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Abstract. This paper reports an experimental study designed
for the in-depth investigation of how the radial basis func-
tion network (RBFN) estimates snow cover thickness as a
function of climate and topographic parameters. The estima-
tion problem is modeled in terms of both function regression
and classification, obtaining continuous and discrete thick-
ness values, respectively. The model is based on a minimal
set of climatic and topographic data collected from a limited
number of stations located in the Italian Central Alps. Sev-
eral experiments have been conceived and conducted adopt-
ing different evaluation indexes. A comparison analysis was
also developed for a quantitative evaluation of the advantages
of the RBFN method over to conventional widely used spatial
interpolation techniques when dealing with critical situations
originated by lack of data and limitedn-homogeneously dis-
tributed instrumented sites. The RBFN model proved com-
petitive behavior and a valuable tool in critical situations in
which conventional techniques suffer from a lack of repre-
sentative data.

1 Introduction

The increasing amount and quality of available geospatial,
environmental data drive the need for new models with ana-
lytical recognition and predictive capabilities. These models,
rooted in techniques such as knowledge-based systems, neu-
ral networks and soft computing open up new possibilities
for the accurate estimation of complex environmental param-
eters (Belward et al., 2003). This work focuses on snow cover
thickness modeling, an important scientific topic addressing
snow avalanche risks, hydrological scope and permafrost dis-
tribution (Gong, 1996b). Snow is a significant environmental

and societal variable and it is also an important meteorologi-
cal and climatological element. Estimating snow cover thick-
ness is a complex task for several reasons. One of the main
challenges is the fact that snow cover thickness is strongly in-
fluenced by many climatic and topographic variables whose
to snow height is not well defined.

In addition to the theoretical issues, difficulties also arise
during experiments. For example the processes of gathering,
intersecting and clipping the available data to obtain an ap-
propriate and coherent set of patterns, dramatically reduces
the size of the initial data set. Several works demonstrated
that neural networks (NNs) modeling a variety of nonlinear
transfer functions can successfully address the above critical
aspects (Bishop, 1995). NNs are distribution free and do not
require data to conform to a fixed model, an aspect of great
potential in the context of environmental studies which are
based on the fusion of multiple heterogeneous data sets. The
attractiveness of NNs also stems from learning capabilities,
robustness and the ability to handle incomplete and impre-
cise information (Jain et al., 1996). NNs can provide prac-
tically accurate solutions for precisely or imprecisely for-
mulated problems and for phenomena that are only under-
stood through experimental data and field observations. In-
stead of assuming relationships between factors and output
variables, the NN model can inductively learn these relation-
ships from training data sets without requiring prior knowl-
edge. The last 20 yr have seen a rapid growth in the use of
NNs in geosciences and a variety of techniques have been in-
vestigated for different studies. Seminal papers proposing the
use of neural computing for the analysis of geological and/or
geophysical data have been published by the remote sens-
ing community (Benediktsson et al., 1990; Gong, 1996b).
These early works investigated the potential of NNs to handle
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spatial data from multiple sources compared with conven-
tional statistical and linear methods. Results were encourag-
ing and confirmed the superiority of neural models in deal-
ing with data with any measurement scale. The proven prop-
erties of high parallelism, robustness, the ability to handle
imprecise and fuzzy information outweigh the difficulties as-
sociated with setting up suitable internal parameters and the
complexity of the training stage. NNs have increasingly be-
come practical tools for solving problems that more tradi-
tional systems have found intractable in several geoscience
contexts (Lees, 1996; Tagliaferri et al., 2003) dealing with a
variety of topics such as land cover mapping (Binaghi et al.,
1997; Civco, 1993; Foody, 1995), landslide prediction (Bi-
naghi et al., 2004; Lee et al., 2003; Guzzetti et al., 1999) or
forecasting atmospheric events (Gardner and Dorling, 1998).
NNs have been successfully applied to the analysis of cli-
mate variables enabling the construction of empirical mod-
els to estimate their temporal and spatial distributions. An
adaptive basis function network for analysing trends in rain-
fall was proposed byPhilip and Joseph(2003). Their study
demonstrated experimentally that the periodicity of rainfall
patterns may be understood using a neural model so that
long-term predictions can be made. InAntoni et al.(2001)
spatio-temporal distributions of climatic variables expressed
at the level of monthly statistics are described as empirical
functions of latitude, longitude, elevation and respective cli-
matic time series obtained from a limited number of weather
stations. To tackle the complexity of these nonlinear func-
tional dependencies, a NN was used producing accurate re-
sults.

Among the many NN models available, the most used in
geoscience and remote sensing studies has been the multi-
layer perceptron (MLP) coupled with the error back propa-
gation (BP) algorithm. MLP networks are based on nonlinear
sigmoid functions which give significant non-zero response
in a wide region of the input space. Their approximations are
smooth and continuous, and their accuracy increases with in-
creasing numbers of nodes in the hidden layers. The benefits
and limitations of MLP networks have become increasingly
apparent and the results of comparative studies in diversified
domains are now available (Corsini et al., 2003; Jayawardena
et al., 1997). MLP is highly nonlinear in its parameters. The
BP algorithm which uses the method of steepest descent does
not guarantee convergence to a globally optimum set of pa-
rameters. In recent years research has developed on different
types of feedforward networks. The various promising net-
works include the so-called radial basis function networks
(RBFNs). These neural feedforward models are three-layer
networks whose output nodes form a linear combination of
the basis functions (usually of the Gaussian type) computed
by the hidden layer nodes. Each node provides a significant
non-zero response only when the input falls within a small lo-
calized region of the input space (Moody and Darken, 1989).
Several studies proved theoretically and experimentally that
RBFNs are capable of universal approximations and learning

without local minima, thereby guaranteeing convergence to
globally optimum parameters (Hush and Horne, 1993; Park
and Sandberg, 1991). Moody and Darken(1989) also demon-
strated that the RBF type networks learn faster than MLP
networks.

Geoscience literature shows a growing interest in studies
investigating the use of RBFNs to solve a variety of prob-
lems. Forecasting daily streamflow is, for example, a topic
discussed inMoradkhani et al.(2004) and addressed by
a RBFN integrating self-organizing principles.Dell’Acqua
and Gamba(2003) used RBFNs both to approximate the rain
field and to forecast the parameters of this approximation to
anticipate the movements and changes in geometric charac-
teristics of significant meteorological structures. The study
reports decisively better performances than the MLP network
and ordinary kriging. The present work investigates the per-
formance of RBFNs in dealing with snow cover thickness es-
timation as a function of climate and topographic parameters.
The RBFN model was chosen because of the small absolute
number of sampling sites and by their non-homogeneous dis-
tribution in the study area. The estimation problem is mod-
eled in terms of both function regression and classification,
obtaining continuous and discrete thickness values respec-
tively. The solutions investigated in this paper are an exten-
sion of those adopted in a previous work (Guidali et al., 2010)
from which we inherit the choice of the neural model. Ex-
periments have been extended reporting an in-depth analy-
sis of the results. A new task concerning snow cover map-
ping has been inserted in which the neural model, trained on
instrumented sites, is able to generalize the correlation be-
tween climate/geographic factors and precipitation measure-
ments. The RBFN model acts as a spatial interpolation pro-
cedure estimating snow thickness values for non equipped
sites. However, unlike the conventional spatial interpolation
method, it does not consider true measurements values taken
on a given date for a given map, but it induces approximate
values (generalization stage) from a temporal series of in-
strumented values seen during the training stage (learning
stage). Results obtained by the RBF model have been eval-
uated and compared with those produced by a snow map-
ping algorithm based on the Normalized Difference Snow
Index (NDSI) derived from landsat imagery (Crane and An-
derson, 1984). A comparison has been also developed using
two of the most widely used spatial interpolation techniques
(Tabios and Salas, 1985), the inverse distance weight (IDW)
and Spline, to see whether the proposed RBFN method can
be considered an alternative to conventional procedures in
critical situations originated by lack of data and limited non-
homogeneous instrumented sites.

2 Related work

The main contribution of this paper is the development of
an RBFN model for snow thickness assessment. Therefore,
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we surveyed the literature in the related field of neural mod-
els for snow parameter estimation. Machine learning meth-
ods have been widely used in hydrology and water resources
(Gray and Male, 2004; Coulibaly et al., 2001; Agarwal et al.,
2006). In particularly when applied to hydrologic time series
modeling and forecasting the NNs have shown better per-
formance than the classical techniques (Gong, 1996a). How-
ever, few studies involve the application of these methods
in modeling snow parameters. In this context, NNs are es-
pecially applied to remote sensing data acquired from opti-
cal, infrared, and microwave sensors, allowing the estimation
of snow thickness and snow water equivalent (SWE) param-
eters and the production of accurate arial measurements of
snow cover extent.Tedesco et al.(2004) employed an MLP
network for retrieval of snow depth and SWE from special
sensor microwave imager (SSMI) data and compared the re-
sults with those obtained using the spectral polarization def-
erence (SPD) algorithm, the Helsinki University of Technol-
ogy (HUT) model-based iterative inversion and the Chang
algorithm. They found that results obtained with the NN-
based technique are better than or comparable to those ob-
tained with other approaches. InSun et al.(1997) classifi-
cation techniques based on NNs were also successfully ap-
plied for deriving brightness temperature clusters related to
different snow conditions from SSM/I data. In particular, a
single-hidden-layer NN classifier was designed to learn the
SSM/I signatures. A BP algorithm was applied and a winner-
takes-all method was used to determine the snow condition.
Results showed that the NN classifier was able to outline not
only the snow extent but also the geographical distribution
of snow conditions, thereby confirming the potential of us-
ing the nonlinear retrieval method for inferring land-surface
snow conditions over varied terrain. Recently, a neural net-
work approach was implemented to predicti changes in snow
cover duration and distribution in the Black Forest mountain
range of Germany (Sauter et al., 2010). On the basis of the In-
ternational Panel on Climate Change (IPCC) A1B scenario,
this work investigated the possible regional development of
snow cover and snow duration in the Black Forest in south-
west of Germany until 2050. In this application NNs are ad-
vantageous over other approaches as it is unnecessary to as-
sume linear mixing of signals in a pixel. End members are not
required and auxiliary information such as land cover can be
easily incorporated. Once the neural network is trained, it is
computationally efficient to produce snow fraction maps on
both regional and global scales (Dobreva and Klein, 2011).
Simpson and McIntire(2001) used a recurrent NN to differ-
entiate between cloud, land, snow-covered and mixed pixels.
Dobreva and Klein(2011) proposed a study in which a multi-
layer feed-forward NN trained through back propagation es-
timates fractional snow cover (FSC) using MODIS surface
reflectance, NDSI, normalized difference vegetation index
(NDVI) and land cover as inputs. The NN was trained and
validated with higher spatial resolution FSC maps derived
from Landsat Enhanced Thematic Mapper Plus (ETM+) bi-

nary snow cover maps. The literature reviewed highlights the
following two main aspects: the most used NN models in
snow studies have been MLP and recurrent networks; in al-
most all cases remote sensing plays a major role offering lo-
cal, regional and global observations of snow, providing key
information on snowpack processes. RBFNs have been used
in few works. One of these byXiao and Chandrasekar(1996)
proposed a study in which an RBFN receives in input the
whole radar observed reflectivity profile and produces snow-
fall estimations. The results of these early works are promis-
ing and suggest further studies and applications in snowpack
processes.

Proceeding from these considerations, our study addresses
the snow thickness estimation problem by measuring the
ability of the RBFN to deal with difficulties arising from re-
duced data that do not include remote sensing data and lim-
ited instrumented sites. Under these conditions, the use of
conventional statistical and parametric models is not recom-
mended, being inapplicable and/or arbitrary (Binaghi et al.,
1999).

Considering the different configurations with which neu-
ral models are considered in the reviewed studies (recurrent,
recursive, feedforward) a key point investigated in our analy-
sis is the design of a unique configuration of the RBF model
for solving different tasks in snow thickness estimation.

3 Study area

Snow cover is essential to the survival of glaciers and per-
mafrost areas characterizing the higher mountain landscape
and ecosystems the of Central Italian Alps. The study area
(Fig. 1a) includes the mountain sector of Lombardy Region,
for a total area of about 8000 km2, located in the Central
Italian Alps. The elevation (Fig.1b) range varies between
186 m a.s.l. and 4025 m a.s.l. with an average of 818 m a.s.l.
Mean annual air temperature (MAAT) ranges between−1.05
and 13.56◦C with a mean annual lapse adiabatic rate of
0.51◦C/100 m and consequently the isotherm 0◦C located at
2663 m a.s.l. The precipitation regime is extremely variable
(ranging between 466 mm and 2254 mm) controlled mainly
by the orographic systems. Precipitation is mainly in the form
of snow above 2400 m a.s.l. between October and May but
the snow accumulation is much more variable than the pre-
cipitation regime due to wind redistribution, avalanches and
differential melting as a function of the different nature of the
surfaces.

www.the-cryosphere.net/7/841/2013/ The Cryosphere, 7, 841–854, 2013
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(a)

(b)
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Fig. 1. (a) The study region enclosed in a black rectangle with lat-
itudes (y axes) and longitudes (x axes) expressed. (b) The Digital
Elevation Model, related to the study area indicated in (a). The lo-
cations of all stations of the initial data set equipped with different
types of sensors are marked in figure (c). The locations of the 14
stations equipped with air temperature sensor, snow thickness sen-
sor and precipitation gauge, used for the final data set are colored in
red.

Fig. 1. (a)The study region enclosed in a black rectangle with lat-
itudes (y-axes) and longitudes (x-axes) expressed.(b) The digital
elevation model, related to the study area indicated in(a). The lo-
cations of all stations of the initial data set equipped with different
types of sensors are marked in figure(c). The locations of the 14
stations equipped with air temperature sensor, snow thickness sen-
sor and precipitation gauge, used for the final data set are colored in
red.

4 Problem description

Several models and approaches were used to estimate the
one-dimensional (z-direction) evolution of snow cover (e.g.,
Jordan, 1991; Melloh, 1999; Thorsen et al., 2010). When
these models use only precipitation and air temperature as
input data they require the definition of different physical
thresholds. The literature shows that there is no universally
accepted method for the evaluation of snow height that can
be applied in every condition; often the choice of the most
suitable method for the estimation of snow cover thickness
(but also of other climatic data) depends on temporal resolu-
tion, spatial resolution, data quantity and also on the region
of interest. Proceeding from these considerations we propose
a model based on the following input variables:

1. Climatic:

(a) Daily min temperature

(b) Daily mean temperature

(c) Daily max temperature

(d) Daily precipitation

(e) Cumulative rain over a given temporal intervalT

(f) Mean of measures in 1a (Daily min temperature)
within intervalT

(g) Mean of measures in 1b (Daily mean temperature)
within intervalT

(h) Mean of measures in 1c (Daily max temperature)
within intervalT .

2. Geographic:

(a) Elevation

(b) Aspect

(c) Slope.

We assume that the value forT , the time interval in which
the variables 1a–c are averaged for finding the variable h–
f, can be heuristically assessed by a trial and error proce-
dure during experiments (see Sect.7). Based on the above
listed climatic and geographic factors, we approach the snow
cover thickness estimation as both a function regression and
classification problem. In the first case, the output variable
snow cover thicknessassumes continuous values; in the sec-
ond case it is modeled as a discrete variable whose values
are labels of classes. Classes are made to correspond with
specific sub-intervals of the overall range of variability of the
snow cover thickness values. These intervals should be de-
fined in the light of the object of the study. In our context,
for the purpose of defining the classification scheme we used
the following classes which are commonly used to evaluate
permafrost distribution.

The Cryosphere, 7, 841–854, 2013 www.the-cryosphere.net/7/841/2013/
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– Class A: absence of snow cover

– Class B: 1–10 cm

– Class C: 11–90 cm

– Class D: greater than 90 cm.

Table 1 summarizes inputs and outputs for regression and
classification tasks.

5 Data set

The data set used was provided by Regione Lombardia1 and
consists of the climatic series recorded between 1987 and
2003 by 136 climatic sensors located in 64 different loca-
tions (Fig.1c). Unfortunately the series has different tempo-
ral length and in many cases large gaps. Moreover the sta-
tions were equipped in different ways with different sensors.
Consequently the derived data set was built using the spa-
tial intersection of stations equipped with the instruments
needed; this operation reduced the number of the stations
to 16. In order to have comparable data, we decided to use
as source of input data only the observations for a restricted
time period (2002–2003). With the temporal intersection we
obtained the final data set composed of 5476 observations
heterogeneously distributed in 14 different locations (Fig.1c
in red). Table2 lists the final data available for each station
distinguished by months. Looking into the details, we ob-
serve that May, July and August are the most critical months
in which 46 % of the data have gaps. Data related to input
variables 1a, 1b, 1c listed in Sect.4are instrumental measure-
ments drawn directly from the climatic database. Values of
variables listed as 1e, 1f, 1g, 1h are obtained by applying cu-
mulative and average procedures. Values of geographic vari-
ables are extracted from the digital elevation model (DEM)
downloaded free of charge from the geoportal of Regione
Lombardia and has a spatial resolution of 20 m. Aspect and
slope were computed using the dedicated tools (Spatial Ana-
lyst Tools) of the ArcGIS 10 (ArcEditor).

6 Radial basis function networks

Our study modeled snow cover thickness estimation as a neu-
ral learning task according to which the correlation between
climatic/geographic factors and snow cover thickness is in-
ferred by induction from supervised input-output pairs of
data. We adopt radial basis function networks in both regres-
sion and classification task.

1Many geospatial data (vector and raster) are available on the
geoportal related to the Lombardy regionhttp://www.cartografia.
regione.lombardia.it/geoportale.
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Fig. 2. Radial Basis Function Network architecture for function
approximation.

Fig. 2. Radial basis function network architecture for function ap-
proximation.

6.1 RBFN architecture and training algorithm

RBFNs are characterized by a very simple three layer archi-
tecture. The input layer propagates input values to a single
hidden layer. In the output layer, each neuron receives a lin-
ear combination of the output of hidden neurons. In the case
of one output node, the global nonlinear function computed
by the network can be expressed as a linear combination of
M basis functions associated with each hidden layer neuron.
In the formula we have

f (x) =

M∑
i

wjhj (x), (1)

wherex = [x1, ..,xk]
T is the K-dimensional input vector,wj

are the weighting coefficients of the linear combination and
hj (x) represents the output of the Gaussian shaped basis
function, with scale factorrj , associated with thej -th neuron
in the second layer. The response ofj -th neuron decreases
monotonically with the distance between the input vectorx

and the center of each functioncj = [c1j , . . . ,ckj ]:

hj (x) = exp

(
−

||x − c||2

rj

)
. (2)

During the training phase, the RBFN learns an approxi-
mation for the true input–output relationship based on a
given training set of examples constituted byN input-output
pairs{xi,yi}, i = 1,2, . . . ,N . FollowingMoody and Darken
(1989), the training scheme is two-phased:

1. phase one is unsupervised and decides values for
cj ,j = 1, . . . ,M,

2. phase two solves a linear problem to find values for
wi, i = 1, . . . ,M.

www.the-cryosphere.net/7/841/2013/ The Cryosphere, 7, 841–854, 2013
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Table 1. Input and output variables used in regression and classification tasks.

Features Model Output Setting

1a: Daily min temperature

Regression
Real value
[0cm–400cm]

1b: Daily mean temperature
1c: Daily max temperature
1d: Daily precipitation
1e: Cumulated rain onT
1f: Mean of measures in1aonT

Classification

A: absence of snow cover
B: 1cm–10cm
C: 11cm–90cm
D: greater than 90cm

1g: Mean of measures in1bonT

1h: Mean of measures in1conT

2a: Elevation
2b: Aspect
2c: Slope

Table 2. Amount of data in the final dataset. The division into months and altitude has been applied to emphasize the diversity and incom-
pleteness of the data structure.

Months

Station m a.s.l. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot

Branzi 830 23 25 28 0 0 56 0 0 60 0 0 9 201
Grosio 1220 54 53 31 0 0 55 0 0 60 0 60 42 355
Val Torreggio 1350 17 28 35 30 0 60 0 0 60 31 30 50 341
Val Dorena 1575 46 22 7 0 0 0 0 0 0 4 29 31 139
Laghi di Chiesa 1596 59 56 62 60 2 59 0 0 60 62 59 61 540
Alpe Costa 1672 62 56 62 60 21 59 0 0 60 62 60 62 564
Piazzo Cavalli 1719 62 56 62 60 18 59 0 0 60 62 60 62 561
Monte Masuccio 1770 17 28 31 30 0 30 0 0 30 29 30 31 256
Carona 1955 31 27 30 30 1 30 0 0 30 40 60 52 331
Funivia Bernina 2014 62 56 62 59 32 0 62 62 7 62 60 62 586
Saviore dell’Adamello 2017 0 0 0 0 0 0 31 31 1 28 30 0 121
Cam Boer 2114 62 56 62 52 24 0 46 38 20 55 55 62 532
Monte Trela 2150 55 56 62 60 0 0 59 50 0 62 60 57 521
Isola Persa 2700 31 28 31 30 31 30 31 31 30 33 60 62 428

Tot 581 547 565 471 129 438 229 212 478 530 653 643 5476

The configuration of the model requires two user parame-
ters:

1. the numberM of first level local processing units and

2. the number p of the p-means heuristic (Moody and
Darken, 1989), used to determine the scale factorrj ,
j = 1, . . . ,M of basis functions associated with first
level processing units.

The second phase, having model parametersM,
cj ,j = 1, . . . ,M, rj ,j = 1, . . . ,M known, computes
wi, i = 1, . . . ,M minimising the difference between pre-
dicted output and truth by least mean squares, computed
through the pseudo inverse. In formula

w = (HT H)−1HT y = H+y, (3)

where

H =


h1(x1) h2(x1) · · · hM(x1)

h1(x2) h2(x2) · · · hM(x2)
...

...
. . .

...

h1(xN ) h2(xN ) · · · hM(xN )

 (4)

and y = [y1, ..yN ] is the vector of output data,w =

[w1, ..wM ]
T are second level weights. The trained network

is tested using a proper set of examples never seen during
training.

6.2 Computation: regression and classification

This work is focused on the problem of learning an input-
output mapping from a set of examples that can be re-
garded as an approximation of a multidimensional function.
We investigated the behavior of RBFN when coping with

The Cryosphere, 7, 841–854, 2013 www.the-cryosphere.net/7/841/2013/
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multidimensional function estimation modeled in the two
different settings: regression and classification.

In the regression configuration, the RBFN learns from
input-output pairs constituted as usual, by input patterns rep-
resented by a vector of measurements and output values rep-
resenting numerical function values. The network is config-
ured with a single output neuron.

We now formally define the components involved in the
regression task. The set� is composed of all available data
coupled with the relative truth value:

� = {(xi,yi), i = 1, . . . ,N}, (5)

wherexi is a vector containing the input variables discussed
in Sect.4, yi is the truth value related toxi andN is the num-
ber of available data. The set� is then split into two parti-
tions, namely the training set TrS� and the test set TeS�. If
the regression task is arbitrary due to the poor reliability of
the input data, the multidimensional function estimation can
be conveniently modeled as a classification identifying inter-
vals of the function codomain and making them correspond
with a predefined class. The formal description of the model
for classification can be easily obtained from the regression
formalization, considering the valueyi in (5) as a label de-
scrying membership in each of the defined classes. The net-
work is configured with an output layer having a number of
neurons equal to the number of classes. During training, in-
put pattern vectors are made to correspond with predefined
class labels, exemplifying a hard mapping at a lower gran-
ularity with respect to regression, with mutually exclusive
classes.

7 Experiments

Our experiments adopted different evaluation indexes. The
agreement between reference truth and classification results
was analyzed by means of the confusion matrix and derived
accuracy indexes (Congalton, 1991). A confusion matrix lists
the values of the reference data in the columns and the values
of the classified data in the rows. The main diagonal of the
matrix lists the correctly classified pixels.

– Overall accuracy (OA): OA provides a general indica-
tion of the classifier’s performance. The OA is equal
to the ratio between the number of samples correctly
classified, summing the values in the main diagonal of
the confusion matrix, and the total number of observed
samples.

– Producer accuracy (PA): PA measures the omis-
sion(exclusion) errors of the classifier. It is computed
for each class. The PA for classith is equal to the ratio
between the number of samples correctly classified in
classith and the number of reference samples belong-
ing to classith (columnith total).

– User accuracy (UA): UA measures the commis-
sion(inclusion) errors of the classifier. It is computed
for each class. The UA for classith is equal to the ra-
tio between the number of samples correctly classified
in classith and the total number of samples classified in
classith (row ith total).

The performance evaluation obtained using these indexes is
complemented by the Cohen’s kappa coefficient believed to
be a more robust measure that takes into account the agree-
ment occurring by chance (Cohen, 1960).

The kappa formal definition is

K =
Pr(a) − Pr(e)

1− Pr(e)
, (6)

where

Pr(a) =

∑r
i=1Xi,i

N
(7)

Pr(e) =

∑r
i=1Xi,+X+,i

N2
(8)

and

– r is the number of rows and columns in the confusion
matrix;

– N is the total number of observations;

– Xi,j is the observation in rowi and columnj ;

– Xi,+ is the marginal total of thei-th row;

– X+,i is the marginal total of thei-th column.

Intuitively, Pr(a) is the proportion of judgments consistent
among the classifier and the reference data and Pr(e) is
the proportion of agreements that would be observed ran-
domly classifying. In contrast to the overall accuracy, Co-
hen’s kappa also takes non-diagonal elements into account.
To measure the magnitude of network mistakes the root
mean square error (RMSE) index and its normalized version
NRMSE are used in combination with the mean absolute er-
ror (MAE). The formal definition of these index is given be-
low:

RMSE=

√
1

n

∑
(ŷi − yi)2 (9)

NRMSE=
RMSE

MAX (yi)
× 100 (10)

MAE =
1

n

∑
|ŷi − yi |, (11)
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where ŷi is the estimated value. The overall data set com-
posed of 5476 patterns was randomly split in the propor-
tion of 2

3, 1
3 for training (TrS�) and test (TeS�), respec-

tively. The radial basis function network configured for the
tasks described above was applied to solve the problem of
estimating snow cover thickness. The experiments focused
on the parameters calibration process. A sensitivity analy-
sis was conducted varying the input parameters described in
Sect.6.1. For the training phase focused on centroids identifi-
cation, the K-means clustering algorithm was compared with
a faster approach based on the random choice ofM points
in the input space. These two methods showed comparable
performances. However, as the K-means algorithm imposes
a small number of centroids to limit the computational com-
plexity, the random choice strategy was preferred.

7.1 Regression results

First of all, we present the results obtained using the RBFN
configured for the regression task. The RBFN receives in in-
put the vector of measurements derived from the set of fea-
tures (input variables) described in section4. Concerning the
network architecture, the input layer has 11 neurons equal
to the number of features and the output layer has 1 neuron
representing the predicted snow height value. Several con-
figurations of the RBFN were considered varying the tempo-
ral windowT used in the computation of features1e, 1f, 1g
and1h, which assumed values ranging from 10◦C to 45◦C.
For each window size, different RBFN configurations were
considered distinguished by the different numberM of basis
functions which assumed values 100, 250, 500, 600, 750. The
RBFN network showed the best behavior setting the temporal
window dimension at 45. Table3 shows the results obtained
in this configuration, varying the neural internal parameter
M. Results are expressed in terms of RMSE, NRMSE and
MAE indexes and are obtained training and testing the net-
work with five different pairs TrS� and TeS�, randomly gen-
erated from the overall dataset� and averaging the individ-
ual indexes obtained. Above the value ofM = 500 the error
indexes significantly decrease for each incremental increase
in M. After the valueM = 500 the error indexes as a function
of M show an asymptotic behavior. We than chose than this
value as a reference for an optimize balancing between com-
putational cost, training accuracy and generalization power.
For an in-depth analysis of how the snow cover thickness was
modeled, Fig.3 plots the estimated values versus truth values
which are sorted in ascending order. Figure5a and b show
the mean weekly error of the modeled snow cover with re-
spect to the weekly mean of the liquid precipitation (rain) of
two automatic weather stations (AWS) representative of the
lower altitude (ST1) and the higher altitude (ST2) for 2002
and 2003, respectively. There is no significant relationship
between the measured liquid precipitation and the errors al-
though there is a general increase in errors in late Fall and
Spring. At that time the greatest differences of snow height

Table 3.Regression results varying the number of centroidsM, ex-
pressed in terms of RMSE, NRMSE and MAE.

# Centroids RMSE NRMSE MAE

100 26.22 6.60 % 15.18
250 22.31 5.61 % 12.03
500 18.20 4.58 % 9.58
600 17.63 4.44 % 9.28
750 16.99 4.27 % 8.74

at different altitude occur because precipitation is in the form
of snow only at higher elevation. Nevertheless, some error
peaks (like the first week of 2002 and 2003 and the week 21
of 2003) are clearly not related to the data input. The RMSE
values obtained indicate an acceptable mean disagreement
between reference and predicted values. However, we have
to consider that different intervals within the snow height
range have different relevance in the environmental analysis,
and errors computed on these intervals become unacceptable
making arbitrary numerical predicted values. We proceeded
to model snow cover thickness estimation as a classification
task.

7.2 Classification results

The criteria with which we introduce classes subdividing
snow height intervals, are derived from the idea of using them
within a more general study concerning permafrost. The
modeling of permafrost is outside the scope of the present
paper which is focused on snow depth. Indeed, during the
winter, the ground suffers from the extremely low air tem-
perature in areas where the snow is absent (class A), while
class B (1–10 cm) has been distinguished from C (11–90 cm)
because a certain percentage of radiation in class B can reach
the ground surface, in addition to the more limited insula-
tion of the thinner snow with respect to the air temperature.
Above 90 cm (class D) the insulation of the snow can be con-
sidered almost total.

For this task the network architecture is structured as fol-
lows: the input layer has 11 neurons equal to the number of
features and the output layer has 4 neurons equal to the num-
ber of classes. Several configurations of the RBFN were con-
sidered varying parametersT andM as described for regres-
sion in the task. Also in this case, the RBFN showed the best
behavior setting the temporal window dimensionT at 45 and
the number of centroidsM equal to 500. Results obtained
with this configuration are shown in Table4. The RBFN per-
forms classification with a good level of accuracy, showing
an OA equal to 85.6 % and a Cohen’s kappa coefficient equal
to 79.5 %. In more detail, the crucial class A, representing
the absence of snow cover, has the highest performance ex-
pressed in terms of both PA and UA, with values of 95.05 %
and 92.47 %, respectively. This result can be explained by
the fact that feature values are highly representative for
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Table 4. Confusion matrix for the radial basis function network
classifier evaluated on the overall test set TeS�; Class A: absence of
snow cover, Class B: 1–10 cm, Class C: 11–90 cm, Class D: greater
than 90 cm.

Reference data

Class A B C D Tot U UA
data

A 442 31 5 0 478 92.47 %
B 21 377 76 4 478 78.87 %
C 2 92 603 15 712 84.69 %
D 0 0 17 141 158 89.24 %
Tot P 465 500 701 160 – –
PA 95.05 % 75.40 % 86.02 % 88.12 % – –

Total accuracy: 85.5969 % (1563 hit, 263 miss, 1826 total)
Total error: 14.4031 %
KAPPA value: 79.5523 %
KAPPA std.err: 0.0001

Table 5. Confusion matrix for the radial basis function network
classifier evaluated on the test set TeS� with elevation below
1000 m; Class A: absence of snow cover, Class B: 1–10 cm, Class C:
11–90 cm, Class D: greater than 90 cm.

Reference data

Class A B C D Tot U UA
data

A 38 4 0 0 42 90.48 %
B 0 10 3 0 13 76.92 %
C 0 0 0 0 0 //
D 0 0 0 0 0 //
Tot P 38 14 3 0 – –
PA 100.00 % 71.43 % 0 % // – –

Total accuracy: 87.2727 % (48 hit, 7 miss, 55 total)
Total error: 12.7273 %
KAPPA value: 69.1259 %
KAPPA std.err: 0.0077

Table 6. Confusion matrix for the radial basis function network
classifier evaluated on the test set TeS� with elevation between
1000 and 1300 m; Class A: absence of snow cover, Class B: 1–
10 cm, Class C: 11–90 cm, Class D: greater than 90 cm.

Reference data

Class A B C D Tot U UA
data

A 39 0 0 0 39 100.00 %
B 2 67 3 0 72 93.06 %
C 0 2 4 0 6 66.67 %
D 0 0 0 0 0 //
Tot P 41 69 7 0 – –
PA 95.12 % 97.10 % 57.14 % // – –

Total accuracy: 94.0171 % (110 hit, 7 miss, 117 total)
Total error: 5.9829 %
KAPPA value: 88.4322 %
KAPPA std.err: 0.0017

Table 7. Confusion matrix for the radial basis function network
classifier evaluated on the test set TeS� with elevation between
1300 and 1600 m; Class A: absence of snow cover, Class B: 1–
10 cm, Class C: 11–90 cm, Class D: greater than 90 cm.

Reference data

Class A B C D Tot U UA
data

A 96 7 0 0 103 93.20 %
B 3 96 23 0 122 78.69 %
C 0 17 115 0 132 87.12 %
D 0 0 0 0 0 //
Tot P 99 120 138 0 – –
PA 96.97 % 80.00 % 83.33 % // – –

Total accuracy: 85.9944 % (307 hit, 50 miss, 357 total)
Total error: 14.0056 %
KAPPA value: 78.8497 %
KAPPA std.err: 0.0008

Table 8. Confusion matrix for the radial basis function network
classifier evaluated on the test set TeS� with elevation between
1600 and 1900 m; Class A: absence of snow cover, Class B: 1–
10 cm, Class C: 11–90 cm, Class D: greater than 90 cm.

Reference data

Class A B C D Tot U UA
data

A 114 8 1 0 123 92.68 %
B 14 95 13 0 122 77.87 %
C 0 27 183 0 210 87.14 %
D 0 0 0 0 0 //
Tot P 128 130 197 0 – –
PA 89.06 % 73.08 % 92.89 % // – –

Total accuracy: 86.1538 % (392 hit, 63 miss, 455 total)
Total error: 13.8462 %
KAPPA value: 78.6163 %
KAPPA std.err: 0.0006

discriminating between “presence of snow” or “absence of
snow”. The worst case is assigned to class B with PA equal
to 75.40 % and UA equal to 78.87 %. This result can be corre-
lated with the narrow range of snow cover thickness assigned
to this class. Class D is the least represented, but since it is
defined with a large interval, good performances were found
in the experiments. Tables 5–10 show results obtained by par-
titioning the global results shown in Table4 for different lev-
els of elevation. Inevitably results of certain classes show low
statistics due to the studied phenomenon. The second class is
confirmed critical with the exception of the results in Table6
related to elevation between 1000 and 1300 m. Misclassifica-
tion errors are mostly committed between class B and class C
at all different elevations considered, as already seen in Ta-
ble4.
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Table 9. Confusion matrix for the radial basis function network
classifier evaluated on the test set TeS� with elevation between
1900 and 2200 m; Class A: absence of snow cover, Class B: 1–
10 cm, Class C: 11–90 cm, Class D: greater than 90 cm.

Reference data

Class A B C D Tot U UA
data

A 155 12 4 0 171 90.64 %
B 2 109 34 4 149 73.15 %
C 2 46 250 9 307 81.43 %
D 0 0 13 53 66 80.30 %
Tot P 159 167 301 66 – –
PA 97.48 % 65.27 % 83.06 % 80.30 % – –

Total accuracy: 81.8182 % (567 hit, 126 miss, 693 total)
Total error: 18.1818 %
KAPPA value: 73.6529 %
KAPPA std.err: 0.0004

Table 10. Confusion matrix for the radial basis function network
classifier evaluated on the test set TeS� with elevation above
2200 m; Class A: absence of snow cover, Class B: 1–10 cm, Class C:
11–90 cm, Class D: greater than 90 cm.

Reference data

Class A B C D Tot U UA
data

A 0 0 0 0 0 //
B 0 0 0 0 0 //
C 0 0 51 6 57 89.47 %
D 0 0 4 88 92 95.65 %
Tot P 0 0 55 94 – –
PA // // 92.73 % 93.62 % – –

Total accuracy: 93.2886 % (139 hit, 10 miss, 149 total)
Total error: 6.7114 %
KAPPA value: 85.6978 %
KAPPA std.err: 0.0019

7.3 Snow cover mapping

In order to exploit the potential of RBFN in estimating snow
cover distribution, addressed, the production of snow cover
maps which offer a synoptic view of the phenomenon un-
der investigation. This task was tackled by proceeding in the
spatial interpolation of input climatic variables and then by
using the RBF network to compute the corresponding pre-
dicted snow cover value for each input pattern including cli-
mate and geographic input variable. The spatial interpola-
tion of temperatures is accomplished considering the varia-
tion of this parameter as a function of the elevation (Dodson
and Marks, 1997). With reference to a generic cellxy, steps
were taken to homogenize the known values in terms of el-
evation. Homogenization was obtained by performing linear
regression between elevation and temperature values. Setting
a reference evaluation value, each known temperature value
was shifted as a function of the angular coefficient of the lin-

: 13

Fig. 3. Estimated snow cover thickness versus measured values in
ascending order.Fig. 3. Estimated snow cover thickness versus measured values in
ascending order.

ear dependence law. Subsequently spatial interpolation was
performed by applying the inverse square distance method
obtaining temperature values for each grid unit. These values
were finally modified reporting them at the original elevation.
The spatial interpolation of precipitation patterns is a critical
aspect requiring domain dependent complex analysis. Our
study adopted a simple and easily controlled method based
on Voronoi tessellation, implicitly assuming that the known
values are representative of a given area around the point
of measurement (Kay and Kutiel, 1994). We refrained from
conducting a more sophisticated analysis that could be arbi-
trary in our context. Nine weeks were chosen based on their
relevance for permafrost evolution (aggradation/degradation)
and their variability. For these reasons, a higher frequency of
examined weeks was chosen for the end of the spring (dur-
ing the melting period). For each of the nine weeks, a snow
map was generated with each grid element representing the
neural-computed snow cover thickness.

An indirect validation procedure was accomplished com-
paring our results with those obtained by a snow mapping
algorithm based on the normalized difference snow index
(NDSI) derived from Landsat imagery. The NDSI-based
snow algorithm together with its physical assumptions and
derived decision rules for producing binary snow cover maps
is described in (Dozier, 1989). To proceed in the comparison,
neurally computed snow cover thickness values were bina-
rized heuristically setting the threshold to a value of 5 cm.
This value is a threshold commonly used to define the days
with snow on the ground (snow duration) (Hantel and Hirtl-
Wielke, 2007). Comparative results have been organized in
a confusion matrix in which the classes considered are the
presence and absence of snow. Results obtained from NDSI-
based snow algorithm serve as of reference data. Table11re-
ports comparative results in terms of OA (overall accuracy),
UA (user accuracy) and PA (producer accuracy) indexes.

In general, the RBFN maps overestimate the presence of
snow with respect to the NDSI maps because they reflect
the network of AWS used for the training and the micro-
climatic conditions around them. This means that during
the melting season and early autumn when the snow dis-
tribution suffered more intensively from the site conditions
and it is extremely inhomogeneous, the snow remains more
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Table 11.Summary of the RBFN results.

Data OA Presence of Snow Absence of Snow
PA UA PA UA

30-April-02 76.03 % 88.20 % 64.94 % 68.25 % 89.66 %
28-May-02 64.03 % 78.36 % 39.49 % 59.41 % 89.04 %
22-Oct-02 62.94 % 69.81 % 20.72 % 62.11 % 93.55 %
3-Dec-02 62.15 % 62.73 % 71.60 % 61.68 % 51.80 %
11-Feb-03 83.31 % 87.20 % 84.18 % 78.79 % 82.61 %
25-Feb-03 81.96 % 88.35 % 79.20 % 75.72 % 86.13 %
11-March-03 85.29 % 84.72 % 89.91 % 86.64 % 80.15 %
1-April-03 82.10 % 86.67 % 78.99 % 78.19 % 86.11 %
29-April-03 79.99 % 88.70 % 70.61 % 74.28 % 90.42 %

Mean 75.31 % 81.64 % 66.63 % 71.68 % 83.27 %
Std 9.55 % 9.43 % 22.49 % 9.31 % 12.49 %
Max 85.29 % 88.70 % 89.91 % 86.64 % 93.55 %
Min 62.15 % 62.73 % 20.72 % 59.41 % 51.80 %

14 :

Fig. 4. Mean Absolute Error and standard deviation in regression
task as a function of elevation ranges.Fig. 4. Mean absolute error (MAE) and standard deviation in re-

gression task as a function of elevation ranges.

probable on the flat point where AWS are located rather than
in the other surrounding areas (generally except for northern
exposed slopes). Table12 shows OA values distinguished
by different elevation ranges. Results obtained are gener-
ally good at low elevation (< 1600 m); at higher elevation,
above 1900 m a.s.l., the accuracy decreases below 70 % dur-
ing the melting season and at the beginning of Autumn, with
a general underestimation. A different result was achieved
between 1600 m and 1900 m, where poor results were ob-
tained only during the winter core due to a problem of overes-
timation. The overall results obtained from the mapping pro-
cedure tallied in general with regression and classification re-
sults (see Figs. 3 and 4). Figure6 shows the map produced by
the RBF network when processing data for the week 11-03-
2003. The overlap of this map, hardened with a 5 cm thresh-
old, with the corresponding NDSI map is shown in Fig.7. A
snow scientist examined the maps in light of the topographic
features of the study areas, and judged the results satisfac-
tory.

7.4 Comparison analysis

A comparison analysis was developed for a quantitative eval-
uation of the advantages of the RBFN method with re-
spect to conventional widely used spatial interpolation tech-
niques when dealing with critical situations originated by
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Fig. 5. Mean Absolute Error (MAE) in a regression task as a func-
tion of weeks during the years 2002 (a) and 2003 (b) compared with
the mean weekly liquid precipitation measured close at the altitudi-
nal limits of the data set: ST1 485 m a.s.l. and ST2 2150 m a.s.l.

Fig. 5.Mean absolute error (MAE) in a regression task as a function
of weeks during the years 2002(a) and 2003(b) compared with the
mean weekly liquid precipitation measured close at the altitudinal
limits of the data set: ST1 485 m a.s.l. and ST2 2150 m a.s.l.

lack of data and limited non-homogeneously distributed in-
strumented sites. Among the various techniques of spatial
interpolation of hydrologic data, we adopted IDW and B-
Spline that are widely diffused and of limited complexity
(Tabios and Salas, 1985). We avoided the use of kriging tech-
niques considering that the reduced sampling sites, the non-
stationary character of the process under examination and the
difficulty of configuring the variogram, can make the anal-
ysis arbitrary (Leuangthong et al., 2004). The analysis was
conducted by comparing the two conventional techniques
with the RBFN model. The binary maps produced by the
NDSI decision rules served as of reference data. The IDW-
based spatial interpolation was configured with a weighting
power equal to 2 and the second method adopted a Cubic
B-spline. We chose three weeks among the weeks in which
the satellite images had a very low clouds coverage. In par-
ticular, we selected two weeks representing the full winter
conditions and one spring week at the onset of snow melting
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Table 12.Overall accuracy for 6 elevation ranges.

Date Overall accuracy
0–1000 1000–1300 1300–1600 1600–1900 1900–2200> 2200

30-April-02 99.95 % 94.69 % 99.82 % 82.73 % 56.13 % 68.14 %
28-May-02 99.98 % 98.98 % 99.99 % 91.41 % 47.42 % 42.61 %
22-Oct-02 99.30 % 96.25 % 99.14 % 91.94 % 58.70 % 37.15 %
3-Dec-02 70.60 % 51.78 % 50.82 % 55.14 % 74.42 % 61.33 %
11-Feb-03 99.67 % 91.98 % 93.60 % 67.60 % 60.77 % 87.44 %
25-Feb-03 99.98 % 96.32 % 98.79 % 72.89 % 46.92 % 86.17 %
11-March-03 99.93 % 97.40 % 94.43 % 73.35 % 69.26 % 86.51 %
1-April-03 99.78 % 99.80 % 99.48 % 84.02 % 65.42 % 77.13 %
29-April-03 99.97 % 98.31 % 99.92 % 91.96 % 61.96 % 71.93 %

Mean 96.57 % 91.72 % 92.89 % 79.01 % 60.11 % 68.71 %
Std 9.74 % 15.16 % 15.96 % 12.73 % 9.18 % 18.66 %
Max 99.98 % 99.80 % 99.99 % 91.96 % 74.42 % 87.44 %
Min 70.60 % 51.78 % 50.82 % 55.14 % 46.92 % 37.15 %

16 :

Fig. 6. Display on a logarithmic scale of the snow map produced by
RBFN.Fig. 6.Display on a logarithmic scale of the snow map produced by

RBFN.

(29 April 2003). Both the full winter conditions and the
early melting are crucial for several environmental issues, but
mainly, for permafrost distribution because the snow-free ar-
eas in winter (above all at altitudes higher than 2200 m a.s.l.
where air temperature are several degrees below 0◦C) are fa-
vorable for permafrost aggradation/conservation because the
ground can be deeply frozen. On the other hand, the areas
where snow melting is late-lying (and therefore later than the
end of April, in this area) is also favorable for permafrost
formation because positive air temperatures are prevented by
the late snow cover.

Consistent with the procedure described in the previous
section, maps produced by all the three methods were bi-
narized setting the threshold value to 5 cm. Table13 shows
the OA values obtained by RBFN, IDW and Spline, distin-
guished by different elevation ranges consistently with the

: 17

Fig. 7. Overlapping of maps produced by the RBFN Network
and NDSI. Considering the RBFN map as the first result and the
NDSI map as the second, colors have the following meaning:
Blue=PS-PS; Green= AS-AS; Yellow= PS-AS; Red=AS-PS, with
PS=Presence of Snow and AS=Absence of Snow

Fig. 7. Overlapping of maps produced by the RBFN Network
and NDSI. Considering the RBFN map as the first result and
the NDSI map as the second, colors have the following meaning:
Blue = PS-PS; Green = AS-AS; Yellow = PS-AS; Red = AS-PS, with
PS = Presence of Snow and AS = Absence of Snow

analysis presented in the previous section. The OA values
of the RBFN are always much higher than those obtained
by the two conventional methods except between 1900 m
and 2200 m a.s.l. in fully winter conditions when the spline
algorithm performs slightly better. This exception is due
to the higher number of weather stations available in this
range of altitude. In fact, RBFN is particularly efficient,
where the original dataset is poor as at altitude higher than
2200 m a.s.l. where the accuracy of RBFN is 72 % against
values lower than 60 % of the two other methods. This result
is particularly important because in all the mountain areas
there are fewer weather stations at higher elevations where
permafrost and glaciers are much more abundant.
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Table 13.Comparison analysis among IDW, B-Spline and RBF: the results are presented in terms of overall accuracy for 6 elevation ranges.

Overall accuracy Mean Var

Date Methods 0–1000 1000–1300 1300–1600 1600–1900 1900–2200> 2200

11-Feb-03 RBF 99.67 % 91.98 % 93.60 % 67.60 % 60.77 % 87.44 %83.51 % 15.62 %
DW 7.46 % 12.90 % 15.45 % 29.50 % 59.86 % 85.58 %35.12 % 31.10 %
Spline 85.44 % 53.35 % 45.38 % 52.01 % 67.17 % 74.20 %62.92 % 15.30 %

25-Feb-03 RBF 99.98 % 96.32 % 98.79 % 72.89 % 46.92 % 86.17 %83.51 % 20.63 %
IDW 7.47 % 9.68 % 11.07 % 17.95 % 41.86 % 80.64 %28.11 % 28.66 %
Spline 84.64 % 50.03 % 42.46 % 44.18 % 53.45 % 70.85 %57.60 % 16.68 %

29-April-03 RBF 99.97 % 98.31 % 99.92 % 91.96 % 61.96 % 71.93 %87.34 % 16.38 %
IDW 60.41 % 35.13 % 30.97 % 27.23 % 33.62 % 58.42 %40.96 % 14.56 %
Spline 49.92 % 46.93 % 40.46 % 38.76 % 39.39 % 53.46 %44.82 % 6.17 %

8 Conclusions

A method for snow cover thickness estimation is proposed
within the context of a Permafrost studies in an alpine envi-
ronment, based on the use of a radial basis function network
capable of moving from regression and classification tasks
which are usually complementary for understanding complex
environmental phenomena at different levels of precision. As
seen in the experimental context, the learning and approxi-
mation capabilities of the network allow the user to overcome
the limitations of available data characterized by such criti-
cal aspects as the minimal set of climatic and topographic
data and the reduced set of non-homogeneously distributed
instrumented sites. The comparison analysis conducted be-
tween IDW, Spline interpolation techniques and the proposed
model demonstrates the superiority of the neural implemen-
tation with respect to conventional deterministic approaches.
The overall quantitative and qualitative evaluations of the ex-
perimental work substantiates the general claim that a va-
riety of problems in hydrology and water resources studies
benefit from the use of neural techniques, demonstrating in
particular the performances of the RBFN model in the spe-
cific field of snow cover thickness estimation where its use
is still little known. The results of our experiments suggest
that RBFN approximation can provide a valuable solution
for studies conducted in all mountain areas at high elevations
where there are fewer weather stations and where permafrost
and glaciers are more prevalent.
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