

Supplement of

Thermokarst lake waters across the permafrost zones of western Siberia

R. M. Manasypov et al.

Correspondence to: O. S. Pokrovsky (oleg@get.obs-mip.fr)

Electronic Supporting Information 1

Site	MAAT, °C	precipitation	permafrost	vegetation	depth of
<u>Gyda No 1</u>	-12	Annual precipitation of 566 mm; ≤ 350 мм in summer; 150– 190 мм in winter	Temperature from -5 to -10 C°, depth from 200 to 430 M except at the coast $(\leq 200 \text{ m})$	Tundra (moss, lichens, dwarf shrubs)	0.2 to 0.5 m
Pangody/ <u>Novyi</u> <u>Urengoy</u> <u>No 2, 3</u>	-6.9 to - 7.6	Annual precipitation 410-460 MM, with 70 to 75 % occurring during snow-free period	Permafrsot from 50 to 200 M. Taliks under the thermokarst lakes of 12 to 85 m. Sporadic permafrost around large rivers	Forest-tundra (larch, pine, fir with tree height < 3-5 m. Forest occupies between 20 and 30%, tundra between 5 and 10%	Up to 5.5 m in the river valley and 0.5 to 4 m at the watershed divide
<u>Nojabrsk/</u> <u>Khanymey</u>	-6.5	Annual precipitation of 498 mm (75 – 80% occurs from April to October and 20-25% during cold period)	Sporadic permafrost on flat- mounds peat and forest, with T _{average} of -0.1 to -0.5°C*	Larch, fir and birch forests on sand podzol soils	2 to 4 m

Table S1. Physico-geographical characteristics of studied sites of the north of Western Siberia.

*This site exhibit two-layer permafrost structure: the upper layer of 4 to 40 m and the 2nd layer represented by relict permafrost deeper than 100 m

Table ESM-1, continued.

Site	soil	% of lakes	lithology
<u>Gyda No 1</u>	Arctic tundra soil with thin peat horizon	8 to 10%	Marine accumulation plain: marine, lagune and lake alluvium deposits; broad alluvial river valleys
Pangody/ Novyi Urengoy No 2, 3	Alluvium peat gley soil in river valleys; podzols on sands and gley soils Peat gelic soils	40% of lakes in forest-tundra zone; overall range from < 10% to 60-80%	Marine, glacial, and glacial till of Salekhard formation. Complex of lake deposits of Yalbinskaya suite and Zyryano-Kurganskaya stratas along the river valley
<u>Nojabrsk/</u> <u>Khanymey</u>	Podzol of northern taiga and gley-podzol soils. Peat soils on bogs	40 to 45%	Middle- Pleistocene sands and clays and upper Pleistocene – Holocene lake deposits (clays, peats).

Bibliography to Table S1 :

Belov, A.B., Gribova, S.A., Karamysneva, Z.V., Kotova, T.V. (Eds): Vegetation map of the USSR, scale: 1:4,000,000, GUKG, Moscow, 1990.

Ershov, E.D. : Geocryology of the USSR. Western Siberia. Nedra, Moscow, 450 pp, 1989.

Khrenov, V.Ya. : Soils of cryolithozone of western Siberia: morphology, physico-chemical properties, geochemistry. Nauka, Novosibirsk, 211 pp, 2011.

Peregon, A.S., Maksyutov, N.P., Kosykh, N.P., Mironycheva-Tokareva, N.P.: Map-based inventory of wetland biomass and net primary production in western Siberia. J. Geophys. Res., 113, G01007, doi: 10.1029/2007JG000441, 2008.

Peregon, A., Maksyutov, S., Yamagata, Y.: An image-based inventory of the spatial structure of West Siberian wetlands. Environ. Res. Lett. 4, 045014, 2009.

Popov, P.A.: Characteristics of the ichtio-phaune of the Gydansky Peninsula water resrvoirs. Vestnik Tomsk State University, Biology, No 3(15), 127-138, 2011.

Trofimov, V.T., Bady, Yu.B., Kashperyuk, P.I.: On the temperature of permafrost rock of the Gydansky Peninsula. In: Natural conditions of western Siberia, Issue no 7, Moscow State University Publ. House, p. 102-111, 1982. (in Russian)

Sergeev, E.M., Editor : Engineering Geology of the USSR, vol. 2, western Siberia, Moscow University Publ. House, 495 pp, 1976. (in Russian)

Sisko, R.K., Editor : Yamalo-Gydanskaya Oblast. Physico-Geographic Characteristics, Gidrometeoizdat, Leningrad, 132 pp, 1977. (in Russian)

Water Resources and Water Balance of the Soviet Union Territory. Gidrometeoizdat, Leningrad, 200 pp, 1967. Botch, M.S.: Bogs of the Tundra Zone of Western Siberia (Principles of Typology) / Types of bogs of the USSR and principles of their classification. Nauka, Leningrad, p. 146-154, 1974.

Coordinates	Sample name	Stages of	surface area,	рH	EC,	DOC,	Cl ⁻ ,	SO_4^{2-} ,	UV
	1	evolution	m²	1	μS cm ⁻	ppm	ppm	ppm	280 _{nm}
65°59'32.9"/77°51'23.1"	RM1	2 nd stage	800	4.29	13.3	14.8	0.15	0.63	0.29
65°59'34.6"/77°51'13.4"	RM2	2 nd stage	6,390	4.73	6.1	3.67	0.059	0.63	0.03
65°59'34.5"/77°51'07.4"	RM3	1 st stage	28	4.82	8	10.7	0.091	0.23	0.21
65°59'40.6"/77°51'10.3"	RM4	1 st stage *	50	6.92	3.1	4.1	0.061	0.31	0.048
65°59'42.8"/77°51'09.0'	RM5	1 st stage *	38	4.74	5.5	8.21	0.04	0.048	0.1
65°59'42.8"/77°51'04.3"	RM6	1 st stage *	20	4.6	5.4	6.05	0.035	0.18	0.077
65°59'43.0"/77°51'00.6"	RM7	1 st stage *	7	4.73	6.3	5.8	0.051	0.16	0.12
65°59'42.4"/77°50'49.7"	RM8	1 st stage	30	4.38	14	21	0.079	0.058	0.41
65°59'39.6"/77°50'22.8"	RM9	3 rd stage	12,000	4.83	6.8	4.3	0.12	0.62	0.08
65°59'49.3"/77°51'25.3"	RM10	1 st stage	80	4.23	14	9.59	0.13	1.06	0.2
65°59'49.3"/77°52'09.2"	RM11	4 th stage	200,000	5.35	4.6	4.05	0.074	0.46	0.047
66°00'33.9"/74°45'42.3"	RM13	1 st stage	50	3.97	32.9	36.4	0.041	0.062	1.25
66°00'33.8"/74°45'39.2"	RM14	1 st stage	64	3.91	29.2	31.5	0.016	0.066	0.89
66°00'34.0"/74°45'34.9"	RM15	1 st stage	80	4.03	27.2	47.9	0.044	0.038	0.96
66°00'34.9"/74°45'28.0"	RM16	3 rd stage	155,000	4.85	14.9	16.2	0.14	0.48	0.57

 Table S2. Physical and major chemical parameters of studied lakes.

66°01'01.2"/74°45'21.4"	RM17	4 th stage	212,000	4.5	14.8	15.6	0.16	0.51	0.51
65°55'31.8"/74°46'41.1"	RM18	5 th stage	53,000	4.45	12.5	14.2	0.018	0.26	0.34
65°55'28.8"/74°46'45.8"	RM19	5 th stage	1,300	4.93	12.2	13.9	0.02	0.16	0.36
65°55'16.1"/74°49'02.7"	RM20 [#]	4 th stage	915,000	4.98	17.6	8.62	0.2	3.51	0.12
65°52'10.5"/74°52'46.4"	RM21	2 nd stage	7,000	4.43	10.9	9.34	0.1	0.42	0.29
65°54'09.9"/74°08'57.2"	RM22	5 th stage	2,800	4.54	12.2	16.9	0.031	0.13	0.44
65°53'07.0"/75°10'37.7"	RM23	4 th stage	515,000	5.01	11.6	9.75	0.3	0.89	0.19
65°53'29.8"/75°11'37.7"	RM24	4 th stage	580,000	4.85	10	12.5	0.13	0.34	0.27
65°53'58.2"/75°12'38.2"	RM25	4 th stage	950,000	4.93	12.4	13.1	0.24	0.96	0.26
65°54'15.0"/75°12'24.0"	RM26	5 th stage	17,000	4.8	8.8	13.6	0.02	0.15	0.31
65°51'55.7"/75°20'22.7"	RM27	5 th stage	9,500	4.8	11.4	17.2	0.027	0.24	0.4
65°51'51.5"/75°20'19.1"	RM28	5 th stage	2,300	5.05	11.4	17.3	0.089	0.05	0.41
65°51'59.5"/75°16'49.9"	RM29	5 th stage	180	4.34	21.6	21.4	0.021	0.26	0.61
65°51'57.8"/75°16'37.0"	RM30	5 th stage	5,670	4.49	15.6	18.5	0.094	0.41	0.45
65°52'44.9"/74°57'42.7"	RM31	3 rd stage	188,000	4.84	9.1	11.4	0.12	0.32	0.29
65°47'47.1"/75°27'08.1"	RM32	4 th stage	1,130,000	4.87	8.9	10.2	0.14	0.33	0.22
65°47'22.8"/75°28'31.0"	RM33	2 nd stage *	5,800	6.42	10.4	13.9	0.054	0.48	0.35

65°46'47.4"/75°28'11.7"	RM34	3 rd stage	15,400	5.14	11.2	10.8	0.16	0.11	0.24
65°46'39.8"/75°27'34.9"	RM35	5 th stage	1,960	4.86	10.9	15.5	0.038	0.045	0.47
65°45'31.8"/75°30'51.4"	RM36	5 th stage	2,460	4.89	7.3	7.88	0.026	0.18	0.16
65°45'00.0"/75°31'07.4"	RM37	4 th stage	229,000	5.22	12.6	12.4	0.34	1.09	0.23
65°44'11.0"/75°32'57.0"	RM38	2 nd stage	2,380	4.43	15.4	14.8	0.016	0.24	0.41
65°44'18.5"/75°33'20.0"	RM39	2 nd stage	1,390	3.9	35.8	27.8	0.027	0.61	0.85
65°44'23.5"/75°33'21.8"	RM40	4 th stage	985,000	4.66	13.3	13.5	0.18	1.004	0.34
66°00'58.6"/74°47'42.5"	RM41	2 nd stage	2,290	4.29	18.2	8.73	0.022	0.17	0.21
66°01'01.6"/74°47'45.5"	RM42	2 nd stage	6,000	4.12	26.3	27.3	0.027	0.17	0.82
66°01'18.2"/74°47'32.1"	RM43	3 rd stage	18,600	4.71	11.1	12.4	0.076	0.28	0.37
66°00'28.9"/74°48'30.7"	RM44	2 nd stage	3,000	4.41	18.5	17.3	0.014	0.12	0.53
70°50'42.7"/78°33'33.8"	RM46	Gyda district	216,000	6.52	57.7	4.92	3.85	0.46	0.076
	RM47	Gyda district	125,000	6.35	63	5.36	3.04	0.64	0.101
70°53'43.8"/78°22'7.5"	RM48	Gyda district	17,600	6.18	40.7	5.15	1.01	0.042	0.011
70°51'4.3"/78°33'16.2"	RM49	Gyda district	152,000	6.58	60.6	8.18	6.94	0.22	0.096
70°51'31.3"/78°33'8.1"	RM50	Gyda district	113	6.46	64	18.2	4.14	0.2	0.35
70°51'49.3"/78°32'44.4"	RM51	Gyda district	1,960	6.22	253	21.3	4.13	1.62	0.54

70°51'51.9"/78°30'18.1"	RM52	Gyda district	68,300	6.42	59.5	4.2	1.51	0.22	0.045
70°52'42.2"/78°28'7.9"	RM53	Gyda district	384,000	6.42	66.5	3.81	1.96	0.082	0.078
70°53'9.3"/78°28'11.3"	RM54	Gyda district	105,000	6.3	76.5	3.82	6.65	0.42	0.037
70°53'29.9"/78°22'14"	RM55	Gyda district	32,300	6.19	43.5	3.21	1.64	0.16	0.043
70°53'19.6"/78°22'8.2"	RM56	Gyda district	73,000	6.21	42.1	4	1.87	0.016	0.049
70°53'16.3"/78°22'41.8"	RM57	Gyda district	198,000	6.5	115	4.35	1.9	0.073	0.055
70°53'16.1"/78°25'0.6"	RM58	Gyda district	13,300	6.48	43.5	7.54	0.6	0.17	0.12
70°50'44"/78°36'6.9"	RM59	Gyda district	41,500	6.51	62.2	5.79	3.8	0.6	0.104
70°53'33"/78°30'19.6"	RM60	Gyda district	70,600	6.45	46.5	5.79	2.22	0.34	0.12

Footnote: EC, specific conductivity; DOC, dissolved organic carbon; UV 280_{nm}, ultraviolet absorption at a wavelength of 280 nm; "*" - basins and subsidence filled with low-mineralized rain water which do not reflect the dynamics of the succession of lakes in chemical composition. # This lake exhibits an elevated sulfate concentration (3.5 mg/L), and this lake has a different, deep blue color on the remote satellite images of the territory. This lake is likely of non-thermokarst origin and subjected to the influence of subpermafrost groundwaters. Similar "blue" lakes were reported on the Tazovsky Peninsula (Kuzin et al., 2012).

Element	units	1^{st} , (3-80 m ²) n=6	2 nd , (100-8,000 m ²), <i>n</i> =8	3 rd , (8,000-200,000 m ²), <i>n</i> =5	4 th , (> 200,000 m ²), <i>n</i> =9	5 th , 200-50,000 m ² (Khasyrey), <i>n</i> =10	Gyda lakes, 0.001-0.1 km ² n=15	Average river water*
Na	mg/L	$\frac{0.05-0.72}{0.3\pm0.25}$	<u>0.021–0.32</u> 0.14±0.12	$\frac{0.365-0.433}{0.4\pm0.029}$	<u>0.206–0.8</u> 0.47±0.21	$\frac{0.055-0.246}{0.17\pm0.069}$	$\frac{0.76-14.04}{2.62\pm3.33}$	-
Mg	mg/L	$\frac{0.14-0.386}{0.24\pm0.1}$	0.072-0.266 0.19±0.06	$\frac{0.143 - 0.391}{0.24 \pm 0.097}$	$\frac{0.072-0.472}{0.3\pm0.12}$	<u>0.194–0.535</u> 0.35±0.11	$\frac{0.819 - 2.71}{1.48 \pm 0.51}$	-
Al	mg/L	$\frac{0.075 - 0.262}{0.16 \pm 0.075}$	<u>0.04–0.198</u> 0.11±0.06	$\frac{0.032-0.13}{0.086\pm0.049}$	$\frac{0.043-0.149}{0.081\pm0.031}$	$\frac{0.047 - 0.187}{0.11 \pm 0.047}$	$\frac{0.002-0.061}{0.015\pm0.018}$	0.032
Si	mg/L	$\frac{0.2-1.99}{0.85\pm0.7}$	<u>0.175–0.943</u> 0.3±0.26	$\frac{0.184-0.349}{0.26\pm0.061}$	$\frac{0.167 - 0.355}{0.23 \pm 0.067}$	0.172-0.825 0.37±0.21	$\frac{0.007 - 1.16}{0.23 \pm 0.33}$	-
K	mg/L	$\frac{0.01-0.062}{0.031\pm0.017}$	$\frac{0.011 - 0.064}{0.042 \pm 0.019}$	$\frac{0.067 - 0.138}{0.11 \pm 0.03}$	$\frac{0.049-0.27}{0.14\pm0.065}$	$\frac{0.004-0.119}{0.03\pm0.034}$	$\frac{0.084 - 0.855}{0.33 \pm 0.21}$	-
Ca	mg/L	0.238-0.93 0.49±0.25	<u>0.125–0.67</u> 0.4±0.16	$\frac{0.205-0.668}{0.44\pm0.17}$	0.125-0.879 0.54±0.22	<u>0.362–0.756</u> 0.53±0.14	$\frac{0.442 - 1.5}{0.85 \pm 0.3}$	-
Fe	mg/L	$\frac{0.12-2.36}{1.2\pm 1}$	$\frac{0.031 - 0.705}{0.38 \pm 0.25}$	$\frac{0.057 - 0.382}{0.22 \pm 0.15}$	$\frac{0.03-0.297}{0.13\pm0.079}$	<u>0.152–0.742</u> 0.36±0.21	0.024-0.91 0.17±0.23	0.066
Li	µg/L	$\frac{0.385 - 1.05}{0.65 \pm 0.25}$	<u>0.149–0.963</u> 0.49±0.27	$\frac{0.287 - 1.03}{0.69 \pm 0.29}$	0.143-1.358 0.81±0.34	<u>0.715–1.84</u> 1.07±0.36	-	1.84
В	µg/L	<u>1.76–2.62</u> 2.1±0.33	<u>1.74–2.64</u> 2.1±0.33	$\frac{1.35-4.18}{2.2\pm1.1}$	$\frac{1.28-4.92}{2.8\pm1.03}$	$\frac{0.837 - 2.94}{2.04 \pm 0.73}$	<u>0.711–6.97</u> 3.1±2	10.2
Ti	µg/L	$\frac{2.95-4.57}{3.8\pm0.7}$	<u>2.47–3.74</u> 3.2±0.5	$\frac{2.92-4.71}{3.6\pm0.82}$	$\frac{2.26-4.51}{3.03\pm0.83}$	<u>2.27–3.33</u> 2.8±0.35	$\frac{2.21-5.71}{3.4\pm0.79}$	0.489
V	µg/L	$\frac{0.181 - 0.771}{0.35 \pm 0.2}$	0.118-0.644 0.33±0.19	$\frac{0.1-0.799}{0.45\pm0.29}$	$\frac{0.227-1.1}{0.41\pm0.27}$	<u>0.113–0.286</u> 0.19±0.061	0.043-0.667 0.2±0.19	0.71
Cr	μg/L	$\frac{3.47-5.48}{4.3\pm0.7}$	<u>2.56–4.04</u> 3.3±0.6	$\frac{3.12-4.12}{3.8\pm0.4}$	$\frac{2.87-4.66}{3.5\pm0.61}$	$\frac{2.77-4.11}{3.4\pm0.4}$	$\frac{2.77-7.16}{4.3\pm1.1}$	0.7
Mn	μg/L	<u>5.44–48.1</u>	<u>3.53–44.5</u>	<u>3.1–34.6</u>	4.77-34.01	<u>6.23–52.1</u>	0.375-20.4	34

Table S3.Average $(\pm 2 \sigma)$ and the range of element concentration in thermokarst lakes of different surface areas and stages of evolutionfrom the Novyi Urengoy region $(1^{st}-5^{th} stage)$ and from the Gyda district (coastal lakes).

		20±16	17±13	14.03±12.4	21.8±9.8	27.2±13.9	5.1±5.2	
Ca	~/I	0.319-1.17	0.19-0.68	0.093-0.715	0.169-0.847	0.155-0.963	0.002-0.439	0.149
Co	µg/L	0.7±0.3	0.43±0.17	0.3±0.25	0.48±0.24	0.6±0.22	0.08 ± 0.11	0.148
NI:		2.48-4.26	1.87-2.8	2.38-3.09	1.89-3.21	2.26-3.42	2.09-5.63	0.901
INI	µg/L	3.4±0.6	2.4±0.3	2.8±0.27	2.6±0.47	2.7±0.36	3.3±0.91	0.801
Cu	~/I	0.161-0.487	0.085-0.245	0.161-0.49	0.086-0.664	0.104-0.427	0.298-11.6	1 40
Cu	µg/L	0.3±0.13	0.17 ± 0.06	0.34±0.12	0.48±0.18	0.25±0.1	1.6±2.8	1.48
Zn	u a/I	<u>7.28–63.9</u>	3.94-13.6	2.3-8.3	<u>3.37–195.1</u>	3.46-20.5	<u>1.38–37.5</u>	0.6
ZII	μg/L	22.6±22.7	8.2±3	5.6±2.6	26.5±63.3	10.2±5	8.5±10.3	0.0
		0.021_0.044	0.017_0.048	0.0009_0.015	0.0002_0.01	0.0001_0.012	<u>0.0002–</u>	
Ga	μg/L	$\frac{0.021-0.044}{0.029+0.009}$	0.017 = 0.040	0.000 - 0.015	$\frac{0.0002-0.01}{0.003+0.002}$	$\frac{0.0001-0.012}{0.004+0.004}$	<u>0.009</u>	0.03
		0.029±0.009	0.03±0.01	0.000±0.000	0.003±0.002	0.004±0.004	0.004±0.003	
٨s	ug/I	<u>0.37–1.33</u>	0.406-0.806	0.28-0.841	<u>0.313–0.777</u>	<u>0.408–0.931</u>	<u>0.249–0.635</u>	0.62
73	μg/L	0.9±0.3	0.63±0.13	$0.57{\pm}0.2$	0.55±0.15	0.63±0.17	0.38±0.11	0.02
Sa	ug/I	0.17-0.31	0.202-0.273	0.37-0.48	<u>0.33–0.6</u>	<u>0.37–0.48</u>		0.07
50	μg/L	0.23 ± 0.05	0.23 ± 0.02	$0.4{\pm}0.04$	0.41±0.077	0.41 ± 0.03	-	0.07
Ph	u a/I	<u>0.041–0.242</u>	0.053-0.275	0.217-0.577	<u>0.15–0.684</u>	0.037-0.275	<u>0.097–0.549</u>	1.63
KU	μg/L	0.12±0.07	0.16±0.08	0.32±0.16	0.28±0.16	0.1±0.07	0.29±0.15	1.05
Sr	ug/I	<u>2.74–5.75</u>	<u>1.3–4.17</u>	<u>2.15–4.31</u>	<u>1.33–9.55</u>	<u>2.62–5.102</u>	<u>4.42–12.8</u>	60
51	μg/L	4.7±1.2	3.1±0.9	3.3±0.9	4.5±2.3	4.1±0.84	7.7±2.5	00
v	u a/I	<u>0.032–0.176</u>	0.018-0.067	0.024-0.1	<u>0.019–0.122</u>	<u>0.035–0.139</u>		0.04
1	μg/L	0.08 ± 0.05	0.044±0.016	0.056±0.029	0.072 ± 0.037	0.063 ± 0.033	-	0.04
7r	ug/I	0.142-0.702	0.094-0.244	0.112-0.27	<u>0.09–0.33</u>	0.114-0.3	0.002-0.214	0.030
ZI	μg/L	0.32±0.2	0.16±0.05	0.19±0.062	0.24±0.073	0.2 ± 0.061	0.033 ± 0.056	0.039
Мо	u a/I	<u>0.09–0.107</u>	0.082-0.099	<u>0.069–0.089</u>	<u>0.055–0.095</u>	<u>0.055–0.076</u>	<u>0.03–0.1</u>	0.42
IVIO	μg/L	0.098 ± 0.006	0.091±0.006	0.077 ± 0.007	0.071±0.012	0.062 ± 0.006	0.059 ± 0.023	0.42
Cd	ug/I	<u>0.079–0.136</u>	<u>0.074–0.099</u>	<u>0.028–0.035</u>	<u>0.021–0.04</u>	<u>0.027–0.044</u>	<u>0.015–0.035</u>	0.08
Cu	μg/L	0.1±0.02	0.087 ± 0.009	0.032 ± 0.003	0.03±0.006	0.037 ± 0.005	0.023±0.006	0.08
Sh	ug/I	<u>0.044–0.07</u>	<u>0.049–0.073</u>	<u>0.045–0.059</u>	<u>0.051–0.112</u>	<u>0.04–0.055</u>	<u>0.007–0.023</u>	0.07
50	μg/L	0.06±0.01	0.062 ± 0.009	0.054±0.006	0.084±0.023	0.047±0.005	0.013±0.005	0.07
C	u o/I	0.017-0.023	0.018-0.022	0.012-0.018	0.011-0.017	<u>0.011–0.014</u>	<u>0.0003–</u>	0.011
CS	μg/L	0.019±0.002	0.019 ± 0.001	0.014±0.003	0.012±0.002	0.012±0.0008	<u>0.003</u>	0.011

							0.002 ± 0.000	
							9	
Da		<u>1.43–9.32</u>	0.316-4.34	<u>1.9–4.8</u>	<u>1.6–14.1</u>	<u>1.55–5.79</u>	0.246-2.65	22
Ба	µg/L	4.8±2.9	1.8±1.5	3.2±1.1	4.3±3.8	3.1±1.5	0.93±0.7	23
La		0.019-0.106	0.01-0.045	0.019-0.082	<u>0.013-0.093</u>	0.021-0.113	0.005-0.118	0.012
La	μg/L	0.05 ± 0.03	0.025±0.012	0.042 ± 0.025	0.051±0.028	0.041 ± 0.029	0.038 ± 0.037	0.012
Ca	ug/I	<u>0.048–0.33</u>	<u>0.031–0.118</u>	0.043-0.213	<u>0.031–0.258</u>	<u>0.058–0.298</u>	<u>0.01–0.267</u>	0.262
Ce	μg/L	0.15±0.1	0.074 ± 0.03	0.11±0.066	0.14 ± 0.078	0.11±0.075	0.075 ± 0.079	0.202
Dr	u a/I	0.006-0.042	0.004-0.014	0.007-0.027	<u>0.005-0.033</u>	0.009-0.037	0.002-0.037	0.04
r1	µg/L	0.02 ± 0.01	0.009 ± 0.004	0.015 ± 0.008	0.019±0.009	0.016±0.009	0.011 ± 0.011	0.04
NA		0.036-0.186	0.026-0.07	0.026-0.112	<u>0.019–0.134</u>	0.036-0.148	0.006-0.2	0 152
ING	µg/L	0.09 ± 0.05	0.05 ± 0.014	0.058±0.034	0.076±0.039	0.064 ± 0.035	0.055 ± 0.061	0.132
Sm	u a/I	0.011-0.044	0.008-0.019	0.007-0.026	0.005-0.033	0.009-0.032	0.002-0.048	0.026
5111	µg/L	$0.02{\pm}0.01$	0.014 ± 0.003	0.014 ± 0.008	0.019±0.009	0.015 ± 0.007	0.012 ± 0.014	0.030
En		0.01-0.018	0.007-0.011	0.006-0.013	0.006-0.015	0.007-0.013	0.0002-0.01	0.0009
Eu	µg/L	0.013 ± 0.003	0.01 ± 0.001	0.009 ± 0.002	0.011±0.003	0.009 ± 0.002	0.003 ± 0.003	0.0098
Cd		0.013-0.049	0.011-0.022	0.011-0.033	0.01-0.039	0.015-0.041	0.002-0.056	0.04
Ga	μg/L	0.03±0.01	0.017±0.004	0.02 ± 0.008	0.025±0.011	0.021 ± 0.008	0.014 ± 0.015	0.04
Th		<u>0.003–0.008</u>	0.003-0.005	<u>0.0003-0.003</u>	<u>0.0001-0.004</u>	0.0009-0.004		0.0055
10	μg/L	0.005 ± 0.002	0.004 ± 0.0004	0.002 ± 0.001	0.002 ± 0.001	0.002 ± 0.001	-	0.0033
Du	u a/I	0.008-0.034	0.005-0.015	0.006-0.021	0.005-0.025	0.007-0.025	0.002-0.042	0.02
Dy	µg/L	0.02 ± 0.009	0.01 ± 0.003	0.012 ± 0.006	0.016±0.008	0.012 ± 0.006	0.01 ± 0.011	0.03
		0.005.0.01	0.004.0.006	0.003.0.006	0.002.0.006	0.003.0.007	<u>0.0004–</u>	
Но	μg/L	0.003-0.01	0.004-0.000	$\frac{0.003-0.000}{0.004+0.001}$	$\frac{0.002-0.000}{0.005+0.002}$	$\frac{0.003-0.007}{0.004+0.001}$	<u>0.042</u>	0.0071
		0.007±0.002	0.003±0.0007	0.004±0.001	0.003±0.002	0.004-0.001	0.003±0.003	
Fr	ug/I	<u>0.013–0.03</u>	0.012-0.017	<u>0.004–0.014</u>	<u>0.004–0.016</u>	<u>0.006–0.017</u>	<u>0.001–0.03</u>	0.02
1./1	μg/L	0.02 ± 0.006	0.015±0.002	0.008±0.004	0.01±0.005	0.009±0.003	0.007 ± 0.007	0.02
		0.007_0.01	0 007_0 008	0.004_0.005	0.004_0.005	0.004_0.005	<u>0.0003–</u>	
Tm	μg/L	0.007 0.01	0.0074+0.0004	0.004 + 0.003	0.004+0.0006	0.004 + 0.003	<u>0.005</u>	0.0033
		0.000-0.001	0.0074-0.0004	0.0072-0.0004	0.007-0.0000	0.007-0.0007	0.002 ± 0.001	
Vh	uo/I	<u>0.008–0.025</u>	<u>0.006–0.012</u>	<u>0.005–0.014</u>	<u>0.005–0.015</u>	<u>0.006–0.016</u>	<u>0.0003–</u>	0.017
10	μg/L	0.01 ± 0.006	0.009 ± 0.002	0.009 ± 0.003	0.011±0.004	0.009 ± 0.003	<u>0.036</u>	0.017

							0.007±0.009	
Lu	μg/L	$\frac{0.003-0.005}{0.004\pm0.0008}$	0.003 - 0.004 0.0034±0.0004	$\frac{0.002 - 0.003}{0.003 \pm 0.0005}$	0.002 - 0.004 0.003 ± 0.0006	0.002 - 0.003 0.003 ± 0.0004	$\frac{0.001 - 0.006}{0.002 \pm 0.001}$	0.0024
Hf	µg/L	0.027-0.044 0.03±0.006	$\frac{0.025-0.03}{0.028\pm0.002}$	<u>0.025–0.031</u> 0.028±0.002	$\frac{0.025 - 0.031}{0.029 \pm 0.002}$	<u>0.025–0.031</u> 0.028±0.002	$\begin{array}{r} \underline{0.0001-}\\ \underline{0.008}\\ 0.003\pm 0.002 \end{array}$	0.0059
W	µg/L	0.058-0.098 0.07±0.02	$\frac{0.048 - 0.084}{0.063 \pm 0.014}$	$\frac{0.051 - 0.086}{0.063 \pm 0.014}$	$\frac{0.037 - 0.066}{0.048 \pm 0.01}$	$\frac{0.038 - 0.089}{0.056 \pm 0.016}$	$\frac{0.031 - 0.25}{0.064 \pm 0.055}$	0.1
Pb	μg/L	$\frac{0.095 - 0.512}{0.28 \pm 0.2}$	0.028-0.316 0.15±0.097	<u>0.041–0.11</u> 0.079±0.034	$\frac{0.047 - 0.23}{0.088 \pm 0.059}$	$\frac{0.044 - 0.17}{0.084 \pm 0.04}$	$\frac{0.024-0.158}{0.055\pm0.035}$	0.079
Th	μg/L	$\frac{0.01-0.08}{0.03\pm0.02}$	<u>0.003–0.019</u> 0.01±0.005	<u>0.005–0.025</u> 0.017±0.008	$\frac{0.004-0.024}{0.015\pm0.006}$	0.007-0.025 0.015±0.006	$\begin{array}{r} \underline{0.0001-}\\ \underline{0.014}\\ 0.003{\pm}0.004 \end{array}$	0.041
U	μg/L	$\frac{0.003-0.011}{0.005\pm0.003}$	0.002-0.007 0.003±0.001	<u>0.003–0.01</u> 0.007±0.003	$\frac{0.002-0.012}{0.008\pm0.003}$	$\frac{0.003-0.005}{0.004\pm0.001}$	$\frac{0.001 - 0.014}{0.005 \pm 0.004}$	0.372

The nominator represents the minimal and maximal value and denominator represents the average value with standard deviation; *n* is the number of studied water bodies; * stands for [Gaillardet et al., 2003]

Table S4. Pearson correlation coefficients between element concentration and surface area of the arctic coastal lakes. Significant correlations are given in bold.

Elements	DOC	pН	Mg	Ca	K	Na	Fe	Si	Al	Mn	Со	Zr	La	Ce	Yb	Th
Pearson correlation coefficients	-0.61	0.37	-0.23	-0.11	0.33	0.09	-0.57	-0.58	-0.53	-0.62	-0.60	-0.57	-0.38	-0.40	-0.52	-0.55

Comparison of TE concentration in small depressions and large lakes and comparison between western Siberian thermokarst lakes and the average world's rivers

Figure S1. A: The ratio of element average concentration in the lakes of 1^{st} stage of formation to the average value of all other stages. **B:** Concentrations of major and trace elements in two types of studied lake waters and the average river water value (Gaillardet et al., 2003) (log [world average]/[lakes average]). To assess statistically different element ratio, we used Mann-Whitney U Test which allows to estimate the difference between two independent set of data based on one given parameter. In our case of small number of data set, it allows to judge the difference of each element concentration between the 1^{st} and the other stages at the significance criterion as of p < 0.05. Elements that met this criterion are labelled by asterisk.

Electronic Supporting Information 2

Correlation between Fe and DOC and trace elements in thermokarst water bodies of western Siberia

S2.1. Correlations between elements in the water bodies

In agreement with previous investigations in the northern (Novyi Urengoy region, Pokrovsky et al., 2011) and southern (Nojabrsk region, Shirokova et al., 2013) discontinuous permafrost zones, there was a significant correlation between Fe, Al and DOC concentrations in the lake water. There was a lack of correlation between any of these elements and alkali (Li, Na, K, Rb, Cs), alkaline–earth elements (Mg, Ca, Sr, Ba) and anions (Cl⁻, SO4²), as well as trace elements that are not linked to organic or organo-mineral , such as Mo, Sb, B, Y, Mn, Ni, and W. Additionally, Si and As, although present in the form of neutral molecules, exhibited significant correlation with Fe rather than DOC (R² = 0.84 and 0.71, respectively, as illustrated in the Electronic Supporting Information **Fig. S2 A, B**). For Si, which does not have any colloidal form, this link may suggest the input of Si from the soil at the beginning of water body development, concomitant with that of Fe and its removal from the water column by diatoms or aquatic macrophytes at the terminal stage of the lake development cycle. The control of Fe colloids over As speciation in boreal and thermokarst lake waters is fairly well-known (Pokrovsky et al., 2012, 2013).

Among the divalent heavy metals, only Co, Cd and Pb exhibit a significant correlation with Fe or DOC (**Fig. S2 C to E**) with Person coefficient equals to 0.59, 0.85, 0.67 and 0.61, 0.83, and 0.68, respectively. Whereas the concentration decrease for Co upon lake ecosystem maturation may reflect its uptake by growing phytoplankton cells and accumulation in the sediments, the decrease of Pb concentration is likely to be linked to the decrease of its input from coastal peat abrasion during lake broadening, thus leading to a decrease in the ratio of lake border (representing the source provenance) to lake volume or lake surface (representing metal sink in the sediment). The significant accumulation of Pb in peat deposits is fairly well-known (Shotyk et al., 2000). Notably, the direct atmospheric (aerosol) deposition on the thermokarst lake water surface within the continental discontinuous permafrost sites should be rather small. If such an input was significant, then the concentration of these elements should remain rather constant for all stages (surface areas) of sampled water bodies that all have similar depths (0.5 to 1.5 m), which is opposed to what is observed (cf. Fig. 6). In addition, Cd exhibits two clusters of data points in its correlation with DOC (**Fig. S2 E**). Almost a three-fold decrease in Cd concentration was observed both for arctic coastal and continental subarctic lakes during 3rd and 4th stages and in khasyreys. This likely reflects the change of metal source in the lake water depending on stage and the active biological uptake of this metal upon the lake maturation and lake size increase.

The rare earth elements (REEs) exhibited significant differences in concentrations in the thermokarst lake waters of the continental subarctic and arctic coastal zones. In the former, REEs correlate only with Al ($R^2 = 0.51$ and 0.59 for La and Yb, respectively), whereas in the latter, REEs correlate with DOC, Al and primarily with Fe ($R^2 = 0.50$, 0.88, 0.79 for La; $R^2 = 0.68$, 0.92, and 0.97 for Yb, respectively). Concentrations of REEs decrease with the increase in the lake size, similar to other trace metals that are controlled by organomineral colloids, as described above.

Figure S2. As (A) and Si (B) concentration as a function of Fe concentration in the water column of thaw lakes. Correlations between Co (C), Pb (D) and Cd (E) concentration and that of DOC in thermokarst lakes of two studied regions: in continnetal subarctic zone of the Pangody and Novuy Urengoy sites (from the 1st to the 4th stage of formation and khasyrei shown by diamonds, rectangulas and triangules) and the Gyda site (solid cicrles). Two clusters of data points for Cd concentration are encircled (E). See Table 2 for the correspondence between the lake stage of evolution and the lake surface area. The Pearson coefficient correlations of Fe and DOC with As, Si, Co, Pb, and Cd are equal to 0.71, 0.84, 0.59, 0.85, 0.67 and 0.70, 0.69, 0.61, 0.83, 0.68, respectively.