in this
study we used MLRs and BRTs because these methods have
been and are still widely used in snow studies, and because
both enable to isolate accurately the weight of each indepen-
dent variable within the model, which was the main objec-
tive of this research, rather than deriving models with maxi-
mum predictive capacity. Prior to running the models, a prin-
cipal component analysis (PCA) was applied to the entire
data set for detecting correlations between independent vari-
ables that could originate multicollinearity in MLR and BRT.

of topographic variables on SD. Despite its simplicity
and the rather limited capability under nonlinear con-
ditions (L6pez-Moreno et al., 2010), MLR was used to
quantify the relative contribution of each variable to the
entire SD distribution model. SD was calculated from
the topographic variables at a specific location and day.
The threshold for a variable to enter in the model was
set ate <0.05. Beta coefficients (obtained dividing the
standardized units of the coefficients by the mean value
of each variable) were used to compare the weight of
each variable within the regression models. As a first
step, a reduced data set (1000 cases) was randomly ex-
tracted to avoid an excessive number of observations
that may lead to spurious identification of statistically
significant predictor variables. A stepwise procedure
was used to obtain these variables from the random ex-
traction. The variables determined for each survey were
used to obtain the final model, but using the entire data
set (except 5000 cases for model validation), forcing
variables entrance in models.

Binary regression treelsave been widely used to model
snowpack distribution from topographic data (Erxleben
et al., 2002; Molotch et al., 2005). These are non-
parametric models that recursively split the data sam-
ple, based on the predictor variable that minimizes the
square of the residuals obtained (Breiman, 1984). One
BRT was created for each sampling date. The BRTs
were run until a new split was not able to account for
1% of the explained variance, or when a node had less
than 500 cases; a maximum of 15 terminal nodes was
set to reduce tree complexity. As there were no over-
fitting problems associated with sample size, 15000
cases were used to grow the trees and 5000 cases were
used for validation. By scaling the explained variance
of each variable introduced into each BRT (based on
the % of the total explained variance by the BRT), we
were able to compare the relative importance of each
topographic variable between the different models.

This analysis (not shown) grouped the topographic variablesCoefficients of determination-{) and Willmott's D statis-

in three components, showing thaP| and Curvature are
highly correlated with PCA component one, and aiar-

tic were used to assess the ability of each model to pre-
dict SD over an independent random sample of 5000 cases.

thing and Radiation (but in this case with opposite signs) Willmott's D was determined using Eq. (3) (Willmott, 1981):

www.the-cryosphere.net/8/1989/2014/
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The TPI at 25 m showed the highest correlation with SD
for the 12 sampled days. During 2012 the mean correlation
12\/: (Pi— 0)) values ranged from-0.32 to—0.58 for those surveys during
i—1 which snow accumulation dominated in the days preceding
_ _ 2 ) the surveys. The values were closer to the significance level
(|Pi - 0| + |Oi - 0|) for the surveys where the preceding days were dominated by
melting conditions (14 and 24 May). In 2013, th®l| was
where N is the number of observations) is the observed More highly correlated with SD than in 2012, with Pearson’s
value, P; is the predicted value, an@ is the mean of the coefficients <-0.6 for all survey dayCurvaturealso had

observed values. The index ranges from 0 (minimum) to 12 high correlation with SD, and similar ©©PI with a 25m
(maximum predictive ability). searching distance was significantly correlated on all the sur-

vey dates, but unlike th&PI, the correlation ofCurvature
with SD did not decrease during the snowmelt periods. The

D=1-

1

LU=

4 Results significant correlations of PI andCurvaturewith SD high-
light the importance of terrain curvature on the SD distribu-
4.1 Single correlations tion. The importance of terrain curvature at different scales

for SD distribution is clearly evident in Fig. 3, which shows

Table 2 shows the correlation between SD &xdfor the  that higher SD values were usually found for concave areas,
eight wind directions at a distance of 200 m (identified aswhich showed snow presence until the end of each snow sea-
the best correlated searching distance in previous analysisyon.
Despite differences in magnitude, the correlations for sur- The correlation betweeBlevationand SD varied among
veys carried out at the beginning of the season (22 Februsurvey days (Table 3). The correlations were usually positive,
ary 2012 and 17 February 2013) in each year showed thabut only statistically significant (or approaching significance)
SD was clearly affected by N and NW wind directions. The for days when melting dominated (the last two surveys in
contribution of N and NW wind directions is clearly evident 2012 and 2013)Slopewas relatively weakly correlated with
for the surveys on 17 February 2013 (Fig. 4, where wind SD during the 2012 snow season. In 2013 the correlation was
roses with average wind speeds and direction, for the 15-dagreater, and was statistically significant for all days. Simi-
period before each survey, are presented), when greater SRrly to Elevation the correlation betweeBlopeand SD was
was recorded in the leeward slopes from a northerly direcvariable between the two study years, and showed a similar
tion (Fig. 3, northerly areas of the maps). In the two years oftemporal pattern técasting probably because of the pres-
the study, a correlation with W and SW wind directions was ence of steeper areas on the east-facing slopes.
observed to increase progressively during the snow season The correlation betweeNorthingand SD was rarely sta-
(Fig. 4 and Table 2 correlations). In 2013 this phenomenortistically significant, highly variable and contributed to ex-
was less marked because of the greater SD accumulation ataining SD in very different ways in 2012 and 2013. In 2012
the beginning of the snow season accompanied with NW dino correlation between SD ardbrthingwas found during
rection winds, which resulted in only moderate changes inthe accumulation period, but during the melting period a
the Sx for the most strongly correlated wind directions. It slight positive correlation was observed, as snow remained
was also observed that in both study years once the snowonger on north-facing slopes. The 2013 snow season started
had started to melt (the last three surveys in each seasonyith a large precipitation event dominated by strong winds
the snow distribution did not change in relationSrdirec-  from a northerly direction, leading to high levels of snow
tions. The best correlatesix directions for each survey are accumulation on the south-facing slopes. This explains the
in good agreement with wind roses main directions (Fig. 4).strong and statistically significant negative correlation of SD
These directions are for the following survey days: 3fds with Northingfor 17 February 2013. This event influenced
22 February 2012, 270for 2 and 17 April 2012 and 225 the rest of the season (as evident in Table 2 for 2013), but a
for the three surveys in May 2012; in 2013, 8lbas the  progressive decrease in its influence was evident for the fol-
best correlated direction for 17 February, and 2@ the  lowing survey daysRadiationhad an almost opposite influ-
other five surveys of the snow season. ence on SD to that observed fdorthing During the melting

Correlations between the best correlagddirection for period, for each year, the Pearsaontsorrelation between SD
each day and SD were compared with correlations betweeand Radiationwas negative, indicating a thinner snowpack
SD and the other topographic variables (Table 3). Thison the most irradiated slopes. This relation was statistically
showed thaBxhad one of the greatest coefficient of correla- significant at the end of the 2013 snow season. However, dur-
tion with SD (range 0.22-0.56). The correlations were highering the accumulation period in 2013, statistically significant
during the accumulation periods, especially in the 2013 snowand positive correlations were observed wibrthing and
season, with a reduction in correlations values occurring durRadiation which are connected to the strong snow redistri-
ing the melt period at the end of each snow season. bution by winds from N-NW directions.
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Table 2. Pearson’s coefficients between SD ar8k calculated for the eight studied wind directions over the survey days.

Snow season 2012 \ Snow season 2013
22/02 02/04 17/04 02/05 14/05 24/q5 17/02 03/04 25/04 06/06 12/06 20/06
Sx0° 0.19 0.13 0.09 -0.11 0.06 -0.01 0.51* 0.40* 0.31* 0.23* 0.22* 0.20*

Sx45° 0.15 -0.02 0.00 -0.16 -0.08 -—-0.09 0.36* 0.25* 0.17 0.12 0.12 0.12
Sx90° 0.12 -0.14 -0.07 0.11 -011 -0.03| -0.15 -0.15 -0.10 -0.09 -0.09 -0.10
Sx135° 0.02 -0.05 0.05 0.26* 0.01 0.11 -0.27* -0.19 -0.10 -0.06 —-0.06 -0.06
Sx18¢° 0.02 0.14 0.15 0.38* 0.17 0.21r -0.19 -0.08 0.02 0.08 0.08 0.12
Sx225° 0.12 0.29* 0.26* 0.44* 0.32* 0.23* 0.06 0.18 0.26* 0.29* 0.29* 0.31*
Sx27¢¢ 0.20r 0.33* 0.34* 0.26* 0.27* 0.21* 0.48* 0.52* 0.49* 045 042 0.43*
Sx315° 0.22* 0.26* 0.27* 0.01 0.22* 0.121 0.56* 0.50* 0.41* 0.34* 0.32* 0.33*

* Correlations that were statistically significant<€ 0.05) in at least half of the samples (500 out of 1000 samples) from the Monte Carlo approach, and bold
coefficients represent the best correlaBadiirection for a specific survey day.

Table 3. Pearson’s coefficients between SD and the topographic variables.

Snow season 2012 ‘ Snow season 2013
22/02 02/04 17/04 02/05 14/05 24/q5 17/02 03/04 25/04 06/06 12/06 20/06

Elev. 0.09 0.26* 0.16 0.10 0.29* 0.19 0.09 0.18 0.13 0.18 0.21* 0.26*
Slope 0.06 0.18 0.02 -0.03 0.20* 0.03| 0.25* 0.27* 0.20* 0.20* 0.21* 0.26*
Curv —-0.44* -0.45* -0.47* -049* -041* -0.37*| -0.39* -0.40* -0.40* -0.39* -0.38* -0.38*
North —0.06 0.00 0.04 0.19 0.07 0.1 -0.38* -0.27* -0.19 -0.09 -0.06 -0.11
East. 0.09 0.21* 0.13 0.13 0.13 0.11 0.25* 0.26* 0.27* 0.22* 0.18 0.14
Rad 0.05 0.04 -0.06 -0.22r -0.12 -0.11 0.36* 0.21* 0.10 -0.09 -0.12 -0.23*
TPI25 -0.56* -0.46* -0.54* -0.58* -0.40* -0.32* | —0.66* -0.68* —-0.68* -—0.66* —0.63* —0.61*
Sx 0.22* 0.33* 0.34* 0.44* 0.32* 0.23*| 0.56* 0.52* 0.49* 0.45* 0.42* 0.43*

* Correlations that were statistically significaat<€ 0.05) in at least half of the samples (500 out of 1000 samples) from the Monte Carlo approach, ancbiedfidients represent
the best correlated topographic variable for a specific survey day.

4.2 Multiple linear regression and binary regression less, only large differences in the accuracy of each model
tree models were evident by the end of 2012 snow season, in the two last
surveys, which were characterized by thin and patchy snow-

pack.

Figure 5 shows the Willmott'd values and the coefficients ™~ ., o ¢ single correlations, tHEPI variable ex-

of determinations?) obtained in the comparison of observed _, . . .
and predicted values using MLRs and BRTs for a data set replamed most of the variance in MLR models developed for

served fo validation (5000 cases). The MLR produced - o, =yt SO0 FEUE 3 8 SRR R 8 P B
values ranging from 0.25 to 0.65 and Willmot'3 values y 9 ys. p y

: : the two years were compared. In most caggdsyationwas
ranging from 0.60 to 0.88, while the BRTs producédval- . . S o
ues ranging from 0.39 to 0.58 and Willmotsvalues rang- the second most important variable explaining the SD dis

tribution in 2012, followed bySxandSlope The other vari-

ing from 0.72 and 0.85. For both methods the relations be'ables made a much smaller contribution, or were not included

tween the observed and predicted values were stronger f% the models. The contribution &levationwas much less

2013. Accuracy decreased at the end of the snow season . . : :
when the snowpack was mostly patchy across the basin; thig1 2013, and it was not included in three of the six surveys,
P yp y '~ “Whereas in 2012 it was included in all surveys. For the en-

was particularly the case for the end of the 2012 seasony . '»413 gy was the second most important variable, fol-
Overall, the performance of the MLRs was more variable

than that of the BRTs, which were more constant amongst th(IeOWEd byEasting which had an almost negligible influence

arious Snow survevs. For those davs on which the modeld” 2012.Northing was only included in the models for the
variou W SUTVEYS. e ys on wh surveys carried out during periods dominated by snow ac-
were most accurate in predicting SD variability, the MLRs cumulation, and was not included in the models during the
showed slightly better scores than the BRTs. However, for eriods dor’ninated by melting
da;_/s on which the accuracy betw_een predictions_ and obser’ Figure 6 shows two examplés of BRTs, obtained for 2 May
vations was lower, the BRTs provided better estimates tharé012 (upper panel) and 3 April 2013 (bottom panel), which
the MLRs. For 2012, slightly better results were obtained us- '

ing MLRs, while the opposite occurred in 2013. Neverthe- accounted for the largest amount of snow accumulation in
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Figure 4. Wind roses from the automatic weather station placed at the catchment obtained for a 15-day period.

both years. The variabl€PI determined the first branching ing SD for all survey days. For the 2012 snow seadd,
point, and this occurred in the majority of the trees obtainedexplained more than 67 % of the total explained variance
(not shown). After the first branching, other variables werein all BRTs, and 75 % during the accumulation period (the
significant in the model, includin@x and TPI for 2 May first three surveys). Thus, for most of the survey days the
2012, andSxandNorthingfor 3 April 2013, demonstrating variance explained by the other variables was <30 %. Fur-
the importance of these variables in the subsequent branchihermore,TPI was in all cases the first split variable (which
ing of the trees. accounted from a 23 to a 30 % of the explained variance),
The relative importance (scaled from 0 to 100) of each to-with a critical value that ranged from0.67 m to—0.43 m
pographic variable in each BRT is shown in Table 5. Thisand an average value ef0.54 m. The second most impor-
shows thafl Pl was the first most important variable explain- tant variable explaining the SD distribution in 2012 differed
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Figure 5. Willmott's D andr2 values between the observed and predicted SD, based on the multiple linear and binary regression models for
all survey days.

Table 4. Multiple linear regression beta coefficients for each independent variable and sampled day.

Snow season 2012 \ Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/Q5 17/02 03/04 25/04 06/06 12/06 20/06
TPI -069 -053 -0.60 -059 -048 -040| -0.78 -0.72 -0.73 -0.80 -0.74 -0.72
Sx 0.11 0.28 0.26 0.20 0.1 0.36 0.31 0.43 0.37 0.38 0.31
Elev. 0.09 0.22 0.34 0.27 0.27 0.35 0.14 0.08 0.13
Slope -0.25 -0.29 -0.24 -0.21 -0.21 -0.10 -0.14 -0.16 -0.09 -0.15
North —0.22 0.13 -0.16 -0.12 -0.11 -0.11
East. 0.10 0.29 0.25 0.25 0.31 0.23 0.20
r2 0.45 0.31 0.40 0.47 0.33 0.26 0.65 0.63 0.60 0.60 0.57 0.51

amongst survey days. Thu8xwas the second most influen- the other surveys during 201Rorthingalso had an evident
tial variable during May (except for 24 May 2012), follow- influence during the two first surveys of the year, but subse-
ing the largest snowfall in the season (which occurred the lquently had minimal explanatory capacity, as was the case
May 2012), andElevationwas the most important variable in  for all the other variables. In 201BPI was also the main
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2 May 2012

§x%2% 15.5) Sx% 15.4

(Slope <33 ] (Elev. < 2244

FSD? 3 April 2013
TPI <-0.15
§x2™% 24.5 North. < 0.13
1
\

Elev < 2281 (5x*7% 22.4
1
@9 [(TPI<033]  (sx <229) (TPI<0.64) @

| | |
@D aH EH@D

Sx* 7% 26.7

Figure 6. Binary regression tree obtained for 2 May 2012 (top) and 3 April 2013 (bottom). The final nodes (with ellipses) show the predicted
SD in the zone having the specified terrain characteristics. At each branch point, one topographic variable is considered; if the value is less
than the specified value, the left branch is selected, but if it is equal to or greater than the specified value, the right branch is selected.

contributor to the total explained variance, exceeding 50 %Radiatior) made minor contributions to the total explained
for almost all survey days, and approaching or >70 % duringvariance.

the snowmelt period. For this year, alBBl was the first split Figure 7 shows the mean contribution of each topographic
variable in nearly all BRT, with critical values ranging from variable vs. the coefficient of variation from the twelve sur-
—0.47 to—0.15m and an average value-60.28 m; except  veys for the different statistical approaches considered in this
for the 13 February 2013, in whichxwas the first split vari-  study (Pearsons coefficients, beta coefficients of the MLRs
able. The influence oBxwas more important in 2013 than and the contribution to the explained variance for each BRT).
in the previous year. At the beginning of 2013 the contribu- Clearly, TPI is the most important variable to explain the
tion of Sxto the total explained variance was almost 46 %, snow distribution in the catchment, but it is also the variable
and remained >20% for the rest of the snow season. Arthat exhibits a lower variability between the different surveys
exception was the last survey, when melting dominated andCV <0.2). Besides it has been introduced as predictor for
its effect declined to 12%. When snow was not mobilized MLRs and BRTs in all studied daySxis the next variable
for long periods by wind (no changes on the best correlatedn importance to explain snow distribution, being introduced
wind direction of Sxare observed), the SD distribution was as predictor in the majority of the modelled days (11 and 10
more dependent on variables related to terrain curvallfe ( out of 12 days for MLRs and BRTSs, respectively). It shows
andCurvaturd. During 2013 Elevationcontributed approx-  a low temporal variability when correlation’s coefficients are
imately 5% to the total explained variance during the entirecalculated (C\&= 0.24), but the variability in its contribution
snow seasomNorthingmade a significant contribution to the to MLRs and BRTs increases noticeably, with CV values of
model (14.7 %) only one day (3 April 2013), and a smaller 0.35 and 0.59, respectively. The rest of the variables show a
contribution on the following survey day (25 April 2013). much lower mean contribution for explaining snow distribu-
When included in the BRTSs, the other variablé&sagting tion and a high temporal variability in their explanatory role.
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Table 5. Contribution of the various topographic variables to the explained variance of SD distribution in the binary regression tree models
for 2012 and 2013. Values have been rescaled from 0 to 100.

Snow season 2012 \ Snow season 2013

22/02 02/04 17/04 02/05 14/05 24/Q517/02 03/04 25/04 06/06 12/06 20/06
TPI 83.2 78.8 75.0 71.7 74.0 66.9 49.1 56.4 64.4 71.2 69.9 77.5
Sx 4.6 12.7 13.4 10. 45.9 23.1 23.0 21.8 20.1 125
Elev. 5.7 6.8 13.2 9.1 8.2 15. 5.0 5.7 5.0 3.3 5.9 5.4
Slope 1.7 5.4 5.7 6.5 3.2 7. 2.1
North 9.3 8.1 1.5 1.3 14.7 4.3 2.4 2.9 3.6
East. 1.2 1.3 1.1 1.0
r2 0.56 0.42 0.52 0.54 0.46 0.39 0.58 0.56 0.55 0.54 0.53 0.51

Lower CV values are observed for MLRs, ranging the major- (L6pez-Moreno et al., 2010). We showed tfi&tl at a scale
ity between 0.3 and 0.4, than for BRTs models, ranging theof 25 m had the greatest capacity to explain the SD distri-
majority between 0.4 and 0.8. bution in the study catchmenurvature(which refers to a
smaller spatial scale of terrain curvature when compared with
_ _ TPI) is also highly correlated with the SD distribution, but
5 Discussion not as much a3 PI. This reinforces the importance of con-
o ) ) o ) sidering terrain curvature at various scales for explaining the
The distribution of snow in mountain areas is highly variable g istribution in mountain environments. The correlation
in space and time, as shown for Izas experimental catchmeranyeen snowpack and i@ decreased during melting pe-
during two consecutive years. Many meteorological and t0+jo 45, whereas the correlation wiGurvatureremained con-
pographic parameters affect the snow distribution and its evogiant  This suggests that snow accumulates more in small
lution through time with different weights subjected o Sev- 4eep concavities, but is shallower at the end of the season
eral factors. In this context, we demonstrated that terrain, wider concave areas that were identified by the ZBmh
characteristics significantly affect SD distribution in a sub- ¢.51e This effect was evident at the end of the snow sea-
alpine catchment. Also we have shown that its effect evolvedson, when snow was present only in deep concavities, as
during the snow accumulation and melting periods over tWogh o in Fig. 3. To explain the snow distribution, Anderton
years having highly contrasting climatic conditions and snowe 5| (2004) compared the relative elevation of a cell with the
accumulation amounts o terrain over a 40 m radius, and observed that this had a major
_ Many studies have analyzed the spatial distribution of SDy|e o SD distribution, which sustain curvature importance
in mountain areas considering both, intra- and inter- an-4 yifferent scales.
nual variability of the topographic control on the snowpack  The maximum upwind slopeSk Winstral et al., 2002) has
distribution (Anderton et al., 2004; Erickson et al., 2005; 5154 peen identified as a key variable explaining snow distri-
Lopez-Moreno etal., 2010; McCreight etal., 2014). Other re-p, ion improving the results obtained when it is introduced
searches have also focused their attention in long-term intefiyio models. Our results, 200m searching distanceSior
annual snow distribution analyses (Jepsen et al., 2012; Sturny comparable with those of other studies that have shown
and Wagner, 2010; Winstral and Marks, 2014). The results Ofthat the optimum searching distance for correlagith
these previous works have highlighted the difficulties in fully o sp distribution is 300 m (Schirmer et al., 2011), which
explaining the distribution of snow in complex mountainous s ot 4 Jarge difference for the considered distances in this
terrain. In addition, results differ among studies, and suggesf, ok reaching 500m. As it is observed from the reported
that different variables govern the distribution of snowpack inqg information, 1zas experimental catchment has W-NW
among areas as consequence of their different characteriggominant wind direction what is consistent with the best cor-
tics and geographical settings. These differences include sufy5tedsxdirections. For this reason, tixpreferred direc-
face extension, the altitudinal gradients, the importance Okiq, for each date was selected, and showed that there were
wind redistribution, the presence or absence of vegetationira_annual shifts in the most highly correlated direction.
and the topographic complexity as concluded by Griinewaldrpe change in the most importa8k direction was similar
et al. (2013) in a study where seven study sites across thgeqyeen the 2012 and 2013 snow seasons; it started with a
world were considered. _ _ , o northerly component and evolved to a dominant westerly di-
Most of the topographic variables investigated in this study e tion. We also found a decrease in the correlation between

have been included in previous studies, includiigvation,  gyand the snow distribution at the end of each snow season,
Slope, Radiation, Curvaturand Sx.Other variables, in par-

ticular TPI, have received little attention in previous research
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Figure 7. Mean contribution of topographic variables to models and Pearsaogfficients vs. the coefficients of variation for all considered
surveys. Upper panel shows Pearsontefficients; middle panel shows beta coefficients of the multiple linear regression; and the bottom
panel shows the contribution to the explained variance to the binary regression trees. Each graph point is accompanied with its variable, anc
in the case of MLR and BRT, in brackets the number of days in which each variable was included in models.

when melting conditions dominated. This is consistent withat the study site in relation to SD distribution have shown a
the findings of previous studies (Winstral and Marks, 2002). higher importance of Pl when compared t&x The most
Sxparameter takes into account sheltering effects with to-plausible explanation accounting for this result is that the
pographic origin in relation to wind directions. SD distri- basin has a rather reduced size, shows the same general as-
bution maps show higher SD amounts in leeward slopespect (SE facing) and topography is relatively gentle. Under
located in E-SE slopesIPI is not able to explain snow such conditions, during wind blowing events snow is ac-
drifts, because this index considers the topographic characcumulated in all wide concavities of the basin (represented
teristics in all directions. Nevertheless, terrain characteristicdby TPI) independently of its specific location. Nonetheless,
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wind redistribution will be affected by a combination of local et al. (2013), using a physically based snow energy balance
topography and main wind directions; which makes it neces-model in the same study area. Moreover, the high and oppo-
sary to consider th&xparameter. As it has been observed, site correlation betweeNorthingandRadiationobtained in
this effect lasts in time until the melting season has advanced?CA results (not shown in the manuscript), was showing a
Only for two days (22 February 2012 and 2 April 2012) potential problem of multicollinearity. Thus, onNorthing
was there no contribution (or it was minor) 8kto explain ~ was considered for MLRs and BRTs (the same occurred with
SD distribution, according to BRTs and MLRs. On these daysTPI andCurvature being only considered in statistical mod-
Northingwas introduced into the models, and was found toels theTPI). Although Northing did not show a significant
explain some of the variance 8kfrom the northerly direc-  correlation with SD during accumulation periods; when the
tion, the best correlated direction for these days (Table 2). surveys were closer to the snowmelt period, the negative cor-
Although Elevationhas been found to largely explain the relation of this variable with SD was more evident, possibly
snow distribution in areas having marked altitudinal differ- due to the increase of the difference in the energetic exchange
ences (Elder et al., 1998; Erxleben et al., 2002; Molotch andbetween sun exposed and shaded areas. The importance of
Bales, 2005), in our study no strong association was foundNorthingin MLR models, combined with the contribution of
between SD anélevation with significant correlations oc- Eastingduring the accumulation period may be related to the
curring only during the snowmelt period. This is because ofhigh snow redistribution originated by wind directions from
the low elevation range of the study area (300 m). DuringN-NW directions. Therefore, terrain aspect relation with SD
the accumulation period the entire catchment is generallydistribution (considered witNorthingandEasting in winter
above the freezing height. However, during spring tR€0 s tightly related to the accumulation patterns resulting from
isotherm shifts to higher elevations, which may lead to differ- wind redistribution, whereas in spring they were associated
ent melting rates within the basin. Despite the relatively weakwith the unequal distribution of solar radiation, which leads
correlation betweeklevationand SD, this variable was in- to higher melting rates on the most irradiated slopes, which
troduced as a predictor in the MLRs and BRTs for most of has shown better explanatory capacity tRadiationat Izas
the days analyzed. Similarly, Lépez-Moreno et al. (2010) re-Experimental catchment.
ported that elevation was of increasing importance as the grid The MLRs and BRTs provided reasonably high accuracy
size increased. Anderton et al. (2004) also informed about thecores when observed and predicted SD data were compared.
importance of elevation to explain snowpack distribution in The scores were comparable, and in some cases better, to val-
the same study area. The results of the present study suggasts reported in previous researches using similar methods.
the increase in importance Bfevationat the end of the snow  As an example, Molotch et al. (2005) repori€dvalues be-
season, and particularly when it is considered in combinatiortween 0.31 and 0.39 using BRT; and Winstral et al. (2002),
with other topographic variables in MLR and BRT models. who considered different number of terminal nodes of BRT,
Slopehas a weak explanatory capacity for snow distribu- obtained an optimal tree size of 16 nodes data set with an
tion, probably because the slope in most of the catchment is2 value close to 0.4. Moreover results presented here were
not steep enough to trigger gravitational movements includ-obtained from a separate data set, and data used to create the
ing avalanches and slush during the snowmelt period, whichmodels were not considered for testing, thanks to the large
could thin the snowpack on the steepest slopes (Elder et algvailable data set. One reason for the improvement may be
1998). Most likely, some oBlopeexplanatory capacity is in- the use of th&'Pl as a SD predictor, as this variable has not
cluded onRadiationexplanatory capacity, because it affects been considered in previous studies. Nevertheless, it should
solar light incident angle, besides the steeper areas of thbe noted that the study sites considered in other studies, could
catchment are in south facing zones. Nevertheless, quantdiffer in terms on complexity of terrain, and also in SD ac-
fying such kind of effects is highly difficult due to the high cumulation amounts. For the 12 survey daysThRé¢ had the
complexity of SD dynamic in mountain terrain. greatest explanatory capacity in both approaches. However,
Radiation NorthingandEastingshowed no close correla- based on comparison of the different dates and surveys, the
tion with the snowpack distribution; their relationships with other variables made more varying contributions, as a result
SD were variable over time, with statistically significant cor- of the different roles they play during the snow accumulation
relations occurring on some days and only weak correlationgnd melting periods, and the wind conditions during the main
on other days. The results suggested BediationandNor- snowfall events. The models had less capacity to explain spa-
thing (which showed almost opposite patterns) may be re-tial variability of the snowpack when the snow was thinner
lated to SD for two different reasons. During the accumula-and patchy. The BRT and MLR approaches were consistent
tion period in 2013 heavy snowfalls associated with northerlywith respect to error estimates. The results obtained using
winds led to the accumulation of deep snow on south-facingeach approach were comparable, so the trends in the vari-
areas (more irradiated), whereas during the snowmelt periodble ranking with both models for each survey day were sim-
the greater exposure of the southern slopes to solar energiar. Only during conditions of snow scarcity did the BRT ap-
led to a positive (negative) correlation witorthing (Radia- proach demonstrate better capability to relate SD to topogra-
tion). This phenomenon was also observed by Lépez-Morenghy. This is probably a consequence of the greater capacity of
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BRTs to take account of the nonlinear response of the snowpographic variable for the different surveys was noticeably
pack to topography, and the occurrence of sharp threshold®wer for MLRs than for BRTs.
typical of days when the snowpack is patchy (L6pez-Moreno
et al., 2010; Molotch et al., 2005).
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