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Abstract. The influence of horizontal and vertical inhomo- radiation does not penetrate deep into a snowpack and, there-
geneity of snow surfaces on solar light reflectance is studiedore, does not contain information on the properties of snow
using the radiative transfer theory (RTT). We compared 1-Dfrom the depths above 1-5cm depending on the size of parti-
RTT and 2-D RTT and found that large errors are producedcles and the wavelength (Kokhanovsky and Rozanov, 2012).
if the 1-D RTT is used for the calculation of the snow re- To avoid this problem, recently measurements along vertical
flection function (and, therefore, also in the retrievals of thesnow walls have become popular (see, e.g. Fig. 1 in Matzl
snow grain radii) in 2-D measurement geometries. Such 2-Dand Schneebeli, 2006; and Fig. 2 in Painter et al., 2007). Also
geometries are common in the procedures for the determimeasurements along the length of cylindrical holes in snow
nation of the effective snow grain radii using near-infrared are used (Barker and Korolev, 2010; Arnaud et al., 2011).
photography and spectroscopy of vertical snow walls. In par- In most of cases (see e.g. Kokhanovsky et al., 2011) the
ticular, we have considered three cases for the numerical calt-D transfer theory valid for plane-parallel slabs is used for
culations: (1) the case with no black film; (2) the case with athe interpretation of optical measurements and determination
black film at the pit's bottom; (3) the case with a black film of snow grain sizes. Although there could be some influ-
at the pit’s bottom and also at one of the vertical snow walls.ences of 3-D effects (e.g. shadowing from the snow walls,
enhancement of brightness, etc.) on corresponding measure-
ments. For the measurements involving 2-D and 3-D geome-
tries (e.g. along snow walls), the approach based on the cor-
1 Introduction relation of the reflectance and the snow grain size or the snow
specific surface area (see e.g. Matzl and Schneebeli, 2006) is
Optical measurements are commonly used to derive sNoWsed. This is because more quantitative approaches based on
microphysical parameters from plane-parallel snow layersie solution of radiative transfer equation in 2-D and 3-D ge-
(Kokhanovsky et al., 2011). In particular, snow grain size gmetries have not been developed in applications relevant to
is obtained from near-infrared (NIR) measurements (in theoptics of vertical snow walls.
spectral range 865-1240 nm) of intensity of solar light re- " The aim of this work is twofold. Firstly, we develop soft-
flected from flat snow layers. The corresponding retrieval al-yare, which can be used for studies of 3-D effects in snow
gorithms are based upon the physical phenomenon of the enynq, secondly, we study the corresponding effects using nu-
hancement of light absorption by larger ice grains (and as gnerical simulations. Only optical snow parameters (extinc-
consequence, a smaller light reflectance for snow layers withion, coefficient, single scattering albedo, and phase function)
larger grains). The main problem with such a method is thatyre ysed in the analysis. This makes it possible to perform a
only upper snow layers can be observed. The informationsy, gy with greater generality. The link to the snow grain size

on the snow microphysical parameters and snow pollutionang concentration of pollutants is obvious (Kokhanovsky et
in deeper layers cannot be retrieved because of high absorgy  2011).

tion of NIR radiation by snow grains. As a matter of fact, NIR
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The paper is structured as follows. In the next section we
introduce the radiative transfer equation and boundary con-
ditions relevant to the studies of light propagation in snow.
The numerical algorithm developed for the solution of the
corresponding integro-differential radiative transfer equation
in the 2-D geometry is described in Sect. 3. The results o
numerical experiments are reported in Sect. 4. The present
study can be used to design and interpret real-world experi-
ments relying on the spectrometry of vertical snow walls.

Reflecting surface with albedo A(X)

Fig. 2. The 2-D half-region [0X] x [0, H] with the wide rectan-
gular pit [0, R] x [0, H] and the directior2,, {6, ¢} of the radiation
ransfer.

The functionl (x, z, 6, ¢) depends on the spatial coordi-
natesx, z and angle®, ¢, defining direction® of the radi-
ation transfer, see Fig. 2. The first term in Eq. (1) gives the
change of intensity in the directio and the second term
represents the extinction of radiation by the medium. The in-
It is assumed that the surface of the snow is flat (no sastrugitegral describes the re-radiation of scattered light, here inci-
no microstructures on the snow surface). Let us assume thatent light has the directio®’(¢’, ") and re-radiated light
there is a pit with the widthD, the lengthL and the depth  has the directio® (0, ¢).
H in the snowpack with the widthX2 and the heighH, see The pit [0, R] x [0, H], R=D/2, is filled by air,
Fig. 1. The pit is covered by a sheer film to convert the di- whereas the medium out of the pit is snow. Then it follows
rect solar light to diffuse one. Reflected radiation is registeredthat for the extinction coefficient:
along the line AB on the vertical wall of the pit and along the )
line CS at the top of the pit. o, ) = { o asx < R @
. .. . . . . . . ’ - snow ’

To find radiation intensity in this region, we introduce the o asx > R
coordinate system with the origin at the centre point O at
the pit's bottom, see Fig. 1. We assume that the lergth for the single scattering albedo:
(10-15m) is larger than the typical widih (about 1-3 m).

2 Radiative transfer equation and boundary conditions

Therefore, the radiation intensity near the central plane0 _ wg" asx < R 3
of the pit depends only on the spatial coordinateand z. @olx, 2) = wy"z) asx > R’ 3)
The dependence on the third coordinate can be neglected. So

the problem can be considered in the 2-D framework in thefor the scattering phase function:

planey =0. This reduces calculations as compared to the 3-D

modelling. Moreover, the region is symmetrical with respect ., P asx < R

to the planex =0, see Fig. 1, hence only the half-region #(*:2.0.9.0".¢") = {psnowan R 4)

[0, X] x [0, H] instead of the regiofi—X, X] x [0, H]
can be considered, see Fig. 2.

The radiative transfer equation (RTE) for the monochro-
matic radiation intensity takes the following form in the
case under consideration:

Note, the single scattering albedg"*"(z) is considered
as a piecewise function of depth, which describes a layered
snowpack; the special cas§"*"(z) = const corresponds to
a homogeneous snow layer.
o1 ™ 2 One needs to define the boundary conditions for Eq. (1).
ag T o DI 2,0,0) —olx, ) eolx, z)/dé/ sing’ /dw/ 1) The intensity of the radiation entering the region is defined
0 0 on each boundary at the corresponding angular intervals, see
I(x,2,60,¢) p(x,2,0,0,0,¢)=0. Fig 3. The bottom boundary= 0 is a Lambertian surface
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We will study three problems depending on albedlp
at the left snow wall and the albeda(x) at the bot-
tom. First, underd; =1, A(x) = AS"%W > 0 one has the
pit with no black film. Second, undeA; =1, A(x) =
{ 0 asx <R,

T

the black film lies only at the pit's bot-

0<6 ocr ASNOWe|sg
| P2<p372 tom. Third, underA; =0 and A(x) = Asaow aSZI;R,
the black film covers both the bottom and the vertical plane

x =0.
Relative intensities of reflected radiation at the snow sur-
face in the direction®* and**:

0
0 X

Fig. 3. The 2-D region and directions of entering radiation. I(z) = I(R, z, )/ S0, fx) =1 (x, H, 2%)/So  (9)
are of interest. Here the functiah(x) defines the radiation

with albedoA (x). Therefore, it follows that: intensity exiting from the top boundary in the zenith direc-
tion *. The function/ (z) corresponds to radiation intensity

1 i L reflected by the vertical wall AB of the snowpack (see Fig. 2)
1(x,0,0,9) lo<t<rja = AX) = / do” sing () in the direction®**, perpendicular to the wall AB.
7/2 The function/ (x) can be used to retrieve the optical prop-
2 erties of the upper layer of the snow (up to 5cm in depth).
|cos€’|[d<p/ 1(x, 0,0, ). This function can be approximated by the piece-constant
, function:

Such a surface reflects incident radiation uniformly into all 7(x) =
possible directions. If the bottom is covered by a black film
absorbing all incident radiation, the albedd@x) is made to
be equal to zero and the bottom boundary is called “black”.

It is assumed that the radiation does not enter the regio
via the right boundary = X:

137(H Q%) asx < R
IS"OY(H, @*) asx > R,

where the valuegS"o(H, @*) and/2"(H, 2*) are obtained
via the two 1-D radiative transfer models as shown here
reChandrasekhar, 1950):

9 1Snow

+ O,SI"IOW[SI'IOW(Z’ 9’ (p) — O_SnOWwSHOW(Z)}[dQ/

I(x,z,0,9) |7T/2<(p<37r2 = 0. (6) e 0

o O<z<H, (10)
H ’ 7 rsSnow, ’ / Snowy !/ !
Reflecting condition with albeda, is defined on the left 5™ {d‘/’ Pz 00 9) p77z. 6. 0.6 ¢)
boundaryx = 0:
I(Ov Z, 95 §0) |O<(/7<7T/2U37[/2<g0<27[ (7) aa[:;r + Uairlair(z’ 9, §0) — O_airwgir}de/
= A;1(0,z,0, 1 —¢). 0

O<z<H. (11)

27

When A, =1 Eq. (7) gives the condition of symme- SIn?’ {d‘/’/ 1%z, 0", ¢") p*1(0. 9.0, ¢)
try of the whole regiorf—X, X] x [0, H] with respect to
the planex = 0. Actually, the solution of the RTE (Eq. 1) The boundary conditions are ( see the definition of angles
in the whole region[—X, X] x [0, H] is symmetrical: in Fig. 3)
I(x,z,0,¢9) = I(—x, z, 0, T —¢). Therefore, one can con-
sider the half-regiorf0, X] x [0, H] under the boundary IS"%(H, 0, ) |r/2<g<x = 22, 150, 0, ¢) lo<gx2
condition (Eq. 7). Wher; = 0, the boundary = 0 is black. psnow
It means that this boundary is covered by a black film absorb-— ~ = fz
ing all incident radiation. /

The diffuse source on the top boundary is imposed. There
fore, it follows that:

2r
do’ sing’ |cosd’| [ de’ IS0, 0, ¢),
0

-Iair(H, 0, ¢) |7T/2<9<7T = 4S—7(_)[, Iair(O, 0, ) |0<9<7r/2

b4 2
. = A7 [ do’sing’ |cos’| [ dg’ 137(0, ¢, ¢).
I(xa H’ev (P) |71/2<9<JT = SO Ev (8) /2 0
Equation (10) is used to find the solution over areas,
wheresSy is the incident light irradiance. where snow is present. Otherwise, Eq. (11) is used. Namely,
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_ ) Fig. 5. An adaptive angular quadrature to integrate a in the forward
Fig. 4. An angular quadraturga) the node,(b) accommodation  djrection highly elongated phase function.
nodes of the quadrature.

(b)

Eq. (10) is solved along the line CO passing through the ceng Eglrztss g’?r;f caerl]lg[ Pn+1/2,¢ have b]ein[gchoseg S0 ]that
tre of the pit, whereas the problem formulated in Eq. (11) is>J Yn—1/2,, Pn+1/2,C -1/2, ve+1/2

. . . are identical. We define the node,,, 6.} in each cell, see
defined along th‘? line TV passing through the centre of theFig. 4b, and renumber all nodes with a single index-ur-
showpack, see Fig. 1.

The functionl (z) is found by measuring light reflectance ther we define the weighit<2,, as a square of the correspond-

from snow walls and can be used to retrieve the optical anclng cell AL, . . .

X . : Then we approximate the continuous function
microphysical properties of the snow layers at any depth. . .

S . . (x,z,0,¢9) with functions I, (x,z)=1(x, z, 0, dn)
This is not possible if, for example, the measurements o . . . .

. and replace the scattering integral in Eqg. (1) with the

the light reflectance from the snow top (Kokhanovsky et al., uadrature sum:
2011) are analysed. This is due to weak dependence of the '

snow reflectance in the UV and, also in the visible, on the , 21
size of particles and small penetration depths of IR radiation/ d¢” siné’ [ dy’ I(x, z, 6", ¢') p(x, Z, O, ¢, 0', ¢")
(sensitive to the snow microstructure) into snowpack. There-° ,, 0 (12)

trieval algorithms are based upon the assumption thatthe reg= >~ 1. (x, 2) pum (x, 2),

istered radiation intensity is a constant function of the spatial "=*

coordinates in each homogeneous sub-region (layer) and thignere

constant value does not depend on neighboring sub-regions

layers). It is actually believed that each sub-region (layer I 0/ cing’ ro

<()f 3t/he énowpack ca?w/ be considered separately%rom(otst/]er)se"m(x’ 2= / dp" d&"SING" o (x. 2. 6. gm0, ). (13)
The constant valué(z) in each homogeneous layer is often
believed equal to the value®""“(H, *) for the homoge-

. . The coefficient , z) correspond to the light scat-
neous snowpack under the same optical properties. Such g S0nm (. 2) P g

@ring event from the directio®,,{0,, ¢,} to the direction
approach is “the horizontal 1-D transfer model”. The differ- n ,
eﬁge of the 2-D solution and the 1D solutions is termed asﬂm{g’"’ ¢n). Therefore, they are the integrals of a compli-

. . ) .~ ““cated forward-peaked phase functiotx, z,6,,, ¢, 9, ¢)
.2'D effects”. We will (?heck the accuracy of the 1D radia- over the cellA, under fixed values of the anglés,, ¢, }.
tive transfer models using exact solutions of the 2-D problem

) ., To find the integral of a forward-peaked phase function
(see Egs. 1-8). We do not use _thete_rm 3-D effects becaus%ne introduces the additional quadrature in the e,
the 2-D problem is under consideration.

by the nodes2; ,{0; .. ¢;.»} and the weightAQ2; ,, j =

1,...,L,, hereL, is the number of the additional nodes.

3 Numerical algorithm This quadrature is refined in the subregions of the A&,
where the integrand function has a great gradient, see Fig. 5,

Below follows an outline of the numerical method used by uswhere the additional node®; ,{0; ., ¢; »} are designated

for the solution of the above radiative transfer problem. Weby the black circles. The following equality is always kept:

introduce a quadrature with nod®s,{6,,, ¢.,}, see Fig. 4a,

AR,

and weightsAQ,,, m = 1,... M. For this purpose we use the &=
mesh over anglé : Z;AQM = AQ,. (14)
j:

0< 012 <032 <...<Op_1/2<0p112 < Opi12=Tm o
/ / / i i Then the coefficienp,,, (x, z) can be found by a quadra-

and the mesh over angjefor each interva[6y_1/2, 641//2] ture sum:
of the mesh ovef:

Ly
O<@r20<¢32¢ <...<@u-1/20<Pnt1/2,¢ Pnm (X, 2) = ZAQM p(x, 2, Oy O, Oj.ns @jn).  (15)
< ONg+1/2,0 = 2. =1

The Cryosphere, 7, 657666, 2013 www.the-cryosphere.net/7/657/2013/
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So Eg. (1) for the function$,, (x, z) takes the form (with
account for Eq. 10):

Em 0l /0x + Ym0l /0z + o (x, 2) (L — wo(x, 2) omm (x, 2))
M

In(x,z) — o(x, z) wolx, 2) Z Ii(x, 2) pum(x,2) =0 (16)
n=1n#m
where the derivativeX- is written as:
0l —
o = (@ V1) = 620010/0x + yndln/z. (A7)
0,
The values
&n = sing,, cos¢,,, Vm = COSOy, (18)

are projections of the unit vect®,, onto coordinates axes
andz, see Fig. 4a.

661
ASnow
Im.k,l/Z cost,, >0 = Z Aszn |0099n| 1)1,1(.1/2 5 (26)
T cosd, <0
Im.172, -/|coswm>0 = Asln1y2 -"icoswn = —COoSpy ’ (27)

I, K+1/2. j | oy, <0 = 0.

To close Egs. (19) and (23-25) one needs additional rela-
tions. They are taken as

(28)

Ik j = U= Vb, j) I ks @) /2, + Vmk, j I k=s @) /2, >

To solve the system of differential equations (Eq. 16) for fn.k. j = = tmk ) In.k. stz + tm k. j Im. k. j=som/2> (29)

the functiond,,, (x, z), we introduce a regular mesh over spa-

tial variablesx, z:

O=2x12 <.. < X412 < ... < Xk41/2 = X, (29)

0= 21/2 < .o < Zj41/2 < ... < Zy412 = H. (20)

Each celllxi—1/2, xkt1/2] X [2j-1/2, 2j+1/2] With steps
Axp = X172 — Xk-1/2, Azj = Zj+1/2 — Zj—1/2 IS CON-

1 ast >0,
1 ast <o 2nd
the parameters,, i ;j, um «,; are defined on the interval
[0, 1]. Therefore, the piece-linear approximation to the so-
lution is sought in the spatial cell, see Fig. 6. Here the pa-
rameters,, , j, um, r, ; define the variation of the solution in
the cell (Carlson, 1972).

The resulting system of Egs. (21) and (25-29) for the fixed
node,,{6,,, ¢, } consists of X J + K +J equations for the

where the functiorns(£) = sgné) =

sidered as a homogeneous one. Integrating Eq. (16) over thisame number of unknowns. They are the values

cell, one obtains the exact algebraic relation:

Em Unk+172,j — Im k=172, 7))/ Axk + VYim (I, k, j+172 — Im k. j—1/2)/

Azj + ok, j (L= w0,k jPmm k. j) Im. k. j — Ok, j @0k, j
j\/l J JFmm,k, jJim,Kk, j J J (21)
Z In,k,/' Pnm,k,j = 0.

n=1,n#m

Here the valuesy, j, wo, «, j, Pum, &, j COrrespond to the cell
[xk—1/2, xk+172] X [2j-1/25 Zj+1/2]-

The valuesl,, i, j, Im k+1/2, j, Imk, j+1/2 are averaged
light intensities defined by the following integrals:

X412 Zj+1/2

1
Ink,j = NS dx f dz Iy (x, 2) (22)
Xk—1/2  Zj-1/2
Zj+1/2
I kt1/2,j = A dz Iy (xk+1/2, 2) (23)
! 2j-1/2
Xk41/2
Lk, j+172 = e dx I, (x, Zj+1/2). (24)
Xk—1/2

The boundary conditions for Eq. (19) follow from

Egs. (5-8):

1

Dk, 5+1/2] cogy 0 = 2 5o (25)

www.the-cryosphere.net/7/657/2013/

Ipkv12j, k=0,...,K,j=1,...,J, (30)
Imyk’j+l/2, k=1,...,K,j=0,..., J,
Inkj, k=1...K, j=1..,J.

Let the solution in the node®,, n=1, ..., m-1 and
n=m+1,...M be known. Then the solution of the system
(Egs. 21 and 25-29) for the nod®, can be found by the
so-called sweep procedure in a following way.

Let the vecto2,, be defined by the angles from intervals
0<6, <nm/2,0< ¢, <m/2 when cog,, >0, cosp, > 0.
The sweep procedure is the sequential computation of the
valuesly k+1/2, j Im, k, j+1/2 and I, . ; under known val-
uesly k—1/2,j, Im,k, j—1/2, asindecesincreage=1, ..., K,
j=1,..., J. The obtained valuek, ;12 ; andl, . j+1/2
are used to calculate the light intensity in the neighboring
cells. Initial values on the left boundary, 1,2, ; and the bot-
tom boundaryl,, r,1/2 are known due to the boundary con-
ditions (Egs. 26 and 27).

If the angles,,, ¢, are from other intervals, then indices
are to be sorted in yet another order. Generally, the irdex
increases as(&,,) > 0 and decreases &&,,) < 0, the index
j increases as(y,,) > 0 and decreases a§/,,) < 0.

To solve the system (Egs. 21 and 25-29) for all nd@gs
the iterative Seidel's method (Saad, 2000) is used. In this
method the already obtained valugs ; are used to cal-
culate the right side of Eq. (21) and further the valligs ;
at other nodes.

The Cryosphere, 7, 6566 2013
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10°
Imk+1/2, ] .

10 for snow
Imk-1/2, j . 1004 ----- for aerosol

¢ . » [ ]
X2 X =X1/2 Vimk, | + Moz X = 10°
=
X-1/2(=Vmk, j) 2 10°
[14]
@
Fig. 6. The piece-linear approximation to the RTE solution over the g 10
spatial variabler underg,, > 0. = 10°
o iy - 10"
The relative intensities of reflected radiation at the snow
surface in the direction®* and ** are sought. Direc- 107
tions *(0*, ¢*) and Q**(6**, ¢**) are defined by angles .1 06 <02 02 0.6 1
6*, ¢)* and@**, ¢**, see Flg 2. They are not included in the cosine of scaﬁering ang|e
quadrature nodes. To find the relative intensity in these direc-
tions with no interpolation, two additional nod&€s,,,1 = Fig. 7. The scattering phase functions. The molecular scattering is
Q*(0*, ¢*) andQyy2 = Q¥ (0%, **) with zero weights: ignored and the air phase function is assumed to be equal to that of
atmospheric aerosol.
AQui1=AQu42=0 (31)
are inserted into the quadrature. 6. snow albedAS"W = 0.8;

The previous version of the presented algorithm was out- . )
lined by Sokoletsky et al. (2009), where it was applied to /- the diffuse source, when both a snowpack and a pit are
the calculation of solar light reflectance by natural sea wa-  covered by a sheer film.

ters. There the scattering phase functions were defined by \we have selected a typical snow phase function as sug-
their values in nodes of a very refined mesh over the intergested by Kokhanovsky et al. (2011). The phase function
val [-1, 1] and approximated by piecewise linear functions. joes not depend strongly either on the wavelength (in the
Here the scattering phase functions are given by their Legengpical range) or on the size of ice grains. The extinction co-
dre coefficients. Furthermore, we apply the adaptive methogficient 1 mnt? and the values of snow grain albedos in the
of choosing additional meshe®; ,, to calculation of inte-  range 0.98-1.0 are typical for snow.

grals (Eq. 15). Both homogeneous and heterogeneous snowpack were un-
der consideration. A homogeneous snowpack is defined by
the constant single scattering albeofy°". A heterogeneous
snowpack contains a polluted layer, see Fig. 8. It was as-
All computations were done by the code RADUGA-6 (Niko- sumed that:

laeva et al., 2005; Sokoletsky et al., 2009) on the hybrid clus- _ 0.98, as|z—h/2| < t/2,
ter k100 pttp://www.kiam.ru/MVS/resourses/k100.hjrals- @0 (2) = { G0, aslz—h/2| > /2.
suming the following parameters:

4 Results of numerical experiments

(32)

Here parameter is thickness of a polluted layegy is
single scattering albedo of clean snow.
We define three experimental conditions (see Fig. 1):

2. the pitwidthD =0.4m, 0.6 m,0.8m,1m,2m,3m, see | pgplack film:A, = 1, A(x) = AS"W—0.8:
Fig. 1;

1. the region heightd =0.5m, 0.6 m, 0.7 m, the region
semi-widthX = 5m, see Fig. 1;

2. a black film is only on the pit's bottom EBA; = 1,

3. the extinction coefficientsyS™" = 1 mm1, ¢ = 0 asx <R,
0.001 mnt?; Alx) = {AS”"W else °

4. the single scattering albeds§"*"(z) € [0.98, 1], »3" = 3. ablack film is on the pit's bottom EB and left boundary
1: 0 asx <R,

' EC:A; = 0,A(x) = {Asnow elge

5. the air (aerosol) scattering phase functipfi”is ob-
tained via Mie theory, the snow phase functipff* If the snow surface is covered by the black film, radiation
(see Eq. 4) is found by geometrical optics theory as de-s not reflected at this surface and does not influence the reg-
scribed by Kokhanovsky et al. (2011), see Fig. 7. istered radiation intensity on the line AB. So the registered

The Cryosphere, 7, 657666, 2013 www.the-cryosphere.net/7/657/2013/
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— - "%=0.999

Q snow — 0*""=0.995
— - ,™=0.99
P — =098
2X
0.03 +——1—"—T1"—1"—"T"—1—"———
Fig. 8. The 3-D geometry of the region with the central polluted 0 0102 0'3 n?"" 05 06 07

layer. x

air SNOW

Fig. 9. Relative intensity/ (x) in the zenith directior* at the top

radiation intensity depends only on properties of the SNOWy 6 ndary CS of the homogeneous snowpack. Wiaith 1 m, depth

on the vertical wall AB. If there is no black film, one regis-  — 0.7 m and no black film, for the different single scattering albe-
ters the radiation reflected by both the bottom and two Wa||SdOSw(SJn0W_

of the pit. Then the registered radiation depends on optical
properties of the snow at all walls of the pit.

The following parameters are used in the numerical calcu- 0.072 —
lations. .
_ . 0.068 - k
1. N =800 is the number of the Legendre polynomials to | 2D model | N\_
represent both phase functions; 006ad T 1D model
2. M =360 is the number of nodes of the quadrature; one ]
0.06

needs a dense quadrature to approximate the strongly
anisotropic solutiorI (x, z, 0, ¢);

. K =468,J = 1610 are numbers of cells of the spatial
meshes. The mesh overs refined in the vicinity of the
top boundary; = H, where the intensity (x, z, 0, ¢)
has a large gradient. The mesh oweis refined near
snowpack wall AB, see Fig. 2, for the same reason.

0.048

0 01 0.2 03 04 05 0.6 0.7
X, m

air

snow

Let us consider relative radiation intensityz) given by |

Eq. (9) on the vertical wall AB of a snowpack, see Fig. 2, in

the direction®™, which is perpendicular to the wall AB and gy 1. Relative intensity/ (x) in the zenith directior* on the

at the top boundary CS of the system in the zenith directionp poundary CS of the homogeneous snowpack. Wizita 1 m,

Q. depth H = 0.7 m, no black film, and the single scattering albedo
The relative intensity at the horizontal line CS in the o3"*"=0.999, for the 2-D and 1-D models.

zenith direction@* for homogeneous snowpack is given in

Fig. 9. One can see that the intensity of reflected radiation

has extrema near the air/snow boundary; similar effects ABiecewise constant radiation intensity, see Fig. 10. Differ-

observed in clouds illuminated by direct solar light (N_|ko— ences between the 1-D and 2-D transfer models (2-D effects)
laeva et al., 2005). In the problem under study a maximum, .. .1 3004

of rgdiation intensity_in_ the snow near _the air/snow bound- The calculated relative radiation intensityz) at the ver-
ary is formed by radiation per_letratlng in the snowpack andtical wall AB of a snowpack is presented in Figs. 11-15 for
only weakly absorbed near this boundary; the maximum €MNihe various values of single scattering albeg8’", the depth

hances as snow absorption enhances. In a similar way, a MiNg e widthD = 2R and the surface albedot(x) and A,
imum of radiation intensity arises outside of the snow nearW' 5

. ) o e introduce the function(z), defining the deviation of the
the air/snow boundary due to absorption of radiation by thefunctioni(z) from its value in the central point= H/2:
snow. Thereby the extrema in the radiation intensity in Fig. 9
arise due to the neighbourhood of two different media (snow
and air). Note the 1-D vertical transfer model leads to ther(z) = 100

[1— i(z)/i(H/z)] %. (33)
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Fig. 11.Relative intensityl (z) in the direction®** (a) and the de-
viation r(z) (b) at the vertical wall AB of the homogeneous snow-
pack. The snow single scattering albedf'*"=0.98, the width

D =1m, and depttH = 0.7 m , with and without black film.

Fig. 12. Relative intensity/ (z) in the direction** (a) and the de-
viationr(z) (b) on the vertical wall AB of the heterogeneous snow-
pack. Single scattering albeds = 1 out of the inserted polluted
layer, widthD = 1 m, depthH = 0.7 m, and no black film, for the
different values of the thicknegf the inserted polluted layer.

This deviation shows whether it is possible to consider the
intensity / (z) as a constant function far from the upper and °77 T - -H=05m
lower boundaries of the pit. In other words it shows whether *°1
the 1-D model is applicable to process measurement data
along vertical walls of snowpack. N3

It follows from Fig. 11 that the 1-D transfer model is not o2
applicable for experiments under the black film because in o1 |
this case the deviation(z) is less than 10% only near the %I, o 004 0.5 006 007 T
central point; = H/2. Actually, the size of the sub-region, o "
where the deviatiom(z) is less than 10 %, is equal to 7cm
— if both bottom and opposite sides are covered by the blaclﬁg_ 13. Relative intensityi (z) in the direction®** (a) and the de-
film — and about 17 cm — if only the bottom is covered the viation r(z) (b) on the vertical wall AB of the homogeneous snow-
black film. The size of this sub-region for the case without pack. The snow single scattering albed§'®"=0.98, the width
black film is about 55 cm. D = 1m, and no black film, for different deptt#s.

The results for the pit without black film are shown in
Figs. 12-15. It should be stressed that in this case the ra-
diation registered on the wall AB is reflected by the bottom geneous snowpack:
and the opposite walls of the pit and depends on the optical
properties of the whole surface of the pit.

Let us consider homogeneous snowpack. Here the devia- lp()| < b%z>H/2 |p(z)| < b%, z<H/2
tion r(z) decreases as absorption decreases (see Fig. 12) and
the width D of the pit increases (see Fig. 14). The function
r(z) only weakly depends on the depth(see Fig. 13).

At small values of the probability of photon absorption
B =1—wp and in broad pit, the deviation(z) is less than
the threshold value 10 % far from bottom and upper edges of?() = 100 [1 I(Z)/Io(z)] %. (35)
the pit; here the 1-D model can be used. At the same time this
deviation is large near the bottom and upper edges (boundary The function/o(z) is the relative intensity in the homoge-
effects), where the 1-D model is not applicable. neous snowpack, (z) is the relative intensity in the snow-

The influence of heterogeneity of a snowpack on relativepack with the polluted layer. The widths of the spread of
radiation intensity is presented in Figs. 12—15. The thin pol-polluted layer optical influence$ are presented in Table 1
luted layer in the centre of the pure snowpack, see Fig. 8for the different single scattering albed§"®" outside of the
leads to a minimum in reflected radiation intensity in the polluted layer, the width of the polluted layerand thresh-
vicinity of the layer (the shadow of the minimum is spread old valueb. One can see that is always larger than the real
over the whole wall, if absorption in snow is weak enough). width of the polluted layer, especially when the outer snow
Let us define the width of the spread of the optical influenceis clean. The error in width of the polluted layer (when de-
of the polluted layer as the size of the sub-region, where thdined via the valueg*) can reach 200-400 % (see Table 1),
relative intensity of the polluted layer differs more than by especially if the polluted layer is thin. At the same time the
threshold valu&% from the relative intensity of the homo- value of the minimum of the relative intensity in the polluted

(@ (b)

t*(b) = min z — max z (34)

Here the point = H/2 is the central point of the whole
snowpack and the polluted layer and the functidp) is de-
fined by the relation:
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Table 1. The value of the minimum of the relative intensiy;, and the width of the optical influence spread of the polluted lajécm)
for different values of the single scattering aIbeaﬁS‘o""outside of the polluted layer at different widths of the polluted layer

The single scattering The width of The  The width(cm) for
albedowj™"out  the polluted layer ~minimum of  different valuesiof
of the polluted layer t (cm) the relative
intensity

Imin b=10% b=5% b=2%

0.99 5.0 0.0237 51 6 7.65
0.995 5.0 0.0252 5.95 7.5 10.45
0.999 5.0 0.0278 8.1 12.05 54.9

1.0 5.0 0.0298 12.6 28.45 68
1.0 2.0 0.0338 8.4 23.45 68
1.0 1.0 0.0398 55 10.6 275

0.7+ - 0.7+ 0.74
06 . 0.6 0.6
057 0.5 05
£ %47 0.4 0.4 ,I
No3 BT : Sonl E 5om
~o0.34 N34 ;
027 1 F aﬁrogigegogs snowpack ] i homogeneous snowpack
0.14 02 ] snowpuack with ©,=0.99, 02 1 with “’“:ok‘ggf’h 0065
ulluted layer snowpack with ,=0.995,
0 : , 0.1 ":m':‘ lmad:é.gs 0.14 ' pullulzd layer
0 40 50 1 1 with ©,=0.98
Or—T T 7T 71 1 Or—T"T 7T 1 T 1
0.02 0.03 0.04_ 0.05 0.06 0.07 0.02 0.03 0.04 0.05 0.06 0.07 0.08
@) (b) 1(2) 1(2)
. . . Lo~ . . . 077 0.7 homogeneous snowpack
Fig. 14.Relative intensityl (z) in the direction®** (a) and the de- 06 o6 vithoL
- . . a . snowpack with =1,
viationr (z); (b) on the vertical wall AB of the homogeneous snow- ] 05.] pul:‘utZd layer
. . - g with ©,=0.98
pack. The snow single scattering albedy'®"= 0.98, the depth 04 os]
H = 0.7 m for, no black film, different width®. 50'3 1 i 50'3 ]
T ,”I homogeneous snowpack I
024 [ with ©,=0.999 024
1 H snowpack with ©,=0.999, 1
0.19 H pulluted layer 0.14
. . . 1 4 with ©,=0.98 1
layer depends on the width of this layer and the single scat- o+———~———— 0+
. - . - 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.02 0.03 0.04 0.05 0.06 0.07 0.08
tering albedo outside of this layer, see Fig. 15 and Table 1. i@ i)

Note that the minimum decreases as the width of the layer

decreases and the albedo of surrounding medium increased 19- 15. Relative intensity/ (z) in the direction** on the verti-
cal wall AB of the heterogeneous snowpack. Width= 1 m, depth

H = 0.7 m, thickness of the inserted polluted layet 5 cm, and no
black film, for different values of the single scattering albégd®"
out of the inserted layer.

5 Conclusions

We have presented the 2-D radiative transfer problem re-

lated to the reflection of solar light by a rectangular wide We found that the 2-D effects (brightening and shadowing)
pit in a thick snow layer. Simulation (by the parallel code on the top boundary of a snowpack near the vertical wall of
RADUGA-6) is based upon the mesh technique of the dis-the pit are significant in spite of a diffuse radiation source.
crete ordinate method when peaked scattering phase func- The 2-D effects are significant on the vertical wall of the
tions of snow are exactly taken into account. A diffuse radi- pit in a homogeneous snowpack, especially near the upper
ation source, produced by a sheer film covering a snowpackhoundary. At the same time, 2-D effects are less evident at
is assumed. Such source models are close to those for rekdrge values of the pit's width far from its bottom and top
ground measurements. boundaries, when snow is almost clean.

We have checked whether the 1-D model, when the re- Additional 2-D effects arise in layered snowpack. Al-
flected radiation intensity is considered as constant functiorthough minimum in intensity on a vertical wall of a pit is
of the spatial coordinate in each homogeneous subregion dbcalized near a polluted layer, intensity out of minimum can
a snowpack, is applicable to describe the real measurementbe influenced by this polluted layer.
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One can conclude that 1-D models can lead to large erChandrasekhar, S.: Radiative transfer, Oxford Press, Oxford, 1950.
rors in the simulation of the measured radiation intensity onKokhanovsky, A. A. and Rozanov, V. V.: The retrieval of snow char-
vertical walls of snow pits. The retrieval algorithms should, —acteristics from optical measurements, in: Light Scattering Re-

therefore, be based upon the 2-D and 3-D radiative transfer Views , edited by: Kokhanovsky, A. A., v. 6, Springer Verlag,
models. Berlin, 2012.

Kokhanovsky, A., Rozanov, V. V., Aoki, T., Odermatt, D., Brock-
mann, C., Kruger, O., Bouvet, M., Drusch, M., and Hori, M.:

AcknowledgementsThis work is supported by research pro- Sizing snow grains using backscattered solar light, Int. J. Remote

gram N 14 of Presidium of Russian Academy of Sciences. Sens., 32, 6975_7008'_201.1' ) "
A. Kokhanovsky thanks BMBF Project CLIMSLIP and F7 Project Matzl, M. and Schneebeli, M.: Measuring specific surface area of
SIDARUS for the support of this work and also to M. Schneebeli ~ SNOW by near-infrared photography, J. Glaciology, 52, 558-564,

for the suggestion to conduct this study. O. Nikolaeva thanks _2006'
L. P. Bass for the useful discussions related to this work. BothNiKolaeva, O.V, Bass, L. P., Germogenova, T. A., Kokhanovsky,

A. A., Kuznetsov, V. S., and Mayer, B.: The influence of neigh-
bouring clouds on the clear sky reflectance studied with the 3-D
transport code RADUGA, J. Quant. Spectr. Rad. Transfer, 94,
405-424, 2005.

Painter, T. H., Molotch, N. P., Cassidy, M., Flanner, M., and Stef-
fen, K.: Contact spectroscopy for determination of stratigraphy
of snow optical grain size, J. Glaciology, 53, 180, 121-127, 2007.

Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J. C., Saad, Y.: Iterative methods for sparse linear systems, University of
Lefebvre, E., Fily, M., and Barnola, J. M.: Measurement of ver-  Minnesota, Minnesota, 2000.
tical profiles of snow specific surface area with a 1cm resolutionSokoletsky, L. G., Budak, V. P., Bass, L. P., Nikolaeva, O. V.,
using infrared reflectance: instrument description and validation, Lunetta, R. S., Kuznetsoy, V. S., and Kokhanovsky, A. A.: A

authors are grateful to the reviewers for the valuable comments.

Edited by: R. Lindsay

References

J. Glaciology, 57, 201, 17-29, 2011. comparison of numerical and analytical radiative transfer solu-
Barker, H. W. and Korolev, A. V.: An update on blue snow holes, J.  tions for plane albedo in natural waters, J. Quant. Spectr. Rad.
Geophys. Res., 115, D1821qi:10.1029/2009JD013083010. Transfer, 110, 1057-1206, 20009.

Carlson, B. G.: A method of characteristics and other improvements
in solutions methods for the transport equations, Nuclear Science
Engineering, 61, 408-425, 1976.

The Cryosphere, 7, 657666, 2013 www.the-cryosphere.net/7/657/2013/


http://dx.doi.org/10.1029/2009JD013085

