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Abstract. Degradation of near-surface permafrost due to
changes in the climate is expected to impact the hydrological,
ecological and biogeochemical responses of the Arctic tun-
dra. From a hydrological perspective, it is important to under-
stand the movement of the various phases of water (gas, liq-
uid and ice) during the freezing and thawing of near-surface
soils. We present a new non-isothermal, single-component
(water), three-phase formulation that treats air as an inactive
component. This single component model works well and
produces similar results to a more complete and computa-
tionally demanding two-component (air, water) formulation,
and is able to reproduce results of previously published lab-
oratory experiments. A proof-of-concept implementation in
the massively parallel subsurface flow and reactive transport
code PFLOTRAN is summarized, and parallel performance
of that implementation is demonstrated. When water vapor
diffusion is considered, a large effect on soil moisture dy-
namics is seen, which is due to dependence of thermal con-
ductivity on ice content. A large three-dimensional simula-
tion (with around 6 million degrees of freedom) of seasonal
freezing and thawing is also presented.

1 Introduction

The Arctic and sub-Arctic regions of the Earth are warm-
ing at a rate significantly faster than the rest of the planet
(Turner et al., 2007; Hansen et al., 1999) and are experi-
encing environmental change at a rapid pace. Permafrost

occupies nearly one-quarter of the landmass of the North-
ern Hemisphere and contains approximately 1600 Gt of or-
ganic carbon (Tarnocai et al., 2009). This carbon is poten-
tially available to be released to the atmosphere, thus driv-
ing further climate change. However, the timing, rate and
chemical form of future carbon releases to the atmosphere
are highly uncertain. Much of the uncertainty about mobi-
lization of thawed carbon derives from uncertainty in future
soil moisture conditions after anticipated reorganization of
permafrost-affected landscapes through permafrost degrada-
tion, thaw-induced subsidence and hydrologic processes. In
order to predict the amount of carbon released to the atmo-
sphere as well as other adverse effects of permafrost degra-
dation, it is therefore important to have the capability to sim-
ulate hydrologic response of permafrost-affected regions to
an increase in the mean annual temperatures (Kane et al.,
1991; Lunardini, 1996; Osterkamp and Romanovsky, 1999;
Schuur et al., 2008). Additionally, it is also important to have
simulation capability for assessing vulnerability of structures
in cold regions where thawing of permafrost can lead to soil
consolidation causing considerable damage.

Analytical and numerical models of varying complexity
have been used since the 1970s to model water movement
in freezing/thawing soils (Nakano and Brown, 1971; Harlan,
1973; Guymon and Luthin, 1974; Jame and Norum, 1980;
Zhao et al., 1997; Lu et al., 2001; Ling and Zhang, 2004;
Hansson et al., 2004; Zhang et al., 2008; Akbari et al., 2009;
Zhou and Zhou, 2010; Dall’Amico et al., 2011; Frampton
et al., 2011; Painter, 2011; Sheshukov and Nieber, 2011).
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These models solve for temperature and ice content using
extensions to Richards equation and an equilibrium closure
relationship between unfrozen water content and tempera-
ture. Closure relationships were empirical in many of these
models although closure relations that combine thermody-
namic constraints with the unfrozen soil moisture character-
istic curves are available and were used in some of the mod-
els. All of the aforementioned models focused on small spa-
tial scales (typically on the order of centimeters) and short
time frames (hours to days) and many focused on valida-
tion against laboratory data from one-dimensional freezing
soil columns. These previous studies thus provide much of
the prerequisite understanding for predictive capability for
cold-region hydrology, and are thus an important comple-
mentary approach to permafrost parameterizations in Earth
system models (e.g.,Lawrence et al., 2011).

To understand the evolution of cold-region hydrologic sys-
tems, simulations must address spatial scales of tens of me-
ters to kilometers and multi-decadal time frames. Capability
to model at those scales is currently limited. The SUTRA-
ICE code (McKenzie et al., 2007) was developed specifically
for this purpose and has been used in a number of appli-
cations involving groundwater systems that are fully satu-
rated with a combination of ice and liquid.Frampton et al.
(2011) used the MarsFlo (Painter, 2011) code to model multi-
decadal response of a hypothetical partially saturated hydro-
logic system to a warming trend at the hillslope scale.

Although both SUTRA-ICE and MarsFlo have been used
to model application-relevant scales, neither has sufficient
flexibility to form a general modeling capability. That a mas-
sively parallel implementation is needed follows from the
nature of the subsurface thermal hydrologic modeling prob-
lem: (a) conditions in the active layer are highly dynamic
and respond to seasonal temperature and infiltration forc-
ing, which necessitates a relatively small time step (hours
to days); (b) simulations need to span time periods of mul-
tiple decades; (c) subsurface thermal hydrology will even-
tually form one component in a larger multi-process mod-
eling capability (Painter et al., 2012); (d) flows in the ac-
tive layer may be sensitive to microtopography, thus requir-
ing relatively fine spatial resolution (centimeters to tens of
centimeters).

As far as we are aware, there are currently no simulations
tools capable of representing the entire range of processes
required for modeling hydrology of permafrost-affected re-
gions at the appropriate scale. This is true even if the me-
chanical and surface processes are neglected and the focus is
exclusively on subsurface thermal hydrology. The SUTRA-
ICE code is limited to the situation where the pore space
is filled with a combination of liquid and ice (i.e., no gas
phase) and is thus not appropriate for modeling the dynam-
ics of the active layer, the uppermost layer of soil that freezes
and thaws and often partially drains on an annual basis. Wa-
ter flows in a deepening and partially draining active layer
have been identified (Painter et al., 2012) as a key response of

permafrost affected regions to warming temperatures, which
is why full three-phase capability is a key requirement. Mars-
Flo meets that requirement; it is two-component (air, wa-
ter), uses general three-dimensional and fully unstructured
grids, and is capable of representing all possible combina-
tions of the ice, liquid and gas phases in Earth- and Mars-
relevant conditions. The generality of MarsFlo was required
for the Mars applications that it was originally designed for,
which exhibited ice–liquid–gas, ice–liquid, ice–gas, liquid–
gas, ice-only, liquid-only and gas-only conditions in a single
simulation (Grimm and Painter, 2009). However, the gen-
eral two-component capability is computationally demand-
ing and likely not required for Earth permafrost applications.
In addition, neither MarsFlo nor SUTRA-ICE is capable of
using massively parallel computing hardware.

Although general requirements for modeling subsurface
hydrology in permafrost-affected regions are clear, the com-
putationally demanding nature of the three-phase thermal
hydrology simulations places a premium on fine-tuning the
process representations as well as the software implemen-
tation. This paper addresses the details of process represen-
tations and summarizes parallel implementation of a three-
phase model (PFLOTRAN-ICE version 1.0) for use in pro-
jecting hydrologic response of degrading permafrost. Spe-
cific questions addressed here include the choice between
a Richards-like formulation with passive gas phase and a
full two-component formulation, building confidence of the
Richards-like formulation by comparing with column exper-
iments, appropriateness of neglecting vapor-phase diffusion,
parallel implementation and model initialization strategies.

The balance equations and the solution methodology are
described in Sect.2. Results from a one-dimensional hori-
zontal problem are compared to experimental data in Sect.3.
Comparison between the current model and two-component
air–water multi-phase model based onPainter(2011) is per-
formed in Sect.4. The effect of water vapor diffusion on
freezing is addressed in Sect.5. Three-dimensional simula-
tions using the numerical model presented in this paper are
shown in Sect.6. Final remarks are provided in Sect.7.

2 Governing equations and implementation

2.1 Balance equations

In this formulation, we do not track the movement of air, and
hence we do not consider the mass balance for air. With that
approximation, which is equivalent to the approximations
that lead to Richards equation, balance equations for water
and energy are required. The balance of mass and energy for
the water component that can be in three phases (liquid, gas,
ice) are given by (Painter, 2011)
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where the subscripts l, i, g denote the liquid, ice and gas
phases respectivley;φ is the porosity;sα (α = i, l, g), is the
saturation index of theαth phase;ηα (α = i, l, g) is the molar
density of theαth phase;Xα

w (α = i, l, g) is the mole fraction
of H2O in theαth phase;τg is the tortuosity of the gas phase;
Dg is the diffusion coefficient in the gas phase;T is the tem-
perature (assuming all the phases and the soil are in thermal
equilibrium);cr is the specific heat of the soil;ρr is the den-
sity of the soil;Uα (α = i, l, g) is the molar internal energy
of theαth phase;Hα (α = l, g) is the molar enthalpy of the
αth phase;Qe is the heat source;∇() is the gradient operator
and∇ · () is the divergence operator.

The Darcy velocity for the gas and liquid phases given as
follows:
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krgk
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, (2a)
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wherek is the absolute permeability;krα (α = l, g) is the rel-
ative permeability of theαth phase;ρg, ρl are the mass den-
sities of the gas and liquid phases;Qw is the mass source
of H2O; µα (α = l, g) is the viscosity of theαth phase;pα

(α = l, g) is the partial pressure of theα-th phase;g is ac-
celeration due to gravity andz is the vertical distance from
a reference datum. In Eq. (1) we account for the compress-
ibility of ice and liquid. Additionally, compressibility of the
pore space is accounted for through a relation between poros-
ity and liquid pressure as follows

φ = φ0

(
ec(pl−pref)

)
, (3)

whereφ0 is the porosity of the undeformed soil,pref is a
reference liquid pressure set to 1 atm,c is a compressibility
coefficient that is set to 10−7 Pa−1.

Constraint on the saturations of the various phases of water
is given by

sl + sg + si = 1. (4)

Furthermore, neglecting the amount of air in liquid and ice
phases, we have

Xl
a = 0,Xi

a = 0 ⇒ Xl
w = 1,Xi

w = 1, (5)

whereX
β
a (β = l, i) is the mole fraction of air inβth phase,

and so Eqs. (1) and (2), based on the assumption thatpg is
hydrostatic (i.e.,pg = (pg)0 − ρgg z; (pg)0 is 1 atm), reduce
to
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In the above formulation, temperature and liquid pressure
are chosen to be primary variables. With this approach, one
does not have to change the primary variables with a change
of phase; such a method, also known as variable switching,
is typically used in multi-component, multi-phase systems
(e.g.,Painter, 2011).

2.2 Constitutive relations

In addition to the previously described balance equations,
constitutive relations are required to model non-isothermal,
multi-phase flow of water. Relations for mole fraction of wa-
ter vapor, saturations of the phases, thermal conductivity, rel-
ative permeability and water vapor diffusion coefficient are
specified in this section.

The mole fraction of water in vapor phase is given by the
relation,

X
g
w =

pv

pg
, (7)

wherepv is the vapor pressure andpg is the gas pressure
(since we are interested in near-surface regions, for our cal-
culations we shall assume thatpg = 1 atm throughout the do-
main). Assuming thermal equilibrium among the ice, liquid
and vapor phases, vapor pressure is calculated using Kelvin’s
relation (Edlefsen and Anderson, 1943) which includes vapor
pressure lowering due to capillary effect as follows

pv = Psat(T )exp

[
Pcgl

ηlR(T + 273.15)

]
, (8)

wherePsat is the saturated vapor pressure,Pcgl is the liquid-
gas capillary pressure, given byPcgl = pg − pl andR is the
ideal gas constant. Empirical relations for saturated vapor
pressure are used for both above and below freezing condi-
tions (i.e.,T = 273.15 K). The gas molar densityηg is calcu-
lated using ideal gas law.

To calculate the partitioning of ice, liquid and vapor
phases, at a known temperature and liquid pressure, the fol-
lowing two relations are solved simultaneously forsl andsi
(Painter and Karra, 2014):

sl = (1− si)S∗

(
Pcgl

)
, (9a)

sl = S∗

[
−βρih

0
iwϑH(−ϑ) + S−1

∗ (sl + si)
]
. (9b)
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Here,S∗ is the retention curve for unfrozen liquid-gas phases.
In these equations,h0

iw is the heat of fusion of ice at 273.15 K,

ρi is the mass density of ice,ϑ =
T −T0

T0
andT0 = 273.15 K.

Equation (9a) is derived assuming that ice can be treated as
a solid for the purposes of relating capillary pressure and
phase saturations, so the remaining pore space is divided
into vapor and liquid phases using the retention curve for
unfrozen liquid–vapor. The second relation in Eq. (9b) is
derived as follows: the first term in the square brackets is
the capillary pressure between ice–liquid phases, when gas
phase is absent (seePainter and Karra, 2014), and the sec-
ond term is the addition to the ice–liquid capillary pressure
due to the presence of the gas phase. Equations (9a) and (9b)
are derived assuming no freezing-point depression. Further-
more, it has been shown thatPainter and Karra(2014) the
results based on generalizations of Eqs. (9a) and (9b) match
well with the experimental results for liquid water content
as a function of temperature for different total water content
values as measured inWatanabe and Wake(2009) andWen
et al. (2012). Although the constitutive equations for calcu-
lating the saturations of ice, water and vapor are implicit in
nature, closed-form expressions for the derivatives of these
saturations with respect to temperature and liquid pressure
can be derived, as shown in Appendix A. These derivatives
are used for Jacobian evaluation when the partial differential
Eq. (6) are solved using temperature (T ) and liquid pressure
(pl) as the primary unknown variables.

For S∗, we use van Genuchten’s model (van Genuchten,
1980), as follows:

S∗ =

{[
1+ (αPc)

γ
]−λ

, Pc > 0

1, Pc ≤ 0
(10)

with the Mualem model (Mualem, 1976) for the relative per-
meability of liquid water,

krl = (sl)
1
2

[
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(
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1
λ
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]2

, (11)

whereλ, α are parameters, withγ =
1

1−λ
. Equation (10) as-

sumes that the residual saturation is zero, although a non-zero
residual saturation can be easily account for. Additionally,
note that from Eq. (10), S∗ is non-zero for finite values ofPc.
This ensures that complete dry-out does not occur, and that
liquid (even if the liquid saturation is very small) is present
at all times.

The thermal conductivity for the frozen soil is chosen to
be (Painter, 2011)

κ = Kefκwet,f + Keuκwet,u+ (1− Keu − Kef)κdry, (12)

whereκwet,f, κwet,u are the liquid- and ice-saturated thermal
conductivities,κdry is the dry thermal conductivity,Kef , Keu
are the Kersten numbers in frozen and unfrozen conditions
and are assumed to be related to the ice and liquid saturations
by power law relations as follows

Kef = (si)
αf , (13a)

Keu = (sl)
αu , (13b)

with αf , αu being the power law coefficients.
The gas diffusion coefficientDg is assumed to depend on

temperature and pressure as follows:

Dg = D0
g

(
Pref

P

)(
T

Tref

)1.8

, (14)

whereD0
g is the reference diffusion coefficient at some refer-

ence temperature,Tref, and pressurePref.

2.3 Description of PFLOTRAN

PFLOTRAN (Lichtner et al., 2013) is a massively paral-
lel multi-phase, multi-component, surface-subsurface flow,
geomechanics and reactive transport code. The continuum
mass, energy (or flow equations) for multiple components in-
cluding water, supercritical CO2, are sequentially coupled to
the reactive chemistry equations for a network of geochemi-
cal components. The continuum partial differential equations
are spatially discretized (for both structured and unstructured
grids) using a finite volume technique, and backward Eu-
ler scheme is used for time discretization. The discretized
equations at each implicit time step reduce to a set of non-
linear algebraic equations which are iteratively solved using
an inexact Newton–Krylov method in PFLOTRAN. PFLO-
TRAN is written in modular, object-oriented Fortran9X. Par-
allelization is done using domain decomposition by imple-
menting the PETSc toolkit which takes care of communi-
cation between processor core along with providing solvers
for the linear and non-linear equations. PFLOTRAN per-
forms parallel I/O via both collective HDF5 calls and direct
MPI-IO calls inside the PETSc routines. Information regard-
ing PFLOTRAN installation and user documentation can
be obtained fromhttp://www.pflotran.organd PFLOTRAN-
ICE v1.0 which has the ice module can be dowloaded freely
from https://bitbucket.org/satkarra/pflotran-ice-release-v1.0.

2.4 Solution methodology

The system (Eqs.6a and6b) can be written in the form (as-
suming no source/sink)

∂A
∂t

+ ∇ · F = 0, (15)

whereA, F are the accumulation and flux terms. Equa-
tion (15) is discretized using finite volume method with back-
ward Euler temporal discretization, to obtain the following
form:[
A(i+1)

n −A(i)
n

1t

]
Vn +

∑
n′

F (i+1)

nn′ Ann′ = 0, (16)
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where the superscripti denotes the time step, the subscriptn

denotes the celln, andn′ being the neighboring cell to celln,
Ann′ denotes the area of the interface between the cellsn and
n′, Vn is the volume of the celln,An is the accumulation term
in thenth cell andFnn′ is the flux term across the interface
between the cellsn andn′. Finite difference is used to calcu-
late the gradients in the flux term, and the material properties
in Fnn′ is based on the intercell average. The gradient terms
in F are discretized using a two-point flux approximation
between the neighboring grid cells. This requires the flux to
be orthogonal to the face common to the grid cells. The two
discretized set of equations are solved in a fully coupled fash-
ion using inexact Newton–Krylov method. The calculations
shown in Appendix A are used for the calculation of Jacobian
(needed in the Newton–Krylov method), namely, for deriva-
tives ofAn andFnn′ with respect topl andT .

The intercell averages for the flux terms are calculated as
follows: k is harmonic averaged, (τ φ) is harmonic averaged,
ηl , ρl , kr are upwinded,κ is harmonic averaged. For the gas
diffusion term, the coefficient for the gradient (φ sgτgηgDg)
is chosen based on values from the cell with smallerXw

g (see
Painter, 2011, for the reasoning behind this averaging),ηg is
calculated using the temperature in the cell assuming ideal
gas law and by assuming that the gas pressure is 1 atm.

The above solution methodology is used to implement the
governing equations in Sect.2.1in a massively parallel fash-
ion in PFLOTRAN. At each grid cell, in addition to solv-
ing for liquid pressure and temperature, an inert tracer con-
centration is also solved for. This involves solving an addi-
tional advection–diffusion equation, although this concentra-
tion is not used in this paper. Thus for each grid cell, three
degrees of freedom (or unknowns) are solved for. Figure1
shows the parallel scalability in terms of strong scaling (that
is, for a fixed problem size, the solution time is measured
as a function of number of processor cores) of the imple-
mentation in PFLOTRAN without any input or output. Two
cases with 3 million and 12 million degrees of freedom (dofs)
are considered. For the 3 million case, the code scales up
to 1024 processor cores with about 2929 dofs per processor
core, while for the 12 million case, it scales up to 2048 pro-
cessor cores with approximately 5850 dofs per processor
core. The degradation in the performance beyond 1024 for
3 million dofs and 2048 processor cores for 12 million dofs
is attributed to decrease in work load per processor core, thus
increasing the parallel communication time over computa-
tion time. Additionally, it is also known that increase in the
processor cores increases the number of linear solver itera-
tions needed for convergence (Hammond et al., 2014); this
adds to the degradation of performance at larger processor
core count. To evaluate the performance of the implemen-
tation on small clusters that are more easily available to re-
searchers, we looked at the strong scaling on a computer with
32 floating point units. Four cases of varied degrees of free-
dom – 12 000, 24 000, 48 000 and 96 000 – were considered.
Each of the four cases seem to scale reasonably up to 8, 16,

Figure 1. Strong scaling performance of PFLOTRAN usingJaguar
Cray XK6 supercomputer at Oak Ridge National Laboratory for
the non-isothermal, multi-phase (ice, vapor and liquid) sub-surface
water flow problem (no I/O). Domain sizes with 3 million and
12 million dofs are considered. For the 3 million dofs case, the code
scales up to 1024 processor cores with about 2929 dofs per proces-
sor core, and for the 12 million dofs case, it scales up to processor
cores with approximately 5850 dofs per processor core.

16 and 32 processor cores, respectively, with up to approxi-
mately 1500, 1500, 3000 and 3000 dofs per processor core.
The degradation beyond these processor cores is due to larger
communication compared to computation.

3 Comparison with experimental data

In this section, we shall compare the numerical results
against the experimental data fromJame and Norum(1980)
for a partially saturated porous medium. The Jame and No-
rum experimental setup was as follows: a 30 cm long hori-
zontal tube with partially saturated no. 40 silica flour sealed
at the ends was used. The sample was initially unfrozen and
the temperature at one end was lowered while maintaining
the temperature at the other end at the initial temperature. To-
tal water content (ice plus water) was measured at different
times using gamma ray attenuation. Results from three tests
were reported inJame and Norum(1980). In the first test,
the sample had a water content of 15.6 % (by dry weight),
with an initial temperature of 20◦C, and the temperature at
the cold end set to−10◦C. For the second test, a water con-
tent of 15 %, an initial temperature of 5◦C, and a cold end
temperature of−5◦C, was used. Finally, in the third test,
a water content of 9.5 %, an initial temperature of 5◦C, and
a cold end temperature of−5◦C, was used. Figure2 shows
experimental and numerical results for the water content (by
dry weight) as a function of position for 6, 24 and 72 h. The
temperature profiles are also compared at the three instances
in time. The same set of parameters, listed in Fig.2, were
used for all the three tests. A good comparison can be seen

www.the-cryosphere.net/8/1935/2014/ The Cryosphere, 8, 1935–1950, 2014
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Figure 2. Comparison of simulated results from PFLOTRAN with laboratory experiments ofJame and Norum(1980) with simu-
lated data shown in solid curves and experimental data shown with points. The parameters used are permeability= 3.5× 10−12m2,
thermal conductivity (dry)= 0.25 W m−1 K−1, thermal conductivity (wet)= 2.3 W m−1 K−1, αu = 0.45, αf = 0.95, thermal conductiv-
ity (frozen)= 3.6 W m−1 K−1, porosity= 0.5, soil density= 2700 kg m−3, specific heat= 837 J kg−1 K−1 and tortuosity= 0.01. The van
Genuchten parameters used wereα = 2× 10−4 Pa−1 andλ = 0.39.

between the numerical results and experiments for both wa-
ter content as well as the temperature. The reason behind
the differences seen in the water content at the cold end of
the tube is unknown but similar differences have been seen
previously by others as well (Jame and Norum, 1980; White
and Oostrom, 2006; Painter, 2011).

4 Our approach vs. two-component approach

In this section, two configurations are considered to com-
pare the results from the current approach with the two-
component (air–water) approach based onPainter(2011).

The Cryosphere, 8, 1935–1950, 2014 www.the-cryosphere.net/8/1935/2014/
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4.1 1-D horizontal domain

First, we shall consider the one-dimensional horizontal ex-
periment byJame and Norum(1980) discussed in Sect.3.
The comparison between PFLOTRAN and the results from
a two-component approach are shown in Fig.3. The initial
and boundary conditions used are same as the ones used in
the experiments, discussed in Sect.3. Overall a good match
can be seen with minor differences in the solution at the
boundaries and at the freezing front. This demonstrates that
the single-component Richards model is adequate for this
application.

4.2 2-D domain

In the one-dimensional simulations summarized in Sect.4.1,
the single-component model gave very similar results to the
more complete two-component model (Painter, 2011) that
accounts for advective transport of water vapor. However, a
comparison between the two models in a one-dimensional
configuration is not very demanding because excursions in
gas-phase pressure, which are neglected in the Richards-
based model but may occur during freeze up in a two-
component model, are not able to induce significant advec-
tive transport of water vapor in one-dimensional configura-
tions. Numerical experiments in a two-dimensional config-
uration provide a more sensitive test of the adequacy of the
single-component model.

The domain for the two-dimensional tests is rectangular
with depth of 20 m and horizontal extent of 50 m. The regular
grid spacing is 1 m in the horizontal and 0.2 m in the verti-
cal. The initial conditions, thermal properties, and mean an-
nual surface temperature are selected to cause the active layer
depth to be at approximately 1 m with fully saturated frozen
soil below that depth. No flow conditions are applied on the
left and bottom boundary. The top is specified as an infiltra-
tion boundary (specified infiltration rate and temperature in
the single component model; specified infiltration rate, tem-
perature and gas pressure in the two-component model). A
cyclic temperature condition representing seasonal variations
is applied at the top. Infiltration is applied when the tempera-
ture is above freezing; no infiltration is applied when the tem-
perature is below freezing. The temperature on the boundary
on the right face is held at 2◦C between depths of 1 and 2 m,
mimicking a talik. The boundary condition for flow in that
region of the right boundary corresponds to a seepage face.

The boundary and initial conditions in this two-
dimensional simulation are designed to cause a shallow
perched aquifer to form in the active layer during summer.
Water then flows toward the right seepage face. The simula-
tions are designed to test whether gas pressure excursions in-
duced by soil freezing in fall, which are not represented in the
single-phase passive gas model, will enhance lateral water
and vapor flow. Comparisons between the single-component,
passive-gas model and the more complete two-component

Figure 3. Comparison of simulated results from present ap-
proach with two-component approach inPainter (2011). The
parameters used are permeability= 3.5× 10−12m2, thermal
conductivity (dry)= 0.25 W m−1 K−1, thermal conductiv-
ity (wet)= 2.3 W m−1 K−1, αu = 0.45, αf = 0.95, thermal
conductivity (frozen)= 3.6 W m−1 K−1, porosity= 0.5, soil
density= 2700 kg m−3, specific heat= 837 J kg−1 K−1 and
tortuosity= 0.01. The van Genuchten parameters used were
α = 2× 10−4 Pa−1 andλ = 0.39.
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Figure 4. Comparison of current approach (solid) with two com-
ponent air–water approach (circles) based onPainter(2011). The
following properties were used: permeability= 3.2× 10−12m2,
porosity= 0.53, thermal conductivity (dry)= 0.067 W m−1 K−1,
thermal conductivity (wet)= 1.23 W m−1 K−1, thermal conductiv-
ity (frozen)= 2.08 W m−1 K−1, soil density= 2500 kg m−3, spe-
cific heat= 735 J kg−1 K−1, van Genuchtenα = 7.1× 10−5 Pa−1

and van Genuchtenλ = 0.22.

model are shown in Fig.4. The solid curves use the passive-
gas model of this paper, while the individual data points are
the result of the two-component model ofPainter(2011). The
curves are liquid saturation vs. horizontal distance (the talik
is on the right) at depths of 10, 30, 50 and 70 cm. The two-
component model does show more lateral movement, but the
differences are quite small (note the narrow range on the
y axis). For these and similar comparisons, it can be con-
cluded that the single-component, passive-gas approximation
is adequate for the purposes of modeling water dynamics in
Earth permafrost. This is in contrast to applications involv-
ing the hydrologic system of Mars, which were found to be
sensitive to advective transport of water in the vapor phase
(Grimm and Painter, 2009).

5 Effect of vapor diffusion

To study the effect of vapor diffusion on the formation and
evolution of permafrost, a one-dimensional vertical column
of height 30 m was considered. The domain was initialized
with a water table at a height of 15 m and a temperature of
1◦C. A geothermal heat flux of 100 mW m−2 was applied
along with a no flow boundary condition at the bottom of the
domain. A temperature of−5◦C was applied at the top with
no infiltration. The simulation was run to 3000 year. The tem-
perature and ice saturation profiles for cases with and without
vapor diffusion are shown in Figs.5 and6. For the case with-
out vapor diffusion, as the temperature in the vadoze zone
betweenz = 15 andz = 20 dropped below freezing, the va-
por converted into ice, and a thin ice layer starts to form. The
position and thickness of the ice layer does not change sig-
nificantly as a very small increase in the ice content is seen.

Figure 5. Comparison of temperature profiles for the cases with
and without vapor diffusion for the one-dimensional vertical do-
main. The parameters used are permeability= 1.3× 10−13m2,
thermal conductivity (dry)= 0.25 W m−1 K−1, thermal conduc-
tivity (wet) = 1.3 W m−1 K−1, αu = 0.45,αf = 0.95, thermal con-
ductivity (frozen)= 2.36 W m−1 K−1, porosity= 0.45, soil den-
sity= 2700 kg m−3, specific heat= 837 J kg−1 K−1, λ = 0.721 and
α = 2.8× 10−4 Pa−1. Tortuosity is set to 1 for the case with diffu-
sion turned on.

On the other hand, for the case with diffusion, the thickness
of the ice layer increases with time. Also, the fraction of ice
in this layer can be seen to increase significantly. This is due
to two mechanisms: the first being that the vapor layer below
the ice layer diffuses to the bottom of the ice layer which is
cooler as seen in Fig.6b, and second that a feedback from
soil thermal conductivity causes further decrease in tempera-
ture, which in turn increases ice layer thickness as well as ice
content. This feedback from soil thermal conductivity is pri-
marily due to its dependence on ice saturation. Furthermore,
for the case with diffusion, as seen in Fig.6b the diffusion
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Figure 6. Comparison of ice saturation profiles for the cases
with and without vapor diffusion for the one-dimensional vertical
domain. The parameters used are permeability= 1.3× 10−13m2,
thermal conductivity (dry)= 0.25 W m−1 K−1, thermal conduc-
tivity (wet) = 1.3 W m−1 K−1, αu = 0.45,αf = 0.95, thermal con-
ductivity (frozen)= 2.36 W m−1 K−1, porosity= 0.45, soil den-
sity= 2700 kg m−3, specific heat= 837 J kg−1 K−1, λ = 0.721,
α = 2.8× 10−4 Pa−1. Tortuosity is set to 1 for the case with dif-
fusion turned on.

of vapor to a cooler region of the domain causes the height
of the water table to decrease. Note that in both cases the
temperature at the bottom of the domain increases due to the
geothermal flux.

Figure 7. Three-dimensional domain based on surface topography
measured using lidar from Barrow, AK (C. Tweedie, personal com-
munication, 2012). The size of the domain in the horizontal plane is
25 m× 25 m and the height variation is between 4.2–4.6 m.

6 Three-dimensional simulations

Freezing and thawing of active-layer with seasonal
variation

In this section, a three-dimensional domain that uses surface
topography from Barrow, AK (see Fig.7), is considered. A
sinusoidal temperature variation with a mean annual temper-
ature of−1◦C and an amplitude of 30◦C is applied at the top
boundary. The size of the domain is 25 m× 25 m in the hori-
zontal plane with height varying between 4.2–4.6 m. An infil-
tration of 10 mm yr−1 is applied when the temperature in the
top boundary is above 0◦C. At the bottom, a geothermal heat
flux of 100 mW m−2 with no fluid flow is applied. A seep-
age boundary condition with no heat conduction is applied
on the sides. The domain is discretized using a structured
grid with 101× 101× 200 cells. The cells above the height
of the topography are set inactive. The material param-
eters considered are permeability= 1.3× 10−13 m2, ther-
mal conductivity (dry)= 0.25 W m−1 K−1, thermal conduc-
tivity (wet) = 1.3 W m−1 K−1, αu = 0.45,αf = 0.95, thermal
conductivity (frozen)= 2.36 W m−1 K−1, porosity= 0.45,
soil density= 2700 kg m−3, specific heat= 837 J kg−1 K−1,
λ = 0.5 andα = 1× 10−4 Pa−1. For this configuration, there
is no diffusion in the gas phase. This problem with approx-
imately 2 million cells (about 6 million degrees of freedom)
was run to about 21 year simulation time using 648 processor
cores on theMustangsupercomputer at Los Alamos National
Laboratory. The time taken for this simulation was approx-
imately 60 h. Model initialization strategies for such simu-
lations is discussed in Appendix B. Figures8–10 show the
saturations of ice and gas during different seasons. Only the
top 2 m of the domain, is shown for the sake of clarity. During
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Figure 8. Ice thawing and freezing with seasonal surface temperature variation. Ice and gas saturations for winter and spring seasons
shown here. A sinusoidal temperature variation is applied to the top (with a mean of−1◦C and a half-amplitude of 15◦C) along with an
infiltration of 10 mm yr−1. Seepage boundary condition is used on the sides. For initialization, the temperature was set to average annual tem-
perature of−1◦C. The material parameters considered are permeability= 1.3× 10−13m2, thermal conductivity (dry)= 0.25 W m−1 K−1,
thermal conductivity (wet)= 1.3 W m−1 K−1, αu = 0.45,αf = 0.95, thermal conductivity (frozen)= 2.36 W m−1 K−1, porosity= 0.45, soil
density= 2700 kg m−3, specific heat= 837 J kg−1 K−1, tortuosity= 1 andλ = 0.5,α = 1× 10−4 Pa−1.

winter the soil is completely filled with ice and as the tem-
perature on the top region warms in spring, the ice in the top
melts. In summer, the ice melts to a depth of around 0.8–
1 m. As the top temperature cools down in the fall season,
the ice layer starts to freeze from the top to an essentially
completely frozen state in winter. Reasonably high amounts
of gas are seen in the top layer during spring, summer and
early fall seasons with the peak being in summer. Previous

models such as SUTRA-ICE cannot capture this effect since
gas is not tracked in their formulation. Figure8b also clearly
shows the formation of ice in the topmost part of the domain
in early fall. Additionally, a point to be noted from this simu-
lation is that even though ice was initially present in the entire
domain as an initial condition, a cyclic profile was reached
fairly quickly (in about 5 year) and then the active layer gen-
erally followed the surface topography.
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Figure 9. Ice thawing and freezing with seasonal surface temperature variation (continued). Ice and gas saturations for summer and early fall
shown here. For the values of parameters used see Fig.8.

7 Discussion and conclusions

Numerical models are increasingly being used to help un-
derstand how subsurface hydrology in permafrost-affected
regions will respond to increasing air temperatures and
changes in precipitation. Such models generally fall into two
classes. One class focuses on groundwater systems at large
scales with approximate treatment of active layer and intra-
permafrost physics (e.g.,McKenzie et al., 2007; Bense et al.,
2009; Bosson et al., 2013; Vidstrand et al., 2013; Grenier
et al., 2013; McKenzie and Voss, 2013). The second class in-
cludes more realistic descriptions of water dynamics in the

active layer, including the effects of non-zero gas content
(e.g.,Painter, 2011; White, 1995). However, those models
have generally been limited to relatively small scales (e.g.,
the column scale) and one spatial dimension because of com-
putational demands of the three-phase models. The imple-
mentation described here takes advantage of highly scalable
parallel subsurface multi-physics capability in PFLOTRAN
(Lichtner et al., 2013); thus, enabling an important class
of applications involving degradation of ice-wedge polygon
bogs that require both three-phase physics and relatively
large domain sizes (Painter et al., 2012).
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Figure 10. Ice thawing and freezing with seasonal surface temperature variation (continued). Ice and gas saturations for peak fall shown
here. For the values of parameters used see Fig.8.

The implementation described here represents a single-
component (water substance) partitioned over three-phases
(ice, liquid, vapor) coupled with an energy balance equation.
The single-component multi-phase formulation gives nearly
identical results to the more complete two-component for-
mulation (Painter, 2011) for applications of interest. Thus,
the less demanding single-component model is preferred for
applications involving hydrology of Earth permafrost. How-
ever, Mars applications (e.g.,Grimm and Painter, 2009) will
generally require the two-component model.

Successful comparisons with laboratory freezing-column
experiments build confidence in both the numerical imple-
mentation and the constitutive model (Painter and Karra,
2014) for partitioning among ice, liquid and gas phases. In
the constitutive model used here, the partitioning among the
three-phases follows from information about the soil water
characteristic curve in unfrozen conditions. This is prefer-
able to purely empirical freezing curves, as those empirical
freezing curves would need to be developed anew for each
application in contrast to the soil water characteristic curve,
which may be estimated from information about soil texture.

Although the gas phase is passive in the implementation
described here, as it is in Richards equation, diffusion of wa-
ter vapor is included. In our one-dimensional simulations of
Sect.5, vapor diffusion had a surprisingly large effect on the
subsurface soil moisture dynamics in unsaturated conditions.
The sensitivity to the vapor diffusion process results partially
from a dependence of the thermal conductivity model on ice
content. As vapor diffuses to cold regions and cold traps as
ice, the thermal conductivity increases, which decreases the
soil temperature during winter and further increases vapor
cold trapping. However, the vapor diffusion model used here
is approximate. Further evaluation of the importance of vapor

diffusion for Arctic soils using better vapor diffusion models
(e.g.,Webb and Ho, 1998) is thus needed.

Our code (PFLOTRAN-ICE v1.0) can be used for length
scales ranging from the order of a representative element vol-
ume (Bear, 2013) to kilometers, where resolving the physics
in more detail is important. Existing permafrost thaw rep-
resentation (Lawrence et al., 2011) in codes such as CLM
(Oleson et al., 2010), for instance, can be used for even larger
domains of the order hundreds of kilometers but such codes
assume a one-dimensional vertical flow and heat transport,
and do not account for lateral flow. For example, if one is in-
terested in looking at the hydrology in a polygonal region or
a small set of such regions, CLM cannot model the flow be-
tween troughs and centers while our code can be used to re-
solve the non-isothermal flow in these regions. Furthermore,
our code can be used for comparing with larger-scale codes
such as CLM to build confidence in these codes which have
simplified physics.

The work described here focuses only on the subsurface
hydrology without consideration of surface flows. AsPainter
et al. (2012) discuss, a comprehensive modeling capability
for hydrology in permafrost-affected regions will also require
representation of surface flow, surface energy balance, and
evolution of topography caused by thawing of permafrost and
melting of ground ice. Those important couplings will be ad-
dressed in the future.
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Appendix A: Derivatives of saturations with pressure
and temperature

When numerically solving the governing partial differential
equations, with temperature (T ) and liquid pressure (pl) be-
ing the primary variables, one has to take the derivatives of
the saturations (of ice, water and vapor) with respect toT

andpl . Although the constitutive relations for the saturations
are implicit in nature, in what follows we will show that one
can derive closed form expressions for the derivatives. Us-
ing analytical closed form derivatives can be computationally
faster and numerically more accurate than using numerical
derivatives. This can lead to faster convergence to the solu-
tion, when using a Newton–Krylov method. In what follows,
we derive the derivatives of the saturations with respect toT

andpl . The implicit constitutive relation for the saturation of
liquid, ice and vapor phases of water is given by

sl = (1− si)S∗

(
pl − pg

)
, (A1a)

sl = S∗

(
βρiLfϑH(−ϑ) + S−1

∗ (sl + si)
)
, (A1b)

whereS∗ is the relative saturation-liquid gas capillary pres-
sure function,H is the heaviside function,ϑ =

T −T0
T0

, with
T0 = 273 K.

Taking the derivative of Eqs. (A1a) and (A1b) with respect
to pl , we get set of two equations in∂sl

∂pl
and

∂sg
∂pl

which can

be solved simultaneously to get the expressions for∂sl
∂pl

and
∂sg
∂pl

, given by

∂si

∂pl
=

(1− si)(
G

1−G + S∗

) ∂S∗

∂pl
, (A2a)

∂sl

∂pl
=

∂si

∂pl

G
1−G

, (A2b)

where

G
(
ϑ,pl,pg

)
=

∂S∗ (B)

∂B
∂S−1

∗ (C)
∂C

, (A3)

B = βρiLfϑH(−ϑ) + S−1
∗ (sl + si) , (A4)

C = sl + si . (A5)

Following a similar procedure,∂sl
∂T

and ∂si
∂T

are given by

∂si

∂T
=

1

T0

−LM
LN + (1−LN )S∗

(
pg − pl

) , (A6a)

∂sl

∂T
=

1

T0

LMS∗

(
pg − pl

)
LN + (1−LN )S∗

(
pg − pl

) , (A6b)

with

L=
∂S∗ (B)

∂ (B)
, (A7a)

M= βρiLfH(−ϑ) + βρiLfϑ
∂H(−ϑ)

∂ϑ
, (A7b)

N =
∂S−1

∗ (C)
∂ (C)

. (A7c)

Appendix B: Model initialization

One main challenge that a modeler faces while simulating
three-dimensional freezing models is picking the initial con-
ditions for the system. To reach a cyclic steady-state solution
(typically, the boundary conditions are somewhat cyclic in
nature due to seasonal variations, similar to the example pre-
sented in Sect.6), the simulation run time depends on how
one initializes the system. The following are various model
initialization strategies that one could use:

– Start with a fully unfrozen state. From our experience,
we found that with this initialization the simulation took
a much longer time to reach a cyclic profile, since, nu-
merically, freezing is a harder problem than thawing; so,
the time step for freezing is usually much smaller com-
pared to thawing, and hence it takes more steps to reach
a cyclic steady state.

– Calculate the saturations of liquid, ice and vapor phases
in a one-dimensional vertical column under steady state
and map them to the three-dimensional domain. The
governing equations for a vertical column under steady-
state assumptions reduce to a set of coupled ordinary
differential equations which can be easily solved to ob-
tain the phase saturations (see Appendix C).

– Start with a fully frozen state. One needs to ensure that
the pressure and temperature conditions in this setup
are “consistent” when starting from a fully frozen state.
For instance, starting with a temperature of−10◦C and
hydrostatic pressure condition would not be consistent.
One way to avoid this situation is to first spin-up to the
frozen state by applying−10◦C at the bottom with hy-
drostatic pressure and above freezing temperature ini-
tial conditions. The remaining boundaries can remain
closed for heat and mass transfer. The resulting solution
can be used as a spin-up for the model of interest. This
approach is seen be the most effective.

Appendix C: Steady-state solution to one-dimensional
vertical column

In this section, the steady-state equations for a one-
dimensional vertical column are presented and the solution
for the obtained coupled ordinary differential equations are
derived. The solution to these equations can be used to ini-
tialize the model domain. Under steady state and assuming
there are no mass/energy sources, Eq. (6) reduces to

d

dz

(
vlηl − φsgτgηgDg

dX
g
w

dz

)
= 0, (C1a)

d

dz

(
vlηlHl − κ

dT

dz

)
, (C1b)

vl = −
krlk

µl

d

dz
(pl − ρlgz) . (C1c)
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Integrating Eqs. (C1a) and (C1b), we get

vlηl − φsgτgηgDg
dX

g
w

dz
= m0, (C2a)

vlηlHl − κ
dT

dz
= e0, (C2b)

wherem0, e0 are constant mass and energy fluxes. The mole
fraction of water vaporXg

w can be calculated using (without
including the lowering factor due to capillary effects)

X
g
w =

Psat(T )

pg
⇒

dX
g
w

dz
=

1

pg

dPsat

dT

dT

dz
. (C3)

Using Eqs. (C3) and (C1c) in Eq. (C2), we get the following
ordinary differential equations:

−
dpl

dz
=

µl

krlkηl

[
m0+φsgτgηgDg

1

pg

dPsat

dT

dT

dz

]
−ρlg, (C4a)

− κ
dT

dz
+

[
m0 + φsgτgηgDg

1

pg

dPsat

dT

dT

dz

]
Hl = e0. (C4b)

For known mass and energy fluxes (m0, e0), Eq. (C4b) can
be used to solve for temperature (T ) as a function ofz. Using
this temperature profile, liquid pressure (pl) can be then eval-
uated using Eq. (C4a). Oncepl , T are known as functions of
z, liquid, ice and water vapor saturations can be evaluated
using Eq. (9).
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