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Abstract. The influence of horizontal and vertical inhomo-
geneity of snow surfaces on solar light reflectance is studied
using the radiative transfer theory (RTT). We compared 1-D
RTT and 2-D RTT and found that large errors are produced
if the 1-D RTT is used for the calculation of the snow re-
flection function (and, therefore, also in the retrievals of the
snow grain radii) in 2-D measurement geometries. Such 2-D
geometries are common in the procedures for the determi-
nation of the effective snow grain radii using near-infrared
photography and spectroscopy of vertical snow walls. In par-
ticular, we have considered three cases for the numerical cal-
culations: (1) the case with no black film; (2) the case with a
black film at the pit’s bottom; (3) the case with a black film
at the pit’s bottom and also at one of the vertical snow walls.

1 Introduction

Optical measurements are commonly used to derive snow
microphysical parameters from plane-parallel snow layers
(Kokhanovsky et al., 2011). In particular, snow grain size
is obtained from near-infrared (NIR) measurements (in the
spectral range 865–1240 nm) of intensity of solar light re-
flected from flat snow layers. The corresponding retrieval al-
gorithms are based upon the physical phenomenon of the en-
hancement of light absorption by larger ice grains (and as a
consequence, a smaller light reflectance for snow layers with
larger grains). The main problem with such a method is that
only upper snow layers can be observed. The information
on the snow microphysical parameters and snow pollution
in deeper layers cannot be retrieved because of high absorp-
tion of NIR radiation by snow grains. As a matter of fact, NIR

radiation does not penetrate deep into a snowpack and, there-
fore, does not contain information on the properties of snow
from the depths above 1-5cm depending on the size of parti-
cles and the wavelength (Kokhanovsky and Rozanov, 2012).
To avoid this problem, recently measurements along vertical
snow walls have become popular (see, e.g. Fig. 1 in Matzl
and Schneebeli, 2006; and Fig. 2 in Painter et al., 2007). Also
measurements along the length of cylindrical holes in snow
are used (Barker and Korolev, 2010; Arnaud et al., 2011).

In most of cases (see e.g. Kokhanovsky et al., 2011) the
1-D transfer theory valid for plane-parallel slabs is used for
the interpretation of optical measurements and determination
of snow grain sizes. Although there could be some influ-
ences of 3-D effects (e.g. shadowing from the snow walls,
enhancement of brightness, etc.) on corresponding measure-
ments. For the measurements involving 2-D and 3-D geome-
tries (e.g. along snow walls), the approach based on the cor-
relation of the reflectance and the snow grain size or the snow
specific surface area (see e.g. Matzl and Schneebeli, 2006) is
used. This is because more quantitative approaches based on
the solution of radiative transfer equation in 2-D and 3-D ge-
ometries have not been developed in applications relevant to
optics of vertical snow walls.

The aim of this work is twofold. Firstly, we develop soft-
ware, which can be used for studies of 3-D effects in snow
and, secondly, we study the corresponding effects using nu-
merical simulations. Only optical snow parameters (extinc-
tion coefficient, single scattering albedo, and phase function)
are used in the analysis. This makes it possible to perform a
study with greater generality. The link to the snow grain size
and concentration of pollutants is obvious (Kokhanovsky et
al., 2011).
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Fig. 1.The geometry of the problem.

The paper is structured as follows. In the next section we
introduce the radiative transfer equation and boundary con-
ditions relevant to the studies of light propagation in snow.
The numerical algorithm developed for the solution of the
corresponding integro-differential radiative transfer equation
in the 2-D geometry is described in Sect. 3. The results of
numerical experiments are reported in Sect. 4. The present
study can be used to design and interpret real-world experi-
ments relying on the spectrometry of vertical snow walls.

2 Radiative transfer equation and boundary conditions

It is assumed that the surface of the snow is flat (no sastrugi,
no microstructures on the snow surface). Let us assume that
there is a pit with the widthD, the lengthL and the depth
H in the snowpack with the width 2X and the heightH , see
Fig. 1. The pit is covered by a sheer film to convert the di-
rect solar light to diffuse one. Reflected radiation is registered
along the line AB on the vertical wall of the pit and along the
line CS at the top of the pit.

To find radiation intensity in this region, we introduce the
coordinate system with the origin at the centre point O at
the pit’s bottom, see Fig. 1. We assume that the lengthL

(10–15 m) is larger than the typical widthD (about 1–3 m).
Therefore, the radiation intensity near the central planey = 0
of the pit depends only on the spatial coordinatesx andz.
The dependence on the third coordinate can be neglected. So
the problem can be considered in the 2-D framework in the
planey =0. This reduces calculations as compared to the 3-D
modelling. Moreover, the region is symmetrical with respect
to the planex = 0, see Fig. 1, hence only the half-region
[0, X] × [0, H ] instead of the region[−X, X] × [0, H ]

can be considered, see Fig. 2.
The radiative transfer equation (RTE) for the monochro-

matic radiation intensityI takes the following form in the
case under consideration:

∂I

∂�
+ σ(x, z) I (x, z,θ,ϕ) − σ(x, z) ω0(x, z)

π∫
0

dθ ′ sinθ ′

2π∫
0

dϕ′ (1)

I (x, z,θ ′,ϕ′) ρ(x, z,θ,ϕ,θ ′,ϕ′) = 0.
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Fig. 2. The 2-D half-region [0,X] × [0, H ] with the wide rectan-
gular pit [0,R] × [0, H ] and the direction�m{θ, φ} of the radiation
transfer.

The functionI (x, z,θ,ϕ) depends on the spatial coordi-
natesx, z and anglesθ , φ, defining direction� of the radi-
ation transfer, see Fig. 2. The first term in Eq. (1) gives the
change of intensity in the direction� and the second term
represents the extinction of radiation by the medium. The in-
tegral describes the re-radiation of scattered light, here inci-
dent light has the direction�′(θ ′, ϕ′) and re-radiated light
has the direction�(θ, ϕ).

The pit [0, R] × [0, H ], R = D/2, is filled by air,
whereas the medium out of the pit is snow. Then it follows
that for the extinction coefficient:

σ(x, z) =

{
σ air asx ≤ R

σ snow asx > R
, (2)

for the single scattering albedo:

ω0(x, z) =

{
ωair

0 asx ≤ R

ωsnow
0 (z) asx > R

, (3)

for the scattering phase function:

ρ(x, z,θ,ϕ,θ ′,ϕ′) =

{
ρair asx ≤ R

ρsnow asx > R.
(4)

Note, the single scattering albedoωsnow
0 (z) is considered

as a piecewise function of depth, which describes a layered
snowpack; the special caseωsnow

0 (z) = const corresponds to
a homogeneous snow layer.

One needs to define the boundary conditions for Eq. (1).
The intensity of the radiation entering the region is defined
on each boundary at the corresponding angular intervals, see
Fig 3. The bottom boundaryz = 0 is a Lambertian surface

The Cryosphere, 7, 657–666, 2013 www.the-cryosphere.net/7/657/2013/
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Fig. 3.The 2-D region and directions of entering radiation.

with albedoA(x). Therefore, it follows that:

I (x, 0, θ, ϕ) |0<θ<π/2 = A(x)
1

π

π∫
π/2

dθ ′ sinθ ′ (5)

∣∣cosθ ′
∣∣ 2π∫

0

dϕ′ I (x, 0, θ ′, ϕ′).

Such a surface reflects incident radiation uniformly into all
possible directions. If the bottom is covered by a black film
absorbing all incident radiation, the albedoA(x) is made to
be equal to zero and the bottom boundary is called “black”.

It is assumed that the radiation does not enter the region
via the right boundaryx = X:

I (x, z,θ,ϕ) |π/2<ϕ<3π2 = 0. (6)

Reflecting condition with albedoAs is defined on the left
boundaryx = 0:

I (0, z, θ, ϕ) |0<ϕ<π/2 ∪3π/2<ϕ<2π (7)

= As I (0, z, θ, π − ϕ).

When As = 1 Eq. (7) gives the condition of symme-
try of the whole region[−X, X] × [0, H ] with respect to
the planex = 0. Actually, the solution of the RTE (Eq. 1)
in the whole region[−X, X] × [0, H ] is symmetrical:
I (x, z, θ, ϕ) = I (−x, z, θ, π−ϕ). Therefore, one can con-
sider the half-region[0, X] × [0, H ] under the boundary
condition (Eq. 7). WhenAs = 0, the boundaryx = 0 is black.
It means that this boundary is covered by a black film absorb-
ing all incident radiation.

The diffuse source on the top boundary is imposed. There-
fore, it follows that:

I (x, H,θ, ϕ) |π/2<θ<π = S0
1

4π
, (8)

whereS0 is the incident light irradiance.

We will study three problems depending on albedoAs

at the left snow wall and the albedoA(x) at the bot-
tom. First, underAs = 1, A(x) = Asnow > 0 one has the
pit with no black film. Second, underAs = 1, A(x) ={

0 asx ≤ R,

Asnow else,
the black film lies only at the pit’s bot-

tom. Third, underAs = 0 andA(x) =

{
0 asx ≤ R,

Asnow else,
the black film covers both the bottom and the vertical plane
x = 0.

Relative intensities of reflected radiation at the snow sur-
face in the directions�∗ and�∗∗:

Ĩ (z) = I
(
R, z, �∗∗

)
/S0, Î (x) = I

(
x, H, �∗

)
/S0 (9)

are of interest. Here the function̂I (x) defines the radiation
intensity exiting from the top boundary in the zenith direc-
tion �∗. The functionĨ (z) corresponds to radiation intensity
reflected by the vertical wall AB of the snowpack (see Fig. 2)
in the direction�∗∗, perpendicular to the wall AB.

The functionÎ (x) can be used to retrieve the optical prop-
erties of the upper layer of the snow (up to 5cm in depth).
This function can be approximated by the piece-constant
function:

Î (x) =

{
Iair(H,�∗) asx ≤ R

I snow(H,�∗) asx > R,

where the valuesI snow(H,�∗) andIair(H,�∗) are obtained
via the two 1-D radiative transfer models as shown here
(Chandrasekhar, 1950):

∂I snow

∂�
+ σ snowI snow(z, θ, ϕ) = σ snowωsnow

0 (z)
π∫
0

dθ ′

sinθ ′
2π∫
0

dϕ′ I snow(z, θ ′, ϕ′) ρsnow(z, θ, ϕ,θ ′,ϕ′)

, 0 < z < H, (10)

∂Iair

∂�
+ σ airIair(z, θ, ϕ) = σ airωair

0

π∫
0

dθ ′

sinθ ′
2π∫
0

dϕ′ Iair(z, θ ′, ϕ′) ρair(θ, ϕ, θ ′, ϕ′)

, 0 < z < H. (11)

The boundary conditions are ( see the definition of angles
in Fig. 3)

I snow(H, θ, ϕ) |π/2<θ<π =
S0
4π

, I snow(0, θ, ϕ) |0<θ<π/2

=
Asnow

π

π∫
π/2

dθ ′ sinθ ′
∣∣cosθ ′

∣∣ 2π∫
0

dϕ′ I snow(0, θ ′, ϕ′),

Iair(H, θ, ϕ) |π/2<θ<π =
S0
4π

, Iair(0, θ, ϕ) |0<θ<π/2

=
Asnow

π

π∫
π/2

dθ ′ sinθ ′
∣∣cosθ ′

∣∣ 2π∫
0

dϕ′ Iair(0, θ ′, ϕ′).

Equation (10) is used to find the solution over areas,
where snow is present. Otherwise, Eq. (11) is used. Namely,

www.the-cryosphere.net/7/657/2013/ The Cryosphere, 7, 657–666, 2013
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Fig. 4. An angular quadrature:(a) the node,(b) accommodation
nodes of the quadrature.

Eq. (10) is solved along the line CO passing through the cen-
tre of the pit, whereas the problem formulated in Eq. (11) is
defined along the line TV passing through the centre of the
snowpack, see Fig. 1.

The functionĨ (z) is found by measuring light reflectance
from snow walls and can be used to retrieve the optical and
microphysical properties of the snow layers at any depth.
This is not possible if, for example, the measurements of
the light reflectance from the snow top (Kokhanovsky et al.,
2011) are analysed. This is due to weak dependence of the
snow reflectance in the UV and, also in the visible, on the
size of particles and small penetration depths of IR radiation
(sensitive to the snow microstructure) into snowpack. The re-
trieval algorithms are based upon the assumption that the reg-
istered radiation intensity is a constant function of the spatial
coordinates in each homogeneous sub-region (layer) and this
constant value does not depend on neighboring sub-regions
(layers). It is actually believed that each sub-region (layer)
of the snowpack can be considered separately from others.
The constant valuẽI (z) in each homogeneous layer is often
believed equal to the valueI snow(H, �∗) for the homoge-
neous snowpack under the same optical properties. Such an
approach is “the horizontal 1-D transfer model”. The differ-
ence of the 2-D solution and the 1D solutions is termed as
“2-D effects”. We will check the accuracy of the 1D radia-
tive transfer models using exact solutions of the 2-D problem
(see Eqs. 1–8). We do not use the term “3-D effects” because
the 2-D problem is under consideration.

3 Numerical algorithm

Below follows an outline of the numerical method used by us
for the solution of the above radiative transfer problem. We
introduce a quadrature with nodes�m{θm, φm}, see Fig. 4a,
and weights1�m, m = 1, . . .M. For this purpose we use the
mesh over angleθ :

0 < θ1/2 < θ3/2 < .. . < θ`−1/2 < θ`+1/2 < θL+1/2 = π

and the mesh over angleϕ for each interval
[
θ`−1/2, θ`+1//2

]
of the mesh overθ :

0 < ϕ1/2,` < ϕ3/2,` < .. . < ϕn−1/2,` < ϕn+1/2,`

< ϕN`+1/2,` = 2π.
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Fig. 5. An adaptive angular quadrature to integrate a in the forward
direction highly elongated phase function.

Points θ`+1/2 and ϕn+1/2,` have been chosen so that
squares of all cells

[
ϕn−1/2,`,ϕn+1/2,`

]
×

[
θ`−1/2, θ`+1/2

]
are identical. We define the node{ϕn`

, θ`} in each cell, see
Fig. 4b, and renumber all nodes with a single indexm. Fur-
ther we define the weight1�m as a square of the correspond-
ing cell1�m.

Then we approximate the continuous function
I (x, z, θ,φ) with functions Im(x, z) = I (x, z, θm,φm)

and replace the scattering integral in Eq. (1) with the
quadrature sum:

π∫
0

dθ ′ sinθ ′
2π∫
0

dϕ′ I (x, z, θ ′, ϕ′) ρ(x, z, θm, ϕm, θ ′, ϕ′)

∼=

M∑
n=1

In(x, z) ρnm(x, z),

(12)

where

ρnm(x, z) =

∫
1�n

dϕ′ dθ ′ sinθ ′ ρ(x, z, θm, ϕm, θ ′, ϕ′). (13)

The coefficientsρnm(x, z) correspond to the light scat-
tering event from the direction�n{θn, φn} to the direction
�m{θm, φm}. Therefore, they are the integrals of a compli-
cated forward-peaked phase functionρ(x,z,θm, ϕm, θ ′, ϕ′)

over the cell1�n under fixed values of the angles{θm, ϕm}.
To find the integral of a forward-peaked phase function

one introduces the additional quadrature in the cell1�n

by the nodes�j,n{θj,n, ϕj,n} and the weights1�j,n, j =

1, . . . ,Ln, hereLn is the number of the additional nodes.
This quadrature is refined in the subregions of the cell1�n,
where the integrand function has a great gradient, see Fig. 5,
where the additional nodes�j,n{θj,n, ϕj,n} are designated
by the black circles. The following equality is always kept:

Ln∑
j=1

1�j,n = 1�n. (14)

Then the coefficientρnm(x, z) can be found by a quadra-
ture sum:

ρnm(x, z) =

Ln∑
j=1

1�j,n ρ(x, z, θm, ϕm, θj,n, ϕj,n). (15)

The Cryosphere, 7, 657–666, 2013 www.the-cryosphere.net/7/657/2013/
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So Eq. (1) for the functionsIm(x, z) takes the form (with
account for Eq. 10):

ξm ∂Im/∂x + γm ∂Im/∂z + σ(x, z) (1 − ω0(x, z)ρmm(x, z))

Im(x, z) − σ(x, z) ω0(x, z)
M∑

n=1,n 6=m

In(x, z) ρnm(x, z) = 0 , (16)

where the derivative∂I
∂�m

is written as:

∂I

∂�m

=

(
�m,

−→
∇ I

)
= ξm ∂Im/∂x + γm ∂Im/∂z. (17)

The values

ξm = sinθm cosφm, γm = cosθm (18)

are projections of the unit vector�m onto coordinates axesx
andz, see Fig. 4a.

To solve the system of differential equations (Eq. 16) for
the functionsIm(x, z), we introduce a regular mesh over spa-
tial variablesx, z:

0 = x1/2 < ... < xk+1/2 < .. . < xK+1/2 = X, (19)

0 = z1/2 < ... < zj+1/2 < ... < zJ+1/2 = H. (20)

Each cell[xk−1/2, xk+1/2] × [zj−1/2, zj+1/2] with steps
1xk = xk+1/2 − xk−1/2, 1zj = zj+1/2 − zj−1/2 is con-
sidered as a homogeneous one. Integrating Eq. (16) over this
cell, one obtains the exact algebraic relation:

ξm (Im,k+1/2,j − Im,k−1/2,j )/1xk + γm (Im,k,j+1/2 − Im,k,j−1/2)/

1zj + σk,j (1− ω0,k,jρmm,k,j )Im,k,j − σk,j ω0,k,j
M∑

n=1,n 6=m

In,k,j ρnm,k,j = 0.

(21)

Here the valuesσk,j , ω0,k,j , ρnm,k,j correspond to the cell
[xk−1/2, xk+1/2] × [zj−1/2, zj+1/2].

The valuesIm,k,j , Im,k±1/2,j , Im,k,j±1/2 are averaged
light intensities defined by the following integrals:

Im,k,j =
1

1xk 1zj

xk+1/2∫
xk−1/2

dx

zj+1/2∫
zj−1/2

dzIm(x, z) (22)

Im,k±1/2,j =
1

1zj

zj+1/2∫
zj−1/2

dzIm(xk±1/2, z) (23)

Im,k,j±1/2 =
1

1xk

xk+1/2∫
xk−1/2

dx Im(x, zj±1/2). (24)

The boundary conditions for Eq. (19) follow from
Eqs. (5–8):

Im,k,J+1/2
∣∣
cosθm<0 =

1

4π
S0, (25)

Im,k,1/2
∣∣
cosθm>0 =

Asnow

π

{ ∑
cosθn <0

1�n |cosθn| In,k,1/2

}
, (26)

Im,1/2,j

∣∣
cosϕm>0 = AsIn,1/2,j

∣∣
cosϕn = −cosϕm

,

Im,K+1/2,j

∣∣
cosϕm<0 = 0.

(27)

To close Eqs. (19) and (23–25) one needs additional rela-
tions. They are taken as

Im,k,j = (1 − vm,k,j )Im,k+s(ξm)/2,j + vm,k,j Im,k−s(ξm)/2,j , (28)

Im,k, j = (1 − um,k,j )Im,k,j+s(γm)/2 + um,k,j Im,k,j−s(γm)/2, (29)

where the functions(ξ) = sgn(ξ) =

{
1 asξ > 0,

−1 asξ < 0
and

the parametersvm,k,j , um,k,j are defined on the interval
[0, 1]. Therefore, the piece-linear approximation to the so-
lution is sought in the spatial cell, see Fig. 6. Here the pa-
rametersvm,k,j , um,k,j define the variation of the solution in
the cell (Carlson, 1972).

The resulting system of Eqs. (21) and (25–29) for the fixed
node�m{θm, φm} consists of 3KJ + K+J equations for the
same number of unknowns. They are the values

Im,k+1/2,j , k = 0, . . . , K, j = 1, . . . , J, (30)

Im,k,j+1/2, k = 1, . . . ,K, j = 0, . . . , J,

Im,k,j , k = 1, . . . ,K, j = 1, . . . , J.

Let the solution in the nodes�n, n = 1, . . . , m-1 and
n = m + 1, . . .M be known. Then the solution of the system
(Eqs. 21 and 25–29) for the node�m can be found by the
so-called sweep procedure in a following way.

Let the vector�m be defined by the angles from intervals
0 < θm < π/2, 0< ϕm < π/2 when cosθm > 0, cosϕm > 0.
The sweep procedure is the sequential computation of the
valuesIm,k+1/2,j , Im,k,j+1/2 and Im,k,j under known val-
uesIm,k−1/2,j , Im,k,j−1/2, as indeces increasek = 1, . . . , K,
j = 1, . . . , J . The obtained valuesIm,k+1/2,j andIm,k,j+1/2
are used to calculate the light intensity in the neighboring
cells. Initial values on the left boundaryIm,1/2,j and the bot-
tom boundaryIm,k,1/2 are known due to the boundary con-
ditions (Eqs. 26 and 27).

If the anglesθm, ϕm are from other intervals, then indices
are to be sorted in yet another order. Generally, the indexk

increases ass(ξm) > 0 and decreases ass(ξm) < 0, the index
j increases ass(γm) > 0 and decreases ass(γm) < 0.

To solve the system (Eqs. 21 and 25–29) for all nodes�m,
the iterative Seidel’s method (Saad, 2000) is used. In this
method the already obtained valuesIn,k,j are used to cal-
culate the right side of Eq. (21) and further the valuesIm,k,j

at other nodes.
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Fig. 6.The piece-linear approximation to the RTE solution over the
spatial variablex underξm > 0.

The relative intensities of reflected radiation at the snow
surface in the directions�∗ and �∗∗ are sought. Direc-
tions �∗(θ∗, φ∗) and �∗∗(θ∗∗, φ∗∗) are defined by angles
θ∗, φ∗ andθ∗∗, φ∗∗, see Fig 2. They are not included in the
quadrature nodes. To find the relative intensity in these direc-
tions with no interpolation, two additional nodes�M+1 =

�∗(θ∗, ϕ∗) and�M+2 = �∗∗(θ∗∗, ϕ∗∗) with zero weights:

1�M+1 = 1�M+2 = 0 (31)

are inserted into the quadrature.
The previous version of the presented algorithm was out-

lined by Sokoletsky et al. (2009), where it was applied to
the calculation of solar light reflectance by natural sea wa-
ters. There the scattering phase functions were defined by
their values in nodes of a very refined mesh over the inter-
val [−1, 1] and approximated by piecewise linear functions.
Here the scattering phase functions are given by their Legen-
dre coefficients. Furthermore, we apply the adaptive method
of choosing additional meshes�j,m to calculation of inte-
grals (Eq. 15).

4 Results of numerical experiments

All computations were done by the code RADUGA-6 (Niko-
laeva et al., 2005; Sokoletsky et al., 2009) on the hybrid clus-
ter k100 (http://www.kiam.ru/MVS/resourses/k100.html) as-
suming the following parameters:

1. the region heightH = 0.5 m, 0.6 m, 0.7 m, the region
semi-widthX = 5 m, see Fig. 1;

2. the pit widthD = 0.4 m, 0.6 m, 0.8 m, 1 m, 2 m, 3 m, see
Fig. 1;

3. the extinction coefficientsσ snow
= 1 mm−1, σ air

=

0.001 mm−1;

4. the single scattering albedoωsnow
0 (z) ∈ [0.98,1], ωair

0 =

1;

5. the air (aerosol) scattering phase functionρair is ob-
tained via Mie theory, the snow phase functionρsnow

(see Eq. 4) is found by geometrical optics theory as de-
scribed by Kokhanovsky et al. (2011), see Fig. 7.
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Fig. 7. The scattering phase functions. The molecular scattering is
ignored and the air phase function is assumed to be equal to that of
atmospheric aerosol.

6. snow albedoAsnow
= 0.8;

7. the diffuse source, when both a snowpack and a pit are
covered by a sheer film.

We have selected a typical snow phase function as sug-
gested by Kokhanovsky et al. (2011). The phase function
does not depend strongly either on the wavelength (in the
optical range) or on the size of ice grains. The extinction co-
efficient 1mm−1 and the values of snow grain albedos in the
range 0.98–1.0 are typical for snow.

Both homogeneous and heterogeneous snowpack were un-
der consideration. A homogeneous snowpack is defined by
the constant single scattering albedoωsnow

0 . A heterogeneous
snowpack contains a polluted layer, see Fig. 8. It was as-
sumed that:

ωsnow
0 (z) =

{
0.98, as|z−h/2| ≤ t/2,

ω̃0, as|z−h/2| > t/2.
(32)

Here parametert is thickness of a polluted layer,̃ω0 is
single scattering albedo of clean snow.

We define three experimental conditions (see Fig. 1):

1. no black film:As = 1, A(x) = Asnow
= 0.8;

2. a black film is only on the pit’s bottom EB:As = 1,

A(x) =

{
0 asx ≤ R,

Asnow else
;

3. a black film is on the pit’s bottom EB and left boundary

EC:As = 0, A(x) =

{
0 asx ≤ R,

Asnow else
.

If the snow surface is covered by the black film, radiation
is not reflected at this surface and does not influence the reg-
istered radiation intensity on the line AB. So the registered

The Cryosphere, 7, 657–666, 2013 www.the-cryosphere.net/7/657/2013/
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Fig. 8. The 3-D geometry of the region with the central polluted
layer.

radiation intensity depends only on properties of the snow
on the vertical wall AB. If there is no black film, one regis-
ters the radiation reflected by both the bottom and two walls
of the pit. Then the registered radiation depends on optical
properties of the snow at all walls of the pit.

The following parameters are used in the numerical calcu-
lations.

1. N = 800 is the number of the Legendre polynomials to
represent both phase functions;

2. M = 360 is the number of nodes of the quadrature; one
needs a dense quadrature to approximate the strongly
anisotropic solutionI (x,z,θ,φ);

3. K = 468,J = 1610 are numbers of cells of the spatial
meshes. The mesh overz is refined in the vicinity of the
top boundaryz = H , where the intensityI (x,z,θ,φ)

has a large gradient. The mesh overx is refined near
snowpack wall AB, see Fig. 2, for the same reason.

Let us consider relative radiation intensityĨ (z) given by
Eq. (9) on the vertical wall AB of a snowpack, see Fig. 2, in
the direction�∗∗, which is perpendicular to the wall AB and
at the top boundary CS of the system in the zenith direction
�∗.

The relative intensity at the horizontal line CS in the
zenith direction�∗ for homogeneous snowpack is given in
Fig. 9. One can see that the intensity of reflected radiation
has extrema near the air/snow boundary; similar effects are
observed in clouds illuminated by direct solar light (Niko-
laeva et al., 2005). In the problem under study a maximum
of radiation intensity in the snow near the air/snow bound-
ary is formed by radiation penetrating in the snowpack and
only weakly absorbed near this boundary; the maximum en-
hances as snow absorption enhances. In a similar way, a min-
imum of radiation intensity arises outside of the snow near
the air/snow boundary due to absorption of radiation by the
snow. Thereby the extrema in the radiation intensity in Fig. 9
arise due to the neighbourhood of two different media (snow
and air). Note the 1-D vertical transfer model leads to the
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Fig. 9. Relative intensityÎ (x) in the zenith direction�∗ at the top
boundary CS of the homogeneous snowpack. WidthD = 1 m, depth
H = 0.7 m and no black film, for the different single scattering albe-
dosωsnow

0 . 27
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Fig.10 Fig. 10. Relative intensityÎ (x) in the zenith direction�∗ on the
top boundary CS of the homogeneous snowpack. WidthD = 1 m,
depthH = 0.7 m, no black film, and the single scattering albedo
ωsnow

0 = 0.999, for the 2-D and 1-D models.

piecewise constant radiation intensity, see Fig. 10. Differ-
ences between the 1-D and 2-D transfer models (2-D effects)
reach 30 %.

The calculated relative radiation intensityĨ (z) at the ver-
tical wall AB of a snowpack is presented in Figs. 11–15 for
the various values of single scattering albedoωsnow

0 , the depth
H , the widthD = 2R and the surface albedosA(x) andAs .
We introduce the functionr(z), defining the deviation of the
function Ĩ (z) from its value in the central pointz = H /2:

r(z) = 100
[
1− Ĩ (z)/Ĩ (H/2)

]
%. (33)
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Fig. 11.Relative intensityĨ (z) in the direction�∗∗ (a) and the de-
viation r(z) (b) at the vertical wall AB of the homogeneous snow-
pack. The snow single scattering albedoωsnow

0 = 0.98, the width
D = 1 m, and depthH = 0.7 m , with and without black film.

This deviation shows whether it is possible to consider the
intensity Ĩ (z) as a constant function far from the upper and
lower boundaries of the pit. In other words it shows whether
the 1-D model is applicable to process measurement data
along vertical walls of snowpack.

It follows from Fig. 11 that the 1-D transfer model is not
applicable for experiments under the black film because in
this case the deviationr(z) is less than 10 % only near the
central pointz = H/2. Actually, the size of the sub-region,
where the deviationr(z) is less than 10 %, is equal to 7 cm
– if both bottom and opposite sides are covered by the black
film – and about 17 cm – if only the bottom is covered the
black film. The size of this sub-region for the case without
black film is about 55 cm.

The results for the pit without black film are shown in
Figs. 12–15. It should be stressed that in this case the ra-
diation registered on the wall AB is reflected by the bottom
and the opposite walls of the pit and depends on the optical
properties of the whole surface of the pit.

Let us consider homogeneous snowpack. Here the devia-
tion r(z) decreases as absorption decreases (see Fig. 12) and
the widthD of the pit increases (see Fig. 14). The function
r(z) only weakly depends on the depthH (see Fig. 13).

At small values of the probability of photon absorption
β = 1− ω0 and in broad pit, the deviationr(z) is less than
the threshold value 10 % far from bottom and upper edges of
the pit; here the 1-D model can be used. At the same time this
deviation is large near the bottom and upper edges (boundary
effects), where the 1-D model is not applicable.

The influence of heterogeneity of a snowpack on relative
radiation intensity is presented in Figs. 12–15. The thin pol-
luted layer in the centre of the pure snowpack, see Fig. 8,
leads to a minimum in reflected radiation intensity in the
vicinity of the layer (the shadow of the minimum is spread
over the whole wall, if absorption in snow is weak enough).
Let us define the width of the spread of the optical influence
of the polluted layer as the size of the sub-region, where the
relative intensity of the polluted layer differs more than by
threshold valueb% from the relative intensity of the homo-
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Fig. 12.Relative intensityĨ (z) in the direction�∗∗ (a) and the de-
viation r(z) (b) on the vertical wall AB of the heterogeneous snow-
pack. Single scattering albedõω0 = 1 out of the inserted polluted
layer, widthD = 1 m, depthH = 0.7 m, and no black film, for the
different values of the thicknesst of the inserted polluted layer.
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Fig. 13.Relative intensityĨ (z) in the direction�∗∗ (a) and the de-
viation r(z) (b) on the vertical wall AB of the homogeneous snow-
pack. The snow single scattering albedoωsnow

0 = 0.98, the width
D = 1 m, and no black film, for different depthsH .

geneous snowpack:

t∗(b) = min z − max z (34)

|p(z)| < b% z > H/2 |p(z)| < b%, z < H/2.

Here the pointz = H/2 is the central point of the whole
snowpack and the polluted layer and the functionp(z) is de-
fined by the relation:

p(z) = 100
[
1− Ĩ (z)/Ĩ0(z)

]
%. (35)

The functionĨ0(z) is the relative intensity in the homoge-
neous snowpack,̃I (z) is the relative intensity in the snow-
pack with the polluted layer. The widths of the spread of
polluted layer optical influencest∗ are presented in Table 1
for the different single scattering albedoωsnow

0 outside of the
polluted layer, the width of the polluted layert and thresh-
old valueb. One can see thatt∗ is always larger than the real
width of the polluted layert , especially when the outer snow
is clean. The error in width of the polluted layer (when de-
fined via the valuet∗) can reach 200–400 % (see Table 1),
especially if the polluted layer is thin. At the same time the
value of the minimum of the relative intensity in the polluted
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Table 1.The value of the minimum of the relative intensityĨmin and the width of the optical influence spread of the polluted layert∗ (cm)
for different values of the single scattering albedoωsnow

0 outside of the polluted layer at different widths of the polluted layert .

The single scattering The width of The The widtht∗ (cm) for
albedoωsnow

0 out the polluted layer minimum of different values ofb

of the polluted layer t (cm) the relative
intensity

Ĩmin b = 10 % b = 5 % b = 2 %

0.99 5.0 0.0237 5.1 6 7.65
0.995 5.0 0.0252 5.95 7.5 10.45
0.999 5. 0 0.0278 8.1 12.05 54.9

1.0 5.0 0.0298 12.6 28.45 68
1.0 2.0 0.0338 8.4 23.45 68
1.0 1.0 0.0398 5.5 10.6 27.5
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Fig. 14.Relative intensityĨ (z) in the direction�∗∗ (a) and the de-
viation r(z); (b) on the vertical wall AB of the homogeneous snow-
pack. The snow single scattering albedoωsnow

0 = 0.98, the depth
H = 0.7 m for, no black film, different widthsD.

layer depends on the width of this layer and the single scat-
tering albedo outside of this layer, see Fig. 15 and Table 1.
Note that the minimum decreases as the width of the layer
decreases and the albedo of surrounding medium increases.

5 Conclusions

We have presented the 2-D radiative transfer problem re-
lated to the reflection of solar light by a rectangular wide
pit in a thick snow layer. Simulation (by the parallel code
RADUGA-6) is based upon the mesh technique of the dis-
crete ordinate method when peaked scattering phase func-
tions of snow are exactly taken into account. A diffuse radi-
ation source, produced by a sheer film covering a snowpack,
is assumed. Such source models are close to those for real
ground measurements.

We have checked whether the 1-D model, when the re-
flected radiation intensity is considered as constant function
of the spatial coordinate in each homogeneous subregion of
a snowpack, is applicable to describe the real measurements.
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Fig. 15. Relative intensityĨ (z) in the direction�∗∗ on the verti-
cal wall AB of the heterogeneous snowpack. WidthD = 1 m, depth
H = 0.7 m, thickness of the inserted polluted layert = 5 cm, and no
black film, for different values of the single scattering albedoω̃snow

0
out of the inserted layer.

We found that the 2-D effects (brightening and shadowing)
on the top boundary of a snowpack near the vertical wall of
the pit are significant in spite of a diffuse radiation source.

The 2-D effects are significant on the vertical wall of the
pit in a homogeneous snowpack, especially near the upper
boundary. At the same time, 2-D effects are less evident at
large values of the pit’s width far from its bottom and top
boundaries, when snow is almost clean.

Additional 2-D effects arise in layered snowpack. Al-
though minimum in intensity on a vertical wall of a pit is
localized near a polluted layer, intensity out of minimum can
be influenced by this polluted layer.
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One can conclude that 1-D models can lead to large er-
rors in the simulation of the measured radiation intensity on
vertical walls of snow pits. The retrieval algorithms should,
therefore, be based upon the 2-D and 3-D radiative transfer
models.

Acknowledgements.This work is supported by research pro-
gram N 14 of Presidium of Russian Academy of Sciences.
A. Kokhanovsky thanks BMBF Project CLIMSLIP and F7 Project
SIDARUS for the support of this work and also to M. Schneebeli
for the suggestion to conduct this study. O. Nikolaeva thanks
L. P. Bass for the useful discussions related to this work. Both
authors are grateful to the reviewers for the valuable comments.

Edited by: R. Lindsay

References

Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J. C.,
Lefebvre, E., Fily, M., and Barnola, J. M.: Measurement of ver-
tical profiles of snow specific surface area with a 1cm resolution
using infrared reflectance: instrument description and validation,
J. Glaciology, 57, 201, 17–29, 2011.

Barker, H. W. and Korolev, A. V.: An update on blue snow holes, J.
Geophys. Res., 115, D18211,doi:10.1029/2009JD013085, 2010.

Carlson, B. G.: A method of characteristics and other improvements
in solutions methods for the transport equations, Nuclear Science
Engineering, 61, 408–425, 1976.

Chandrasekhar, S.: Radiative transfer, Oxford Press, Oxford, 1950.
Kokhanovsky, A. A. and Rozanov, V. V.: The retrieval of snow char-

acteristics from optical measurements, in: Light Scattering Re-
views , edited by: Kokhanovsky, A. A., v. 6, Springer Verlag,
Berlin, 2012.

Kokhanovsky, A., Rozanov, V. V., Aoki, T., Odermatt, D., Brock-
mann, C., Kruger, O., Bouvet, M., Drusch, M., and Hori, M.:
Sizing snow grains using backscattered solar light, Int. J. Remote
Sens., 32, 6975–7008, 2011.

Matzl, M. and Schneebeli, M.: Measuring specific surface area of
snow by near-infrared photography, J. Glaciology, 52, 558–564,
2006.

Nikolaeva, O. V, Bass, L. P., Germogenova, T. A., Kokhanovsky,
A. A., Kuznetsov, V. S., and Mayer, B.: The influence of neigh-
bouring clouds on the clear sky reflectance studied with the 3-D
transport code RADUGA, J. Quant. Spectr. Rad. Transfer, 94,
405–424, 2005.

Painter, T. H., Molotch, N. P., Cassidy, M., Flanner, M., and Stef-
fen, K.: Contact spectroscopy for determination of stratigraphy
of snow optical grain size, J. Glaciology, 53, 180, 121–127, 2007.

Saad, Y.: Iterative methods for sparse linear systems, University of
Minnesota, Minnesota, 2000.

Sokoletsky, L. G., Budak, V. P., Bass, L. P., Nikolaeva, O. V.,
Lunetta, R. S., Kuznetsov, V. S., and Kokhanovsky, A. A.: A
comparison of numerical and analytical radiative transfer solu-
tions for plane albedo in natural waters, J. Quant. Spectr. Rad.
Transfer, 110, 1057–1206, 2009.

The Cryosphere, 7, 657–666, 2013 www.the-cryosphere.net/7/657/2013/

http://dx.doi.org/10.1029/2009JD013085

