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Abstract. Snow grain size is a key parameter for modeling
microwave snow emission properties and the surface energy
balance because of its influence on the snow albedo, thermal
conductivity and diffusivity. A model of the specific surface
area (SSA) of snow was implemented in the one-layer snow
model in the Canadian LAnd Surface Scheme (CLASS)
version 3.4. This offline multilayer model (CLASS-SSA)
simulates the decrease of SSA based on snow age, snow
temperature and the temperature gradient under dry snow
conditions, while it considers the liquid water content of
the snowpack for wet snow metamorphism. We compare
the model with ground-based measurements from several
sites (alpine, arctic and subarctic) with different types of
snow. The model provides simulated SSA in good agree-
ment with measurements with an overall point-to-point com-
parison RMSE of 8.0 m2kg−1, and a root mean square er-
ror (RMSE) of 5.1 m2kg−1 for the snowpack average SSA.
The model, however, is limited under wet conditions due to
the single-layer nature of the CLASS model, leading to a
single liquid water content value for the whole snowpack.
The SSA simulations are of great interest for satellite pas-
sive microwave brightness temperature assimilations, snow
mass balance retrievals and surface energy balance calcula-
tions with associated climate feedbacks.

1 Introduction

Snow grain size is of particular interest for microwave snow
emission models, the surface energy balance (albedo and tur-
bulent fluxes) and atmospheric–snow chemistry interactions

(Domine et al., 2008). At high microwave frequencies (gen-
erally measured at 19 GHz and 37 GHz), snow grain size is
an important variable affecting snowpack extinction and scat-
tering properties (Kontu and Pulliainen, 2010; Grody, 2008;
Durand et al., 2008; Roy et al., 2004). Thus, snow grain
size must be considered in microwave snow emission mod-
els (MSEM) for the retrieval of snow properties from satel-
lite passive microwave observations (Langlois et al., 2012;
Huang et al., 2012; Pardé et al., 2007). Hence, in passive mi-
crowave applications, prior information such as snow grain
size from a snowpack physical model is required for snow
water equivalent (SWE) estimates (Durand and Liu, 2012).
The surface albedo is also sensitive to the snow grain size and
its vertical profile (Wiscombe and Warren 1980; Jin et al.,
2008; Lyapustin et al., 2009; Aoki et al., 2011). Gardner and
Sharp (2010) found that the broadband albedos of snowpacks
show a logarithmic relationship with specific surface area
(SSA). The thermal properties of snow, such as snow con-
ductivity and diffusivity, are also related to snow microstruc-
ture (Domine et al., 2008; Adams and Sato, 1993). Surface
albedo and snow conductivity are thus key parameters for
modeling the surface energy balance in order to understand
the impact of snow cover on global and regional climate dy-
namics (Armstrong and Brun, 2008). They also have a major
impact on the prediction of the snow water equivalent as well
as the timing of melt onset (Franz et al., 2010).

However, many snow evolution models do not take into ac-
count snow grain size. The Canadian LAnd Surface Scheme
(CLASS: Verseghy, 1991; Verseghy et al., 1993) is used
in the Canadian global circulation models (Scinocca et al.,
2008) and the Canadian Regional Climate Model (CRCM:
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Music and Caya, 2007; Caya and Laprise, 1999); it includes
a one-layer snow model that does not simulate snow grain
metamorphism. This is a major limitation for the assimilation
of passive microwave brightness temperature (TB) data for
the improvement of snow simulations. In the context of data
assimilation, where physical and emission models of snow
are coupled, estimates of snow grain size are needed (Du-
rand et al., 2009; Toure et al., 2011; Langlois et al., 2012).
The implementation of snow grain metamorphism within
CLASS is thus of particular interest for assimilation pur-
poses. This implementation is not, however, straightforward
in a one-layer snow model because snow metamorphism de-
pends on many variables, such as snow age and the temper-
ature gradient, which lead to a stratification of snow layers
with different grain sizes. Thus, a major difficulty is that the
vertical stratification is not considered in single-layer phys-
ical snow models. This study aims to address this issue, as
simply as possible, using the CLASS one-layer snow evolu-
tion model. Even if one layer snow models are less physi-
cally correct then multi-layered models (Brun et al., 1992;
Bartlelt et al., 2002; Bougamont et al., 2005; Ettema et al.,
2010; Niwano et al., 2012), the SnowMIP experiments have
shown that CLASS performs relatively well (Brown et al.,
2006; Rutter et al., 2009). Furthermore, in climate and me-
teorological models, the errors in snow simulations are of-
ten related to the precipitation inputs. Hence, in these con-
texts, a more complex multi-layer model would not neces-
sarily produce better results.

Grain size is a parameter that is difficult to characterize
accurately and measure in the field. The specific surface area
(SSA), which represents the ratio of the surface area per unit
of mass, is a well-defined parameter representing the ge-
ometric characteristics of a porous medium, such as snow
(Dominé et al., 2001). Methods based on snow reflectance
in the shortwave infrared (SWIR) can now provide rapid and
reproducible field measurements of SSA (Gallet et al., 2009;
Arnaud et al., 2011; Montpetit et al., 2012), which can be
related theoretically to grain size. SSA can be related to the
radius of a monodisperse collection of ice spheres, each hav-
ing the same surface area to volume ratio, called the optical
radius (Ropt):

Ropt =
3

ρiceSSA.
(1)

Recent studies have shown that SSA offers a reliable rep-
resentation of snow grain size in the context of microwave
emission snow modeling (MESM) (Roy et al., 2013; Mont-
petit et al., 2013; Brucker et al., 2011). These studies showed
that a scaling factor onRopt derived from SSA is required to
simulate brightness temperatures in order oversimplification
of snow grain representation in models. From a good repre-
sentation of snow grain size in the snowpack for microwave
emission simulations, it is possible to determinate which part
of the signal is attributable to snow grain and which is at-
tributable to other snow characteristics of interest like SWE.

Considering the importance of snow grain size and the ad-
vances made in snow microstructure characterization with
the SSA metric, many studies have developed approaches for
modeling the evolution of SSA throughout the winter sea-
son. Cabanes et al. (2003) first proposed an empirical ex-
ponential decay function of time and temperature for snow
SSA. Legagneux et al. (2003) showed, using laboratory ex-
periments under isothermal conditions, that the decreasing
trend of SSA is best fitted using a logarithmic function. That
trend has also been confirmed with X-ray microtomography
measurements (Flin et al., 2004; Kaempfer and Schneebeli,
2007; Chen and Baker, 2010). Taillandier et al. (2007), us-
ing methane adsorption SSA measurements (Domine et al.,
2001) in a taiga environment, proposed empirical relation-
ships for the decrease of SSA as a function of time based on
the snow age, snow temperature and the temperature gradi-
ent within the snowpack. A similar approach relating SSA
to snow type (fresh snow, recognizable particles, aged and
rounded crystals, aged and faceted crystals, and depth hoar)
and snow density was developed by Domine et al. (2007).
Jacobi et al. (2010) implemented these last two approaches
in the Crocus multi-layer snow model (Brun et al., 1992).
With the model based on snow type and density (Domine
et al., 2007), SSA was overestimated in surface snow, but
this was mainly because Crocus underestimated density, as
this model does not take into account the upward water va-
por flux induced by the large temperature gradient in the sub-
arctic snowpack (Taillandier et al., 2006); however, a gen-
erally good agreement between SSA simulations and mea-
surements (methane adsorption) was observed when the SSA
was calculated based on prognostic equations using snow age
(Taillandier et al., 2007). Flanner and Zender (2006) devel-
oped a physically-based model to predict the evolution of dry
snow SSA. The model considers the snow temperature, tem-
perature gradient and snow density and uses two adjustable
parameters for the distribution of crystal sizes and for the ir-
regularity in particle spacing. A weakness of most of these
previous approaches is that the wet snow metamorphism is
not taken into account, whereas water within the snowpack
leads to a drastic decrease of SSA (wet snow metamorphism)
due to rapid rounding and an increase in the size of snow
grains (Brun, 1989). However, Flanner et al. (2007) imple-
mented wet snow metamorphism following Brun (1989) in
the model of Flanner and Zender (2006). Note that wind
can also have complex effect on snow grains by enhanc-
ing the rate of SSA decrease (Cabanes et al., 2003) or, on
the contrary, leading to an increase in SSA (Domine et al.,
2009). Morin et al. (2013) compared SSA deduced from the
Ropt values simulated by Crocus with SSA measured from
SWIR reflectance (Gallet et al., 2009) in an alpine envi-
ronment. They showed qualitative agreement between mea-
sured and simulated SSA and that its simulation is difficult
under wet snow conditions mostly because of the difficulty
in simulating adequately the vertical profile of liquid water
content in the snowpack.
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The main objective of this study is to evaluate an off-
line SSA model implemented in the one-layer CLASS snow
model for different northern climate environments. More
specifically, the SSA model is a multi-layer snow model
driven by CLASS outputs to simulate the evolution of SSA in
the different snow layers. The evolution of SSA is computed
for dry snow using the model of Taillandier et al. (2007)
based on snow aging, and the equation of Brun (1989) for wet
snow metamorphism. The simulated SSA values are com-
pared with measured SSA derived from SWIR reflectance
(Montpetit et al., 2012; Gallet et al., 2009) for five differ-
ent sites (two northern mid-latitude, arctic tundra, taiga and
alpine) throughout the winter season. The model is developed
in a perspective of passive microwave applications for SWE
retrievals at a large scale, but could be used for other applica-
tions such as snow albedo estimates. The study also provides
an additional validation of the Taillandier et al. (2007) equa-
tions using new sets of accurate in situ SSA measurements
for different environments.

2 Method

2.1 CLASS-SSA model

The CLASS-SSA model operates in an “offline” mode,
meaning that it uses the CLASS simulated state variables
to simulate the SSA evolution, but without feedback on the
snowpack evolution. The CLASS snow model is a one-layer
model (a detailed description of the snow model in CLASS
is given in Bartlett et al., 2006; Brown et al., 2006). Version
3.4 of the standalone driver for CLASS (Verseghy, 2009),
which allows running the model using meteorological data,
was used in this study. CLASS has been designed to run
at a time step of 30 min or less, to ensure numerical stabil-
ity of the modeled prognostic variables (Verseghy, 2009). In
this study, CLASS is run at a time step of 30 min. In our
case, the meteorological data used to drive the CLASS model
(precipitation rate, air temperature, wind speed, air humidity,
and incoming shortwave and longwave radiation) were de-
rived from in situ measurements or from the North American
Regional Reanalysis (NARR) data (Mesinger et al., 2006)
(more details on driving data are provided in Sect. 2.2). The
use of NARR data is motivated by the necessity to run the
model at a large scale in the perspective of passive microwave
space-borne applications. The thermal conductivity of snow
was calculated from snow density using the empirical rela-
tionship described in Sturm et al. (1997).

The offline SSA model is a multilayer model, where layer
evolution is constrained by snow density, snow depth and
SWE from CLASS simulations. Figure 1 shows the flowchart
of CLASS-SSA. The SSA evolution of dry snow is based
on the logarithmic relationship for snow aging developed
by Taillandier et al. (2007). The CLASS-SSA model adds
snow layers when snowfall occurs. Consecutive precipitation

40 

 

 1092 

 1093 
Fig. 1: CLASS-SSA model flow chart  1094 

1095 Fig. 1.CLASS-SSA model flow chart.

(precipitation occurring during two or more consecutive time
steps) is however considered as one precipitation event and
contributes to the same layer. The initial SSA (SSAinitial) was
set to 73.0 m2kg−1 (the mean SSA value for fresh snow mea-
sured by Domine et al., 2007; the SSAinitial value is discussed
in Sect. 4), and the density of each new snow layer was set
to the fresh snow density calculated by CLASS (Hedstrom
and Pomeroy, 1998). However, because we want the CLASS-
SSA model to be coherent with the CLASS snow model, the
snow parameters (SWE, snow depth and snow density) of
the CLASS-SSA model are corrected during the snowpack
evolution in order to match the corresponding values sim-
ulated by CLASS. Thus, prior to each time step, a correc-
tion factor is applied to the SWE value of every snow layer
to fit the multilayer model SWE with the CLASS simula-
tion. A densification routine is then implemented, mostly to
estimate the position and thickness of each layer within the
snowpack. The same densification model as the one used in
CLASS (Bartlett et al., 2006) is applied to every layer. After
compaction is applied to each layer, if the summed multi-
layer snow depth is lower than the snow depth simulated by
CLASS, a correction factor is applied to the thickness of the
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top snow layer so that the summed multilayer snow depth
corresponds to the snow depth simulated by CLASS (Fig. 1).
However, in this context, the top layer cannot be less than
100 kgm−3. If it reaches 100 kgm−3, densification is applied
to the second layer and so on. In this case, the correction is
applied only to the top layers to avoid an unrealistic thick-
ening of the dense bottom layers. On the other hand, if the
sum of the snow depths for all the layers is higher than the
snow depth simulated by CLASS, a correction is applied to
all the layers, but the density of any layer cannot exceed the
maximum snow density estimated by CLASS. Thus, when
the snowpack melts, the density of every layer increases due
to the decreasing thickness, leading to wet densification.

The SSA evolution for each snow layer is then calculated
considering the model of Taillandier et al. (2007) (Fig. 1).
The model parameterizations for SSA evolution are based on
snow age and snow temperature (Tsnow). Two algorithms are
available, depending on the temperature gradient regime: one
for equi-temperature (ET) metamorphism,

SSA(t) = [0.629· SSAinitial − 15.0 · (Tsnow− 11.2)]
− [0.076· SSAinitial − 1.76· (Tsnow− 2.96)]

· ln

{
t + e

−0.371·SSAinitial−15.0·(Tsnow−11.2)

0.076·SSAinitial−1.76·(Tsnows−2.96)

}
;

(2)

and the other for strong temperature gradient (TG) metamor-
phism,

SSA(t) = [0.659· SSAinitial − 27.2 · (Tsnow− 2.03)]
− [0.0961· SSAinitial − 3.44· (Tsnow+ 1.90)]

· ln{t + e
−0.341·SSAinitial−27.2·(Tsnow−2.03)
0.0961·SSAinitial−3.44·(Tsnow+1.900) }

′

(3)

wheret is the age of the snow layer in hours. Note that in
Eqs. (2) and (3), SSA is in cm2g−1. Tsnow is the snow layer
temperature (◦C) calculated by linearly interpolating the air
temperature and the CLASS simulated snow–soil interface
temperature. Air temperature appears more accurate and rep-
resentative than the surface (skin) temperature for estimating
the snowpack temperature gradient. Figure 2 shows a rapid
decrease in the SSA over the first few days, which is related
to destructive metamorphism when snow crystals lose most
of their complicated shape and break up into smaller grains
with less total surface area (Sommerfeld and Lachapelle,
1970). This metamorphic process is faster in warmer snow
(higher Tsnow) (Colbeck, 1983). After a few days, the de-
crease in SSA slows down earlier in the ET regime when
compared with the TG regime. The process of constructive
metamorphism is dominant when the temperature gradient
induces water vapor transport from warm to cold tempera-
tures, causing rapid grain growth from vapor deposition at
the bottom of the snow grains (Colbeck, 1983). Hence, in the
absence of that mechanism in ET conditions, the decrease in
SSA slows and SSA rapidly reaches its minimum value.

According to Eqs. (2) and (3), the rate of SSA decrease
for a given time step (1SSA) depends on snow age, snow
temperature, temperature gradient and SSAinitial . Based on
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Fig. 2. SSA evolution as a function of the temperature gradient
regime (ET or TG with LWC= 0) and snow temperature (Tsnow)
from Eqs. (2) and (3), as well as a function of liquid water content
(LWC) from Eq. (5).

Jacobi et al. (2010), we calculate the1SSA from Eqs. (2)
and (3) according to the following:

1SSA= SSA(t + 1t) − SSA(t) (4)

where1t corresponds to the time step (0.5 h). The1SSA
is then subtracted from the model’s previous SSA value.
Jacobi et al. (2010) used a temperature gradient threshold
(TGthreshold) of 15 Km−1 to distinguish between ET and TG
conditions, which will be evaluated in this study. Taillandier
et al. (2007) also suggested a minimum value for SSA, be-
cause the logarithmic equation for SSA can lead to unrealis-
tic low values. The minimal SSA value is set to 8.0 m2kg−1,
as proposed by Taillandier et al. (2007).

Nevertheless, the parameterization reported by Taillandier
et al. (2007) does not take into account metamorphism during
wet snow conditions. The equation of Brun (1989), derived
from experimental measurements, provides a way to simulate
the evolution of snow grain volume under wet snow condi-
tions with respect to the liquid water content of the snow-
pack. The equation of Brun (1989) can be expressed with
optical radius growth (1Ropt):

1Ropt =
C1 + C2LWC3

R2
opt · 4π

, (5)

where C1 and C2 are empirical coefficients (C1 = 1.1×

10−3mmday−1, C2 = 3.7×10−5mmday−1) and LWC is the
liquid water content in mass percentage. Note that in the
experiment of Brun (1989), the empirical relationship was
based on the volume equivalent sphere deduced from the
measured mean convex snow grain radius, which is a def-
inition closely related to the SSA. Figure 2 shows that the
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SSA decrease is more pronounced when LWC increases in
the snowpack. In this study, when the CLASS liquid water
content is greater than zero, the model-derived SSA value
is converted into its equivalentRopt using Eq. (1) in order
to apply Eq. (5), and then reconverted to SSA. Furthermore,
because the LWC distribution is not homogeneous within the
snowpack, even though CLASS uses a single LWC value for
the whole snowpack, here the LWC is first distributed in the
top 10 cm. If the LWC in the top 10 cm is greater than 10 % in
mass, the excess water is distributed to the rest of the snow-
pack. The 10 % limit can thus be considered as the water
retention capacity. This value was chosen because 10 % in
mass is the value where, in the experiment of Brun (1989),
LWC reaches the irreducible water content and percolation
occurs, leading to a saturation of grain growth rate increase
for high LWC. However, the liquid water retention capacity
of CLASS for the whole snowpack was kept at 4 %.

2.2 Sites and data

Snowpit measurements were conducted at five sites. Mea-
surements were taken during the winter of 2010–2011 at the
first two sites, which were located in an open mid-latitude
northern environment. The sites were at the Site interdisci-
plinaire de recherche en environnement extérieur (SIRENE)
experimental station at the Université de Sherbrooke
(45.37◦ N, 71.92◦ W) and at St-Romain (45.45◦ N, 71.02◦ W;
80 km northeast of Sherbrooke) in Québec, Canada. Mean
January temperature at Sherbrooke is−11.9◦C and the
cumulated precipitation is 294.3 cm of snowfall, generally
from November to April (National Climate Data, Environ-
ment Canada). Temperatures are generally slightly colder at
St-Romain and cumulated snowfall higher because of the
higher altitude (≈ 150 m over Sherbrooke). Two other sites
were located close to the Churchill Northern Study Centre
(58.73◦ N, 93.81◦ W) in Manitoba, Canada: one in an arc-
tic dry fen (tundra) and the other in a taiga environment
(black spruce forest). Churchill has a subarctic climate with
a mean January temperature of−26.7◦C and accumulated
snowfall of 191 cm, generally from October to May (Na-
tional Climate Data, Environment Canada). The data were
collected at these two sites during the Canadian CoReH20
Snow and Ice (CAN-CSI) campaign in the winter of 2010,
which included four periods of intensive field sampling (Jan-
uary, February, March, and April). Further details of the
campaign are provided in Derksen et al. (2012). The fifth
and final site is the meteorological research station Col de
Porte (CDP; 45.17◦ N, 5.46◦ E), near Grenoble, France, in
the French Alps at an elevation of 1325 m. The daily aver-
age mean temperature for January is−1.63◦C and the mean
total cumulated snowfall from December to April is 557 cm.
Measurements for this last site were carried out during the
winter of 2009–2010 (see Morin et al., 2013, 2012 for more
details).

At the first four sites, SSA profiles were taken at a ver-
tical resolution of 5 cm. The SSA was measured with the
shortwave InfraRed Integrating Sphere (IRIS) system (Mont-
petit et al., 2012), based on the principle described by Gal-
let et al. (2009), which exploits the relationship between
the SWIR snow reflectance and the SSA (Kokhanovsky and
Zege, 2004). The density was measured with a 185 cm3 den-
sity cutter, and the samples were weighed with a 100 g Pesola
light series scale with an accuracy of 1 g. The tempera-
ture was measured with a Traceable 2000 digital tempera-
ture probe. Liquid water content of snow was also measured
with the Snow Fork (Toikka Engineering Ltd., Espoo, Fin-
land) at the Churchill arctic fen site during wet conditions on
13 and 16 April 2010. At the Col de Porte site (the fifth site),
16 SSA profiles were taken using the Dual Frequency Inte-
grating Sphere for Snow SSA instrument (DUFISSS: Gal-
let et al., 2009), also based on the relationship between the
SWIR reflectance and the SSA. Note that from late February
onwards, warm conditions led to several snowmelt events,
which caused a significant decrease in the snow SSA values.
Hence, a distinction was made between dry snow conditions
at Col de Porte (7 sets of data from 6 January to 16 February)
and wet snow conditions (9 sets of data from 25 February
to 20 April). The total snow depth and snow density pro-
files were also measured (Morin et al., 2013) and ultrasonic
snow depth observations were acquired at SIRENE and Col
de Porte.

NARR data (Mesinger et al., 2006) (2 m air temperature
and air humidity, precipitation, 10 m wind speed, surface
shortwave and longwave radiation) were used to force the
CLASS model at the first four sites. Langlois et al. (2009)
show that the NARR product delivers reliable input data for
snowpack modeling. Forcing data from the NARR nearest
neighbor pixel of each site was employed. As NARR provide
data on a three-hour time step, the variables were interpolated
to a 30 min time step, except for precipitation, which main-
tained a three-hour interval. To initialize the starting condi-
tions, the CLASS model was run starting the year prior to
the winter in this study: from 1 October 2009 to 1 June 2011
at SIRENE and St-Romain; from 1 October 2008 to 1 June
2010 at the two Churchill sites. At the Col de Porte site, me-
teorological variables (air temperature, humidity, windspeed,
precipitation and incoming shortwave and longwave radia-
tion) recorded with an hourly time resolution throughout the
snow season of 2009–2010 (from 20 September 2009 to 10
May 2010) were interpolated to a 30 min time-step and used
to drive the CLASS model (see Morin et al., 2012 for more
details on the Col de Porte meteorological data).
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Fig. 3.Comparison of CLASS simulated snow properties with field
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are separately indicated (see legend).

3 Results

3.1 CLASS snow parameter evaluation

First, an analysis of the one-layer CLASS snow model sim-
ulations was conducted. Simulated snow density, total snow
depth and SWE were compared with all measurements taken
in snow pits where SSA profiles were measured. Figure 3
shows that the simulation accuracy varies from one site to
another. Snow density is generally accurate except at Col de
Porte, where the density was overestimated. The overestima-
tion is probably due to the high densification of snow under
wet conditions with CLASS. For snow depth, there is an un-
derestimation for the Churchill sites. Since there were un-
derestimates at both forest and fen sites, NARR precipitation
is probably the main cause. In fact, the cumulated NARR
precipitation from the beginning of the snow season to the
first snowpit measurement in February at the dry fen is lower
(97.1 mm) than the snowpit measured SWE (157.3 mm).
However, other phenomena such as blowing snow and in-
terception by vegetation could lead to differences between
the simulated and measured SWE (consequently snow depth
as well). Comparisons between continuous ultrasonic snow
depth observations at SIRENE and Col de Porte also show
that errors in diagnosing precipitation phase at the beginning
of the snow season lead to an offset of snow depth (over-
estimation at SIRENE) (Fig. 4a). This sensitivity to precip-
itation phase in CLASS is also demonstrated in Langlois
et al. (2013). Figure 4b shows that underestimation of melt
events at the beginning of the season also lead to positive
offset in the snow depth. However, the snow depth RMSE is
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Fig. 4. CLASS snow depth simulations compared with Ultrasonic
measurements at(a) SIRENE and(b) Col de Porte. Black dots are
the snow depths from snowpit measurements.

comparable to what was found with CLASS 3.1 in the Snow
Model Intercomparison Project (Brown et al., 2006). The
overall SWE RMSE is 64.7 mm, which is close to what was
found in Langlois et al. (2013) between modeled (CRCM)
and observed SWE values for northern Québec. There is a
good correlation between the measured and simulated SWE
for the SIRENE and Col de Porte sites, where there is, how-
ever, a consistent overestimation. However, the SWE is un-
derestimated at St-Romain and both Churchill sites.

3.2 CLASS-SSA model evaluation and validation

In this study, SSA is considered for the evaluation and valida-
tion because measurements of shortwave infrared reflectance
of snow are related to SSA (see Sect. 2.2). To evaluate the
CLASS-SSA simulations, an analysis of the TGthresholdwas
first conducted. However, differences between the simulated
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Fig. 5. RMSESSA between the measured SSA and the simulated
SSA using CLASS-SSA as a function of the temperature gradient
threshold (TGtreshold).

and measured snow depths (Figs. 3 and 4), caused prob-
lems when relating measured SSA to its corresponding sim-
ulated SSA for a given snow depth in the snowpack. A cor-
rection was applied to the measured snow depth in order
to match the simulated snow depth; this caused the mea-
sured profiles to be stretched or compressed. The root mean
square error values between the simulated and measured
SSA (RMSESSA) were calculated at the first four sites for
different TGthreshold values. The Col de Porte site where
wet snow metamorphism dominated was excluded because
wet metamorphism has a strong influence on SSA evolu-
tion that is not related to the TGthreshold. Figure 5 shows
that, for TGthresholdvalues between 10 Km−1 and 20 Km−1,
the RMSESSA for the 5 sites is relatively constant. The
minimum RMSESSA value (7.3 m2kg−1) for the 5 sites is
TGthreshold= 16 Km−1, which is close to the 15 Km−1 value
used by Jacobi et al. (2010). This value is also consistent with
Taillandier et al. (2007), who proposed that the TGthreshold
should be between 9 Km−1 and 20 Km−1. The SIRENE
site reached a minimum RMSE at TGthreshold= 14 Km−1,
whereas the RMSE at both Churchill sites slightly increased
with TGthreshold. The RMSE at the St-Romain site and the
dry snow condition data for the Col de Porte site slightly de-
creased from 10 Km−1 to 25 Km−1 before reaching a con-
stant value (Fig. 5).

The minimum RMSE was at TGthreshold= 16 Km−1and
was thus used to simulate SSA with CLASS-SSA at the 5
sites (Fig. 6). Previous studies have generally defined the TG
threshold for depth hoar formation between 10 Km−1 and
20 Km−1(Taillandier et al., 2007; Colbeck, 1983; Marbouty,
1980). However, it should be noted that the formation of
faceted snow crystals has been observed at low growth rates
under low gradient thresholds (Domine et al., 2003; Flin and

Brzoska, 2008). Pinzer and Schneebeli (2009) proposed that
alternating temperature gradients also leads to formation of
rounded grains, similar to those observed in ET metamor-
phism. However, overall comparisons show good agreement
between simulated and measured SSA (Fig. 6). More specif-
ically, the SIRENE and St-Romain results show similar pat-
terns with a gradient from low SSA at the bottom to higher
SSA coming from fresh precipitation at the top. Neverthe-
less, there is a low SSA layer that appeared in mid-December
2010 caused by a melt event. This layer was observed as a
melt ice-crust layer of 3 cm with low SSA (measured with
a SWIR camera: Montpetit et al., 2012) during the snowpit
measurements, but SSA was not measured with IRIS because
it is difficult to extract this kind of snow (i.e., crusts) with the
IRIS instrument. For the Churchill sites, both measured and
simulated SSA are low near the bottom (≈ 25 cm), which is
related to the formation of depth hoar in the presence of a
high temperature gradient. However, the simulated SSA val-
ues in the top layers are generally higher than the measure-
ments. This may be due to the underestimation of the snow
depth at the beginning of the season causing an underestima-
tion of the relative thickness of the bottom layers with low
SSA within the snowpack, which leads to an overestimation
of the top layer thickness (Fig. 6c and d). Underestimation of
the April 2010 measurements at both sites should, however,
be attributed to an underestimation of snow LWC by CLASS
during the spring melt, which limited the decrease of simu-
lated SSA by wet metamorphism. In fact, LWC as measured
with the Snow Fork instrument on 13 and 16 April at the
Churchill arctic fen site suggests a strong underestimation by
CLASS (0.2 % vs. 3.8 % on 13 April and 1.0 % vs. 15.5 % on
16 April, for CLASS and the Snow Fork, respectively). The
issue with LWC is discussed in Sect. 4. The Col de Porte site
illustrates the difference between the first seven dry sets of
data showing good agreement, and the second period, start-
ing on 25 February, when wet snow becomes predominant
in the snowpack, giving a systematic overestimation of the
SSA.

The comparison of the simulated SSA values to their cor-
responding measurements gives a RMSE of 8.0 m2kg−1,
which represents an error of 42.3 % (Fig. 7). Part of the er-
ror could be attributed to the fact that we did not necessar-
ily compare the same snow layers due to different positions
between the simulated and measured points. The correction
applied to the simulated snow depth profile might be a fac-
tor, but the high variability within a SSA profile might also
be a source of error. The simulated SSA variations are also
strong within the snowpack, mainly for high SSA, where the
evolution is faster (see Fig. 2). Considering the mean depth-
averaged SSA weighted by the snow layer thickness, the
RMSE decreases significantly to 5.1 m2kg−1, representing
an error of 25.7 %. Furthermore, the coefficient of determi-
nation (R2) increases from 0.60 to 0.84. As mentioned previ-
ously, another major source of error corresponds to the influ-
ence of wet conditions, as observed at the Col de Porte site
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Fig. 6. Seasonal profile of simulated SSA at the five sites,(a) SIRENE,(b) St-Romain,(c) Churchill Arctic fen,(d) Churchill Forest, and
(e) Col de Porte), compared to SSA measurements (squares: where the measured SSA profiles were adjusted to the simulated snow depth,
see text). The measured profiles are stretched or compressed to fit with simulated snow depth. Black dots correspond to the measured snow
depths.

after the mid-season. In fact, by removing data for this wet
period, the depth-averaged RMSE decreases to 4.1 m2kg−1

(17.5 %). As mentioned in Morin et al. (2013), even with a
multi-layer model, limitations on the precision of LWC simu-
lations exacerbate the difficulty of modeling snow grain evo-
lution under wet conditions. The weakness of the model un-
der wet snow conditions will be analyzed below in the Dis-
cussion (Sect. 4). The SSA at St-Romain and at Col de Porte
(dry snow period) are underestimated by the model, while at
the Churchill sites SSA is slightly overestimated due to the
high simulated SSA in the top layers (Fig. 6c and d).

4 Discussion

The simulation of a stratified phenomenon such as SSA us-
ing a one-layer snow model such as CLASS requires cer-
tain assumptions and simplifications of the physics within

the snowpack. These assumptions may induce errors in es-
timates of the SSA evolution. Here, we discuss the different
elements that may impact the precision of the model and how
they may influence the estimates. It is thus possible to iden-
tify the conditions under which CLASS-SSA is more limited
and propose possible improvements. We then consider the
proposed model’s application, mainly in the context of pas-
sive microwave simulations.

4.1 Sources of errors

An assumption made in the CLASS-SSA approach is
that the temperature profile of the snowpack is linear.
In general, the temperature variations will be larger in
the top layers that are responding to the variations in
air temperature, while the bottom layers are less af-
fected as the air temperature fluctuations do not reach
these layers because of the low snow thermal conductivity
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Fig. 7.Measured vs. simulated SSA comparison (left panel shows all points; right panel shows the one-layer average). The RMSE in averaged
SSA (right panel) without the wet points is 4.1 m2kg−1.

(Armstrong and Brun, 2008; Vionnet et al., 2012). Hence, in
cold weather like in Churchill, the linearity of the temper-
ature profiles is likely to induce underestimated snow layer
temperatures. This phenomenon could also partly explain
why the SSA of top layers at both Churchill sites is over-
estimated, considering that the SSA decrease is more pro-
nounced with higher snow temperatures. Furthermore, the
linearity of the temperature gradient would generally un-
derestimate the local temperature gradient in the top layers
and overestimate the local temperature gradient in the bot-
tom layers. However, in the north during winter, this diurnal
temperature cycle is generally in most cases less pronounced
than over temperate or mountainous regions (Leathers et al.,
1998). Thus, using a linear gradient throughout a dry and rel-
atively shallow snowpack (below about 1 to 1.5 m depth) ap-
pears as a satisfactorily hypothesis in most cases over north-
ern areas. Kondo and Yamazaki (1990) demonstrated that a
linear temperature profile can be successfully employed in a
snowmelt model.

As shown through the wet metamorphism simulation,
CLASS-SSA is limited by the modeling of snow parame-
ters in CLASS. Hence, the use of a one-layer model giv-
ing a LWC for the entire snowpack becomes a limitation.
Furthermore, there might be an underestimation of LWC by
CLASS. Measurements of LWC with the Snow Fork instru-
ment at the Churchill arctic fen site suggests a strong under-
estimation by CLASS. Moreover, raising the limit of the sim-
ulated snowpack water retention capacity from 4 % to 10 %
did not improve the simulated LWC and the SSA calculation
under wet conditions in Col de Porte because the CLASS
LWC rarely reaches the retention capacity. Part of the prob-
lem was, however, resolved by distributing the LWC mostly
in the top layers, but the SSA evolution under wet conditions
remains a weakness. Table 1 shows that the bias is signif-
icantly reduced when wet metamorphism is modeled with

Table 1. SSA bias and RMSE for Col de Porte wet snow condi-
tion data for different configurations of CLASS-SSA wet metamor-
phism.

Model Configurations RMSE (m2kg−1) Bias (m2kg−1)

No wet metamorphism 15.9 13.4
Uniform LWC (CLASS) 12.6 10.1
LWC distributed in the top 10 cm 9.4 6.8
(CLASS-SSA configuration)
Drastic increase of LWC 6.7 −2.6
(if LWC > 0 then LWC= 10 %)

snowpack liquid water distributed in the top 10 cm at the Col
de Porte wet sites compared to a wet metamorphism consid-
ering a uniform LWC or compared to no wet metamorphism.
We also tested simulations by drastically increasing the total
LWC artificially in CLASS (if LWC> 0 then LWC= 10 %);
such conditions significantly reduced the simulated SSA, as
expected, with a bias of−2.6 m2kg−1 for Col de Porte wet
snow condition data (Table 1). This last case confirms that the
problem comes from an underestimation of LWC in CLASS
under warm conditions.
Snow depth errors from CLASS might also impact CLASS-
SSA simulations. In fact, as shown for both Churchill sites
(Fig. 6c and d), a bias in snow precipitation can impact the
representation of the thickness of a given snow layer. Thus, in
this study, part of the SSA error could be related to uncertain-
ties in the NARR precipitation data (Langlois et al., 2009).

Other phenomena not parameterized in the CLASS snow
model, such as blowing snow, could influence the simulated
snow depth (Liston and Hiemstra, 2011). In open areas (four
of our five sites), strong wind shear stress could have ex-
ceeded the snow particle resistance to dislocation (Li and
Pomeroy, 1997). Hence, a less cohesive top snow layer with
lower SSA could be removed almost completely in an open
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Fig. 8. Bias between the measured SSA and the simulated SSA us-
ing CLASS-SSA as a function SSAinitial (the vertical dotted blue
line represents the SSAinitial set in CLASS-SSA at 73.0 m2kg−1).

arctic region like Churchill (Baggaley and Hanesiak, 2005).
Furthermore, the snow thermal conductivity strongly varies
between the tundra, where the snowpack has a high conduc-
tivity due to hard wind slabs, compared to taiga and forest
snowpacks, which have three to four times lower thermal
conductivity due to lower wind compaction and depth hoar
development (see Gouttevin et al., 2012). These differences
impact the snow temperature and temperature gradient but
are not represented in CLASS-SSA.

In the CLASS-SSA model, the SSAinitial value is fixed at
73.0 m2kg−1. This value was chosen based on freshly fallen
snow SSA measurements (sampled maximum 24 h after
snowfall) from methane adsorption by Domine et al. (2007).
However, this study shows a range of 33.1 to 155.8 m2kg−1

with a standard deviation of±26.2 m2kg−1 based on 63 sam-
ples. Freshly fallen snow SSA is rarely modeled as it depends
on the type of solid precipitation, which depends on the mete-
orological conditions (air temperature, wind, type of clouds,
atmospheric stratification) when the snowflake is formed.
Domine et al. (2007), however, proposed freshly fallen snow
SSA values based on four types of fresh snow that can be re-
lated to density. As CLASS calculates the fresh snow density
from the air temperature using the equation from Hedstrom
and Pomeroy (1998), we implemented SSAinitial values based
on the Domine et al. (2007) relationship. However, this im-
plementation did not change the results significantly: a slight
increase in RMSE from 8.0 to 8.3 m2kg−1 was found. Fig-
ure 8 shows that SSAinitial has a relatively low impact on
simulations. The sensitivity to SSAinitial values appears to be
more important for the snowpack where measurements were
taken mostly at the beginning of the season (SIRENE and
St-Romain). A precise dynamic parameterization of freshly

fallen SSA could probably improve the results, mostly for
snow with high SSA at the beginning of the snow season.

4.2 Comparison with other models

Despite the above simplifications, the CLASS-SSA model
simulates SSA with a reasonable accuracy for a wide range
of snow types. Our RMSE of 8.1 m2kg−1(Fig. 7) is com-
parable to the result obtained at Col de Porte by Morin
et al. (2013) from internal computation of the optical radius
in Crocus (6.37 m2kg−1) and the method of Domine et al.
(2007) based on the density and snow type (8.08 m2kg−1).
Snow data from the 2010 winter season at Col de Porte pro-
vide a unique and very accurate time series of SSA mea-
surements (Morin et al., 2013). Figure 9 shows a compari-
son of temporal snowpack averaged SSA values at Col de
Porte for CLASS-SSA, the Crocus model (Morin et al.,
2013), and the measurements. When the snowpack is dry,
both models underestimate the SSA. On 25 February and
after, when wet conditions occurred, CLASS-SSA overes-
timates the SSA due an underestimation of the snowpack
LWC, while Crocus still underestimates the SSA. For this
dataset, CLASS-SSA simulations seem comparable to or bet-
ter than Crocus in dry conditions. However, in wet condi-
tions, Crocus better simulates the decrease in SSA as LWC
increases (Fig. 9). Hence, Crocus seems to better capture the
dynamics of the SSA evolution. Note that Jacobi et al. (2010)
obtained, from 162 snow SSA measurements at a taiga site,
an RMSE of 8.6 m2kg−1with the implementation of the Tail-
landier et al. (2007) approach within Crocus, whereas the im-
plementation of Domine et al. (2007) resulted in a RMSE of
16.2 m2kg−1 (the results were highly affected by the under-
estimation of snow density by Crocus).

4.3 Ropt analysis for MESM

In the context of using the simulated SSA to assimilate mi-
crowave brightness temperatures (TB), we now examine the
impact of errors generated by the proposed approach in terms
of TB error. As mentioned in Sect. 1, the DMRT MESM cal-
culatesTB from Ropt derived from SSA. Figure 10 shows
the comparison betweenRopt derived from measured SSA
and Ropt derived from simulated SSA. As the relationship
between SSA andRopt is not linear (Eq. 1), we see that for in-
dividual points (Fig. 10, left panel), the differences between
simulated and measuredRopt are more important for larger
grains. This is caused by the fact that for low SSA, a given
variation of SSA leads to a larger change in the simulated
Ropt (a change of SSA from 10 to 8 m2kg−1 leads to a change
in Ropt from 0.327 to 0.409 mm).Ropt is then much more
sensitive to error in SSA for larger grains. This also partly
explains why the error for wet snow condition data in Col
de Porte is large. For meanRopt values over the snowpack,
there is a RMSE of 0.043 mm andR2 of 0.84, comparable
to SSA results, if the wet snowpacks are excluded. There is,
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Fig. 9.Snowpack-averaged SSA evolution with time at Col de Porte
for CLASS-SSA, Crocus (Morin et al., 2013) and the measure-
ments. The last Crocus value was excluded because the simulations
give no snow on ground. Error bars on measurements are the mea-
surements accuracy (12 %: Gallet et al., 2009).

however, a small positive bias of 0.034 mm, mainly caused
by the strong influence of large grains in the averaging.

Moreover, the density stratification is another parameter
that should be considered when modeling the radiative trans-
fer within the snowpack (e.g., Picard et al., 2012). In our
case, the densification routine in CLASS-SSA is only used
to calculate the depth and the position of every snow layer,
and not necessarily to calculate a precise density. The simu-
lated densities might differ from real densities. An example is
the decrease of densification at the bottom snow layer when
depth hoar formation occurs that is not taken into account
in the SSA offline model. The correction of densities in the
top layers (see Sect. 2.1) might also lead to low densities in
the top layers. Here, to attenuate the effects of these simpli-
fications in theTB simulations, we consider a bulk snowpack
characterized by an effective snow grain effective radiusReff
calculated from the averagedRopt following the form sug-
gested by Kontu and Pulliainen (2010):

Reff = a[1− exp(−bRopt)] (6)

wherea = 1.3 andb = 4.7. These empirical parameters were
fitted from simulations using averagedRopt derived from
measured SSA compared to ground-based radiometric mea-
surements, except for the bulk snowpack (see Roy et al.,
2013).

Simulations with the DMRT-ML (Picard et al., 2013)
were conducted to analyze the effect of theRopt error on
TB simulations. TheTB simulations were conducted em-
ploying single-layer averagedReff values (Eq. 6)± the de-
rived RMSE ofRopt (±0.043 mm). Considering a snowpack
of 0.5 m with a bulk density of 250 kgm−3, an error of
0.043 mm inRopt leads to maximum variations ofTB of the

order of±23.3 K at 36.5 GHz and±2.7 K at 18.7 GHz. We
thus see the high sensitivity of 36.5 GHz to grain size, given
an error that could be significant in some cases (high depth
hoar layer), while the proposed simple approach can be ap-
plied for TB simulations at 18.7 GHz with acceptable accu-
racy. Such a sensitivity analysis would benefit from further
development as many combinations of snowpack parameters
and conditions could occur.

4.4 Model applications

The simulation of snowpack parameters, such as SWE, at in-
dividual sites using an operational land-surface scheme de-
signed for use in large-scale climate models could include
large errors, as illustrated in Fig. 3. These errors could re-
sult from uncertainties in the meteorological forcing data,
model parameters, as well as the nonlinearity and scaling ef-
fects of the processes modeled (e.g., Andreadis et al., 2008).
The proposed model opens opportunities to couple CLASS
with MESM for improving SWE estimates. Data assimila-
tion offers the potential to merge information on snow vari-
ables from satellite observations and land-surface model sim-
ulations. CLASS-SSA was developed mainly for passive mi-
crowave TB assimilation in CLASS to improve estimates of
snow parameters. The model employed in this study provides
a good estimate or “first guess” of the snow grain size and
a description of the snow type at a given time during the
snow season. Inversion approaches, where parameters (snow
depth, snow density) are retrieved by minimizing the differ-
ences between simulated and measured brightness tempera-
tures (Langlois et al., 2012; Vachon et al., 2010; Pardé et al,
2007) will benefit from SSA simulations by taking into ac-
count the important effect of snow metamorphism on the mi-
crowave signal. This “first guess” methodology could also be
used as a state initial condition in more complex data assim-
ilation system approaches (Toure et al., 2011; Durand et al.,
2009; Reichle, 2008) because the grain-size parameterization
is no longer the dominant source of uncertainty. Grain size
could still be considered as one of many sources of uncer-
tainty, but with known likely error or variation. Hence, the
CLASS-SSA model could be applied to improve SWE esti-
mates at large scales from satellite-borne passive microwave
information. From this perspective, as mentioned previously
(Sect. 4.3), attention needs to be paid to the effect of the con-
version of SSA toRopt on the uncertainty related to the grain
size simulation that depends on the type of grains. In fact,
considering Eq. (1), errors in SSA with large grains (low
SSA, such as depth hoar) will lead to higher variation ofRopt
than for smaller grains (high SSA) (see Morin et al., 2013).

The proposed methodology could also be implemented for
a hydrology land-surface scheme (HLSS), such as the one
developed within the framework of Environment Canada’s
community environmental modeling system, MESH. MESH
evolved from the WATCLASS model that links a hydrologi-
cal routing model (WATFLOOD) (Pietroniro et al., 2006) to
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Fig. 10. Measured vs. simulatedRopt derived from SSA (Eq. 1) comparison (left panel shows all points; right panel shows the one-layer
average). The RMSE in averagedRopt (right panel) without the wet points is 0.043 mm.

the Canadian LAnd Surface Scheme (CLASS) discussed in
this paper. It is used as a basis for coupling horizontal sur-
face hydrology (river routing) with both weather and climate
atmospheric models (see discussion by Teutschbein
and Seibert, 2010).

Furthermore, snow surface albedo (mostly in the infrared)
is driven by snow grain size. Hence, the use of SSA esti-
mated with CLASS-SSA could lead to improved estimates of
snowpack albedo, which are derived from a physically-based
model. Pure snow albedo (no impurities) could be related to
the SSA using a simple optical equation model suggested by
Kokhanovsky and Zege (2004). Based on the simple radia-
tive transfer model of Gardner and Sharp (2010), an error
of 8.0 m2kg−1 in SSA leads to an uncertainty in the broad-
band albedo calculation of around±3 % for small grains
(30 m2kg−1) to around 6 % for large grains (10 m2kg−1). It
should be noted that the grains at the top of the snowpack
that drive the broadband surface albedo are generally smaller
(mostly in dry conditions) and thus less affected by grain un-
certainty.

5 Conclusions

This study analyzes the coupling of a SSA evolution model
with a one-layer snow model from the Canadian LAnd Sur-
face Scheme (CLASS). The simulated SSA values were com-
pared with a unique SSA database for five different sites, rep-
resenting four different climatic environments, including a
wide range of snow types. Based on the SSA decrease due
to snow aging in snow layers (Taillandier et al., 2007), the
CLASS-SSA model is an offline multi-layer parameteriza-
tion driven by CLASS single-layer snow model outputs. The
CLASS-SSA model also considers wet metamorphism, us-
ing the equation of Brun (1989) based on the liquid water
content of snow.

Despite the limits of a simple one-layer snow model,
it provides a SSA estimate with an overall RMSE of
8.0 m2 kg−1 for individual layers, and a depth-averaged
RMSE of 5.1 m2 kg−1 for the snowpack SSA. The model,
however, shows weaknesses in the wet snow metamorphism
regime, which is mostly due to a low bias in the snow model
simulations of LWC within the snowpack.

The proposed implementation of the SSA model in an off-
line mode and driven by a one-layer snow model offers a
simple, computationally efficient and versatile approach. It
would not be difficult to implement for other models as it
only needs six basic inputs that are normally available from
snow models (snow depth, SWE, snow density, LWC, soil–
snow interface temperature, and air temperature). This ap-
proach is thus applicable for other one-layer snow models
(Turcotte et al., 2007; B́elair et al., 2003), and also for multi-
layer models where SSA is not explicitly modeled, such as
the Snow–Atmosphere–Soil Transfer (SAST) energy balance
snow physics model (Sun et al., 1999).

Future work will evaluate the use of these SSA simula-
tions for satellite passive microwave brightness temperature
assimilations and surface snow albedo calculations.
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dimensional geometric measurements of snow microstructural
evolution under isothermal conditions, Ann. Glaciol., 38, 39–44,
2004.

Franz, K., Butcher, P., and Ajami, N.: Addressing snow model un-
certainty for hydrologic prediction, Adv. Water Resour., 33, 820–
832, 2010.

Gallet, J.-C., Domine, F., Zender, C. S., and Picard, G.: Measure-
ment of the specific surface area of snow using infrared re-
flectance in an integrating sphere at 1310 and 1550 nm, The
Cryosphere, 3, 167–182, doi:10.5194/tc-3-167-2009, 2009.

Gardner, A. and Sharp, M.: A review of snow and ice albedo
and the development of a new physically based broad-
band albedo parameterization, J. Geophys. Res., 115, F01009,
doi:10.1029/2009JF001444, 2010.

Gouttevin, I., Menegoz, M., Domine, F., Krinner, G., Koven, C.,
Ciais, P., Tarnocai, C., and Boike, J.: How the insulat-
ing properties of snow affect soil carbon distribution in the
continental pan-arctic area, J. Geophys. Res., 117, G02020,
doi:10.1029/2011JG001916, 2012.

Grody, N.: Relationship between snow parameters and microwave
satellite measurements: theory compared with Advanced Mi-
crowave Sounding Unit observations from 23 to 150 GHz, J.
Geophys. Res., 113, D22108, doi:10.1029/2007JD009685, 2008.

Hedstrom, N. and Pomeroy, J.: Measurements and modelling of
snow interception in the boreal forest, Hydrol. Process., 12,
1611–1625, 1998.

Huang, C., Margulis, S., Durand, M., and Musselman, K.: Assess-
ment of Snow Grain-Size Model and Stratigraphy Representa-
tion Impacts on Snow Radiance Assimilation: Forward Modeling
Evaluation, IEEE T. Geosci. Remote, 50, 4551–4564, 2012.

Jacobi, H.-W., Domine, F., Simpson, W. R., Douglas, T. A., and
Sturm, M.: Simulation of the specific surface area of snow using
a one-dimensional physical snowpack model: implementation
and evaluation for subarctic snow in Alaska, The Cryosphere,
4, 35–51, doi:10.5194/tc-4-35-2010, 2010.

Jin, Z., Charlock, T. P., Yang, P., Xie, Y., and Miller, W.: Snow op-
tical properties for different particle shapes with application to
snow grain size retrieval and MODIS/CERES radiance compar-
ison over Antarctica, Remote Sens. Environ., 112, 3563–3581,
2008.

Kaempfer, T. and Schneebeli, M.: Observation of isothermal meta-
morphism of new snow and interpretation as a sintering process,
J. Geophys. Res., 112, D24101, doi:10.1029/2007JD009047,
2007.

Kokhanovsky, A. A. and Zege, E. P.: Scattering optics of snow,
Appl. Optics, 43, 1589–1602, 2004.

Kondo, J. and Yamazaki, T.: A prediction model for snowmelt,
snow surface temperature and freezing depth using a heat bal-
ance method, J. Appl. Meteorol., 29, 375–384, 1990.

Kontu, A. and Pulliainen, J.: Simulation of spaceborne microwave
radiometer measurements of snow cover using in situ data and
brightness temperature modeling, IEEE T. Geosci. Remote, 48,
1031–1044, 2010.

Langlois, A., Brucker, L., Kohn, J., Royer, A., Derksen, C.,
Cliche, P., Picard, G., Willemet, J. M., and Fily, M.: Simula-
tion of snow water equivalent (SWE) using thermodynamic snow
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model (CRCM4) over Qúebec, Canada, J. Hydrometeorol., sub-
mitted (AMSJHM-S-13-00073), 2013.

Leathers, D. J., Palecki, M. A., Robinson, D. A., and
Dewey, K. F.: Climatology of the daily temperature range annual
cycle in the United States, Clim. Res., 9, 197–211, 1998.

Legagneux, L., Lauzier, T., Domine, F., Kuhs, W., Heinrichs, T.,
and Techmer, K.: Rate of decay of specific surface area of snow
during isothermal experiments and morphological changes stud-
ied by scanning electron microscopy, Can. J. Phys., 81, 459–468,
2003.

Li, L. and Pomeroy, J.: Estimates of threshold wind speeds for snow
transport using meteorological data, J. Appl. Meteorol., 36, 205–
213, 1997.

Liston, G. and Hiemstra, C.: The changing cryosphere: Pan-Arctic
snow trends (1979–2009), J. Climate, 24, 5691–5712, 2011.

Lyapustin, A., Tedesco, M., Wang, Y., Aoki, T., Horif, M., and
Kokhanovsky, A. A.: Retrieval of snow grain size over Greenland
from MODIS, Remote Sens. Environ., 113, 1976–1987, 2009.

Marbouty, D.: An experimental study of temperature gradient meta-
morphism, J. Glaciol., 26, 303–312, 1980.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.,
Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., and Berbery, E.:
North American regional reanalysis, B. Am. Meteorol. Soc., 87,
343–360, 2006.

Montpetit, B., Royer, A., Langlois, A., Cliche, P., Roy, A.,
Champollion, N., Picard, G., Domine, F., and Ob-
bard, R.: New shortwave infrared albedo measurements for
snow specific surface area retrieval, J. Glaciol., 58, 941,
doi:10.1016/j.coldregions.2010.01.004, 2012.

Montpetit, B., Royer, A., Roy, A., Langlois, L., and Derk-
sen, D.: Snow microwave emission modeling of ice lenses
within a snowpack using the microwave emission model for
layered snowpacks, IEEE T. Geosci. Remote, available online,
doi:10.1109/TGRS.2013.2250509, 2013.

Morin, S., Lejeune, Y., Lesaffre, B., Panel, J.-M., Poncet, D., David,
P., and Sudul, M.: An 18-yr long (1993–2011) snow and meteo-
rological dataset from a mid-altitude mountain site (Col de Porte,
France, 1325 m alt.) for driving and evaluating snowpack mod-
els, Earth Syst. Sci. Data, 4, 13–21, doi:10.5194/essd-4-13-2012,
2012.

Morin, S., Domine, F., Dufour, A., Lejeune, Y., Lesaffre, B.,
Willemet, J., Carmagnola, C., and Jacobi, H.: Measurements
and modeling of the vertical profile of specific surface area
of an alpine snowpack, Adv. Water Resour., 55, 111–120,
doi:10.1016/j.advwatres.2012.01.010, 2013.

Music, B. and Caya, D.: Evaluation of the hydrological cycle over
the Mississippi River basin as simulated by the Canadian Re-
gional Climate Model (CRCM), J. Hydrometeorol., 8, 969–988,
2007.

Niwano, M., Aoki, T., Kuchiki, K., Hosaka, M., and Kodama, Y.:
Snow metamorphism and albedo process (SMAP) model for cli-

The Cryosphere, 7, 961–975, 2013 www.the-cryosphere.net/7/961/2013/

http://dx.doi.org/10.5194/tc-3-167-2009
http://dx.doi.org/10.1029/2009JF001444
http://dx.doi.org/10.1029/2011JG001916
http://dx.doi.org/10.1029/2007JD009685
http://dx.doi.org/10.5194/tc-4-35-2010
http://dx.doi.org/10.1029/2007JD009047
http://dx.doi.org/10.1029/2012WR012133
http://dx.doi.org/10.1016/j.coldregions.2010.01.004
http://dx.doi.org/10.1109/TGRS.2013.2250509
http://dx.doi.org/10.5194/essd-4-13-2012
http://dx.doi.org/10.1016/j.advwatres.2012.01.010


A. Roy et al.: Snow specific surface area simulation 975

mate studies: Model validation using meteorological and snow
impurity data measured at Sapporo, Japan, J. Geophys. Res., 117,
F03008, doi:10.1029/2011JF002239, 2012.
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