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Abstract. Observations over the last 30 yr have shown that
the sea ice extent in the Southern Ocean has slightly in-
creased since 1979. Mechanisms responsible for this positive
trend have not been well established yet. In this study we
tackle two related issues: is the observed positive trend com-
patible with the internal variability of the system, and do the
models agree with what we know about the observed inter-
nal variability? For that purpose, we analyse the evolution of
sea ice around the Antarctic simulated by 24 different gen-
eral circulation models involved in the 5th Coupled Model
Intercomparison Project (CMIP5), using both historical and
hindcast experiments. Our analyses show that CMIP5 models
respond to the forcing, including the one induced by strato-
spheric ozone depletion, by reducing the sea ice cover in the
Southern Ocean. Some simulations display an increase in sea
ice extent similar to the observed one. According to models,
the observed positive trend is compatible with internal vari-
ability. However, models strongly overestimate the variance
of sea ice extent and the initialization methods currently used
in models do not improve systematically the simulated trends
in sea ice extent. On the basis of those results, a critical role
of the internal variability in the observed increase of sea ice
extent in the Southern Ocean could not be ruled out, but cur-
rent models results appear inadequate to test more precisely
this hypothesis.

1 Introduction

The way climate models reproduce the observed character-
istics of sea ice has received a lot of attention (e.g.Flato,
2004; Arzel et al., 2006; Parkinson et al., 2006; Lefebvre and

Goosse, 2008a; Sen Gupta et al., 2009). One conclusion of
those studies is that the models’ skill is higher in the North-
ern Hemisphere than in the Southern Hemisphere. In partic-
ular, simulations performed for the 3rd Coupled Model Inter-
comparison Project (CMIP3) are generally able to reproduce
relatively well the timing of the seasonal cycle of Southern
Ocean sea ice extent, but fail in simulating the observed am-
plitude (Parkinson et al., 2006). Furthermore, the models are
usually unable to simulate the observed increase in Southern
Ocean sea ice extent (e.g.Arzel et al., 2006; Parkinson et al.,
2006), which is estimated to be of 11 200± 2680 km2yr−1

between 1979 and 2006 (Comiso and Nishio, 2008). At
the regional scale, the 1979–2006 trend in observed sea ice
extent is positive in all the sectors of the Southern Ocean,
except in the Bellingshausen–Amundsen seas sector, and the
Ross Sea sector exhibits the largest positive trend (e.g.Cava-
lieri and Parkinson, 2008; Comiso and Nishio, 2008). Lefeb-
vre and Goosse(2008a) have studied the trend simulated by
several CMIP3 models in the different sectors of the South-
ern Ocean, and they have shown that these models were not
able to reproduce this observed spatial structure.

The observed increase in sea ice extent during the past
decades is statistically significant at the 95 % significant level
(e.g.Cavalieri and Parkinson, 2008). However, its potential
causes are still debated. We do not know the part of this trend
that can be attributed to external forcing and the one that
is due to natural variability. This issue has already been ad-
dressed for the Arctic sea ice extent (e.g.Kay et al., 2011),
but remains poorly investigated for the Southern Ocean sea
ice.
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Several studies dealing with the potential role of the forced
response have pointed out the relationship between strato-
spheric ozone depletion over the past few decades (Solomon,
1999) and changes in the atmospheric circulation at high lat-
itudes (e.g.Turner et al., 2009; Thompson et al., 2011). In-
deed, variations of sea ice extent in the Southern Ocean are
strongly influenced by changes in the atmosphere circulation
(e.g.Holland and Raphael, 2006; Goosse et al., 2009b). How-
ever, the link between atmospheric circulation and the sea ice
extent integrated over the Southern Ocean is not straightfor-
ward (e.g.Lefebvre and Goosse, 2008b; Stammerjohn et al.,
2008; Landrum et al., 2012) and several recent studies came
to the conclusion that the stratospheric ozone depletion does
not lead to an increase in the sea ice extent (e.g.Sigmond
and Fyfe, 2010; Smith et al., 2012; Bitz and Polvani, 2012).
A second potential cause of the observed expansion of sea ice
cover relies on an enhanced stratification of the ocean which
would inhibit the heat transfer to the surface. This strength-
ened stratification is mainly due to a freshening of the surface
water, triggered by an increase in the precipitation over the
Southern Ocean, the melting of the ice shelf, and changes in
the production and transport of sea ice (e.g.Bitz et al., 2006;
Zhang, 2007; Goosse et al., 2009b; Kirkman and Bitz, 2010).
Liu and Curry(2010) pointed out that an enhanced hydrolog-
ical cycle may also increase the snowfalls at high latitudes in
the Southern Ocean. In that case, the snow cover on thicker
sea ice would raise the surface albedo, strengthen the insula-
tion between the atmosphere and the ocean, and thus would
protect the sea ice from melting. Nevertheless, this mecha-
nism mainly impacts thick ice because for thin ice, the higher
snow load leads to seawater flooding and to the formation of
snow ice. This decreases the effect of the initial increase in
snow thickness.

Another hypothesis suggests that the positive trend in the
Southern Ocean sea ice extent could arise from the internal
variability of the system that masks the warming signal in
the Southern Ocean that should characterize the response to
an increase in greenhouse gases concentration, according to
climate models. In this framework some recent studies have
drawn the attention to the importance of distinguishing the
lack of agreement between models from the lack of signifi-
cant signal (e.g.Tebaldi et al., 2011; Deser et al., 2012). A
trend can be significant from a statistical point of view, i.e. if
it is above a threshold of significance computed through a
statistical test. This does not imply that its value is outside of
the range that can be reached by the internal variability. For
instance,Landrum et al.(2012) have pointed out that large in-
terannual variability in simulated sea ice concentration leads
to late 20th Century trends in sea ice concentration that are
not always statistically significant for individual members
of an ensemble simulation. The observed positive trend of
Southern Ocean sea ice extent is statistically significant at
the 95 % level for the last 30 yr (e.g.Cavalieri and Parkin-
son, 2008). However, this time period is too short to prop-
erly assess the multidecadal variability of the system. Conse-

quently, we cannot estimate if this trend is exceptional or if
similar conditions have already occurred many times in the
recent past. The period spanning the last 30 yr during which
sea ice cover slightly expanded in the Southern Ocean might
follow a large melting that may have happened before 1979
(e.g.de la Mare, 1997, 2009; Cavalieri et al., 2003; Curran
et al., 2003; Cott́e and Guinet, 2007; Goosse et al., 2009b).
This suggests that multidecadal variability in the Southern
Ocean is large, but the available data do not allow a quan-
titative estimation of its value. Sparse data from the 1960s
are currently being processed (e.g.Meier et al., 2013), mak-
ing observations of the sea ice extent available over a longer
time period. Further analyses based on these prolonged time
series might therefore improve our knowledge of the internal
variability of the sea ice extent. Nevertheless, until longer
continuous time series are available, the results from model
simulations appear to be crucial to balance the lack of obser-
vations. Provided that models are compatible with the avail-
able observations, they can help addressing the issue whether
the observed positive trend in the Antarctic sea ice extent is
due to external forcing or to internal variability, or to both of
them.

The decreasing trend in many model simulations may be
due to a misrepresentation of the response of the circulation
and/or of the hydrological cycle to the forcing. Alternatively,
the observed changes may belong to the range of the trends
that can be attributed to the internal variability of the sys-
tem. In this hypothesis the positive trend observed over the
last decades is just one particular realization among all the
possible ones. A negative trend in one model’s simulations
does not imply necessarily a disagreement between model
and data as another simulation with the same model (another
member of an ensemble, for instance) would likely display a
positive one. Furthermore, if this is valid and if the internal
variability is to some extent predictable, an adequate initial-
ization of the system could lead to a better simulation of the
evolution of the sea ice cover around the Antarctic.

In this paper we examine outputs from general circulation
models (GCMs) following the 5th Coupled Model Intercom-
parison Project (CMIP5) protocol. To further study the role
of the internal variability in the increasing trend in sea ice ex-
tent in the Southern Ocean and in the apparent disagreements
between models and observations, we deal with two kinds of
simulations: historical and hindcast (or decadal) simulations.
The first ones are driven by external forcing and are initial-
ized without observational constraints. They are used to as-
sess how well each model simulates the observed mean state,
variability and trends in sea ice concentration and extent. The
objective is to study the possible links between the internal
variability of the system and the simulated trend in sea ice
extent. Our purpose is, on the one hand, to test if the internal
variability of the models agrees with the one of the observa-
tions. On the other hand, we check if the observed positive
trend stands in the range of trends provided by models inter-
nal variability. Analysing the mean state also appears to be
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important here because of its impact on the simulated vari-
ability (e.g.Goosse et al., 2009a). In addition to those points
related to the variability of the system, the way stratospheric
ozone is taken into account in models is also discussed to es-
timate if this has a significant impact on the simulated trends.
However, it is out of the scope of this study to discuss specific
mechanisms that link the sea ice extent and the stratospheric
ozone variations.

The second kind of simulations – the hindcasts – are also
driven by external forcing, but, in contrast to the historical
simulations, are initialized through data assimilation of ob-
servations. Consequently, these simulations allow us to as-
sess how the state of the system in the early 80s impacts the
variability of the models and their representation of the trend
over the last 30 yr. Idealized model studies have shown high
potential predictability at decadal time scales in the Southern
Ocean (e.g.Latif et al., 2010), i.e. models have determinis-
tic decadal variability, in particular for surface temperatures
(Pohlmann et al., 2004). The predictive skill of the models at
decadal time scales is also discussed here to see if this poten-
tial predictability is confirmed in real applications.

An initial investigation of the results of CMIP5 models
has shown that, in agreement with previous studies related
to CMIP3 models (e.g.Lefebvre and Goosse, 2008a), cur-
rent GCMs do not simulate a spatial structure of the trend
in sea ice extent similar to the observed one. This spatial
structure might as well arise from the internal variability. In
such a case, models would not have to fit the observed pattern
as discussed above. However, this remains a hypothesis and
we have chosen to focus on the sea ice extent in the whole
Southern Ocean rather than in the individual sectors to avoid
the additional complexity associated with the spatial struc-
ture of the changes. Models and observation data are briefly
presented in Sect.2. The time period we analyse is limited
by the available observations. For the Southern Ocean, val-
idation data are quite sparse before 1979. We therefore ex-
amine outputs between 1979 and 2005. Results provided by
models’ historical simulations are presented and discussed in
Sect.3. The analyses of hindcast simulations are described in
Sect.4. Finally, Sect.5 summarizes our results and proposes
conclusions.

2 Models and observation data

The models’ data were obtained from the CMIP5 (Taylor
et al., 2011) multi-model ensemble:http://pcmdi3.llnl.gov/
esgcet/home.htm. We have analysed results of historical sim-
ulations from 24 models which have the required data avail-
able. Among these models, 10 of them provide results for
hindcast simulations. Both historical and hindcast simula-
tions consist of ensemble simulations of various sizes. His-
torical runs finish in 2005 and we have decided not to prolong
them with the RCP (Representative Concentration Pathways)
simulations. Given that these latter contain less members,

it would have made the analysis of the internal variability
less reliable. Models and their respective modelling groups
are listed in Table1, along with the number of members in
each model historical and hindcast simulations. The models
have different spatial resolution and representation of physi-
cal processes. The spatial resolution of models’ components
is summarized in Table S1 of the Online Supplement Tables
of this paper. A reference is also given for more complete
documentation.

We give specific information on the treatment of ozone in
Table2 as a basis for the discussion presented in Sect.3.3.
The AC&C/SPARC ozone database (Cionni et al., 2011) is
used to prescribe ozone in most of the models without in-
teractive chemistry. In this database, stratospheric ozone for
the period 1979–2009 is zonally and monthly averaged. It
depends on the altitude and it takes solar variability into ac-
count. Whether they have interactive chemistry or prescribed
stratospheric ozone, the 24 models analysed in this study
thus take into account the stratospheric ozone depletion in
their historical simulations. This is an improvement since
the CMIP3 simulations. Indeed, nearly half of the CMIP3
models prescribed a constant ozone climatology (Son et al.,
2008). Nevertheless, some of the models have a coarse at-
mosphere resolution which sometimes does not encompass
the whole stratosphere. In that case, processes related to the
interaction between radiation and ozone as well as the ex-
change between the stratosphere and the troposphere may be
represented rather crudely.

The hindcast simulations were initialized from a state that
has been obtained through a data assimilation procedure,
i.e. constrained to be close to some observed fields. There
is a large panel of data assimilation methods, but most of the
models involved in CMIP5 assimilate observations through
a nudging. This method consists of adding to the model equa-
tions a term that slightly pulls the solution towards the ob-
servations (Kalnay, 2007). MIROC4h and MIROC5 incor-
porate observations in their data assimilation experiments
by an incremental analysis update (IAU). Details about this
method can be found inBloom et al.(1996). Table3 sum-
marizes the data assimilation method corresponding to each
model as well as the variable it assimilates. The relevant doc-
umentation was not available to us for CCSM4, FGOALS-
g2 and MRI-CGCM3. All the models for which we have
the adequate information, except BCC-CSM1.1 and CNRM-
CM5, assimilate anomalies. Those anomalies are calculated
for both model and observations by subtracting their respec-
tive climatology, computed over the same reference period.
Working with anomalies does not prevent model biases, but it
avoids the initialization of the model with a state which is too
far from its own climatology and thus limits model drift (e.g.
Pierce et al., 2004; Smith et al., 2007; Troccoli and Palmer,
2007; Keenlyside et al., 2008; Pohlmann et al., 2009), as dis-
cussed in Sect.4.

www.the-cryosphere.net/7/451/2013/ The Cryosphere, 7, 451–468, 2013
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Table 1.Model name, Institute and number of members in models historical and hindcast simulations.

Model name Institute ID Modelling center Number of
members in
historical

Number of
members in
hindcasts

BCC-CSM1.1 BCC Beijing Climate Center, China Meteorological Administration 3 4
CanESM2 CCCMA Canadian Centre for Climate Modelling and Analysis 5 –
CCSM4 NCAR National Center for Atmospheric Research 6 10
CNRM-CM5 CNRM-

CERFACS
Centre National de Recherches Meteorologiques / Centre Europeen de
Recherche et Formation Avancees en Calcul Scientifique

10 10

CSIRO-Mk3.6.0 CSIRO-
QCCCE

Commonwealth Scientific and Industrial Research Organization in
collaboration with Queensland Climate Change Centre of Excellence

10 –

EC-EARTH EC-EARTH EC-EARTH consortium 1 –
FGOALS-g2 LASG-CESS LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

and CESS,Tsinghua University
1 3

FGOALS-s2 LASG-IAP LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 3 –
GFDL-CM3 NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory 5 –
GFDL-ESM2M NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory 1 –
GISS-E2-R NASA GISS NASA Goddard Institute for Space Studies 5 –
HadCM3 MOHC Met Office Hadley Centre 10 10
HadGEM2-CC MOHC Met Office Hadley Centre 1 –
HadGEM2-ES MOHC Met Office Hadley Centre 1 –
INM-CM4 INM Institute for Numerical Mathematics 1 –
IPSL-CM5A-LR IPSL Institut Pierre-Simon Laplace 4 6
IPSL-CM5A-MR IPSL Institut Pierre-Simon Laplace 1 –
MIROC4h MIROC Atmosphere and Ocean Research Institute (The University of Tokyo),

National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

3 3

MIROC5 MIROC Atmosphere and
Ocean Research Institute (The University of Tokyo), National Institute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology

1 6

MIROC-ESM MIROC Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean
Research Institute (The University of Tokyo), and National Institute for Environmental
Studies

3 –

MIROC-ESM-CHEM MIROC Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean
Research Institute (The University of Tokyo), and National Institute for Environmental
Studies

1 –

MPI-ESM-LR MPI-M Max Planck Institute for Meteorology 3 10 (3 in 30-
yr hindcast)

MRI-CGCM3 MRI Meteorological Research Institute 3 3
NorESM1-M NCC Norwegian Climate Centre 3 –

The model skill is measured through its representation of
the sea ice concentration (the fraction of grid cell covered
by sea ice) and sea ice extent (the sum of the areas of all
grid cells having an ice concentration of at least 15 %). We
consider the sea ice extent over the whole Southern Ocean
and for models it has been calculated on the original models’
grids. For each model providing an ensemble of simulations,
the model mean is the average over the members belonging
to the ensemble. The multi-model mean is then derived by
computing the mean of the individual models means without
applying any weighting to the models. Sea ice concentration
comes from the satellite observation of the National Snow
and Ice Data Center (NSIDC) (Comiso, 1999, updated 2008).
The sea ice extent is then derived from this dataset following
the method described inCavalieri et al.(1999) and applied
by Cavalieri and Parkinson(2008) for the period 1979–2006.

3 Historical simulations

The historical simulations are driven by external forcing and
are initialized without observational constraints. These sim-
ulations are here used to assess the mean state and the vari-
ability of the models using recent observations.

3.1 Mean state and variability

In a first step, we analyse the mean sea ice concentration over
the period 1979–2005. Figure1 shows the multi-model mean
of sea ice concentration in the Southern Ocean and compares
the simulated sea ice edge to the observed one. Results are
given for February (September), the month during which the
observed sea ice extent reaches its minimum (maximum). In
February the multi-model mean underestimates the sea ice
cover in the Bellingshausen and Amundsen Seas as well as in
the eastern part of the Ross Sea. In the Western Ross Sea and
in small parts of the Weddell Sea and of the Indian Ocean
sector, the multi-model mean overestimates the sea ice ex-
tent. In September the shape of the sea ice edge computed

The Cryosphere, 7, 451–468, 2013 www.the-cryosphere.net/7/451/2013/
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Table 2. Summary of atmosphere vertical resolution and stratospheric ozone representation. Models in bold are the ones with interactive
chemistry, activated during the CMIP5 simulations or only activated in an offline simulation used to compute the ozone dataset prescribed in
the CMIP5 simulations.

Model name Atmosphere
vertical resolution

Stratospheric ozone

BCC-CSM1.1 26 layers
Top layer at 2.9 hPa

Prescribed;
AC&C/SPARC ozone database (Cionni et al., 2011).

CanESM2 35 layers
Top layer at 1 hPa

Prescribed;
AC&C/SPARC ozone database (Cionni et al., 2011).

CCSM4 26 layers Prescribed;
Data from an offline simulation of the CAM3.5 model
with a fully interactive chemistry (Landrum et al.,
2012).

CNRM-CM5 31 layers
Top layer at 10 hPa

Interactive chemistry (Voldoire et al., 2012).

CSIRO-Mk3.6.0 18 layers Prescribed;
AC&C/SPARC ozone database (Cionni et al., 2011).

EC-EARTH 62 layers
Top layer 5 hPa

Prescribed;
AC&C/SPARC ozone database (Cionni et al., 2011).

FGOALS-g2 26 layers No information available to us.
FGOALS-s2 26 layers

Top layer at 2.19 hPa
No information available to us.

GFDL-CM3 48 layers Interactive chemistry (Donner et al., 2011).
GFDL-ESM2M 24 layers Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).
GISS-E2-R 40 layers

Top layer at 0.1 hPa
Prescribed;
Observational analyses ofRandel and Wu(1999).

HadCM3 19 layers Prescribed;
Observational analyses ofRandel and Wu(1999).

HadGEM2-CC 60 layers
Top layer at 0.006 hPa

Prescribed;
AC&C/SPARC ozone database (Cionni et al., 2011).

HadGEM2-ES 38 layers
Top layer at 4 hPa

Prescribed;
AC&C/SPARC ozone database (Cionni et al., 2011).

INM-CM4 21 layers
Top layer at 10 hPa

Prescribed;
AC&C/SPARC ozone database (Cionni et al., 2011).

IPSL-CM5A-LR 39 layers
Top layer at 0.04 hPa

Prescribed;
Data from an offline simulation of the LMDz-
REPROBUS model (Szopa et al., 2012).

IPSL-CM5A-MR 39 layers
Top layer at 0.04 hPa

Prescribed;
Data from an offline simulation of the LMDz-
REPROBUS model (Szopa et al., 2012).

MIROC4h 56 layers
Top layer at 40 km

Prescribed;
Data from an offline simulation ofKawase et al.(2011).

MIROC5 40 layers
Top layer at 3 hPa

Prescribed;
Data from an offline simulation ofKawase et al.(2011).

MIROC-ESM 80 layers
Top layer at 0.003 hPa

Prescribed;
Data from an offline simulation ofKawase et al.(2011).

MIROC-ESM-CHEM 80 layers
Top layer at 0.003 hPa

Interactive chemistry (Watanabe et al., 2011).

MPI-ESM-LR 47 layers
Top layer at 0.01 hPa

Prescribed;
AC&C/SPARC ozone database (Cionni et al., 2011).

MRI-CGCM3 48 layers
Top layer at 0.01 hPa

Interactive chemistry (Yukimoto et al., 2011).

NorESM1-M 26 layers
Top layer at 2.9 hPa

No information available to us.

www.the-cryosphere.net/7/451/2013/ The Cryosphere, 7, 451–468, 2013



456 V. Zunz et al.: CMIP5 1979–2005 Southern Ocean sea ice

Table 3.Data assimilation methods used by the 10 models providing hindcast simulations.

Model name Data assimilation method References

BCC-CSM1.1 Nudging of 3-D ocean temperature (raw data). Gao et al.(2012)
CCSM4 Information not available to us
CNRM-CM5 Nudging of 3-D ocean temperature and salinity (raw data)

as a function of depth and space, sea surface temperature and
salinity nudging (raw data).

ftp://ftp.cerfacs.fr/pub/globc/
exchanges/cassou/Michael/
AspenCMIP5 wrkshopcassou
2.ppt

FGOALS-g2 No information available to us.
HadCM3 Nudging of 3-D ocean temperature and salinity

(anomalies), nudging of 3-D atmosphere temperature and
wind speed, nudging of surface pressure.

http://www.met.reading.ac.
uk/∼swr06jir/presentations/
JIR deptseminar.pptx

IPSL-CM5A-LR Nudging of sea surface temperature (anomalies). Swingedouw et al.(2012)
MIROC4h Incremental analysis update (IAU) of 3-D ocean

temperature and salinity (anomalies).
Chikamoto et al.(2012)

MIROC5 Incremental analysis update (IAU) of 3-D ocean
temperature and salinity (anomalies).

Chikamoto et al.(2012)

MPI-ESM-LR Nudging of 3-D ocean temperature and salinity
(anomalies), except in the area covered by sea ice.

Matei et al.(2012b)

MRI-CGCM3 No information available to us.

from multi-model mean roughly fits the observations. How-
ever, the multi-model mean overestimates the sea ice cover
everywhere except in the Indian Ocean sector and in the east-
ern part of the Ross Sea sector.

This reasonable multi-model mean extent is the result of
the average of a wide range of individual behaviours. To ac-
count for this variety of mean model states, we have plot-
ted, for individual models, the mean of sea ice extent of each
month of the year during the period 1979–2005. Figure2a
confirms that the multi-model mean fits quite well the obser-
vations, especially during winter months. However, the sea-
sonal cycle of sea ice extent of the various models is largely
spread around the observations and the timing of the mini-
mum/maximum sea ice extent varies from one model to the
other. In summer, 16 of the models underestimate the sea ice
extent. In particular, CNRM-CM5 and MIROC5 are nearly
sea ice free during summer. The latter strongly underesti-
mates the ice extent all over the year, and its winter sea ice
extent is smaller than some models’ summer sea ice extent.
On the contrary, CCSM4 and CSIRO-Mk3.6.0 overestimate
the sea ice extent during the whole year, especially during
summer. In winter, when the simulated sea ice cover reaches
its maximum, the sea ice extent ranges from approximately
5×106 to 24×106 km2, while the observations display a sea
ice extent of about 17×106 km2. 10 models underestimate
the sea ice extent in September.

Since the internal variability of the climate system may
also have played a role in the observed expansion of sea ice
cover, we assess its representation in models by computing
the standard deviation of the sea ice extent for each month
of the year, over the period 1979–2005 (Fig.2b). Here, to
obtain both the ensemble mean of each model and the multi-

model mean of standard deviations, an average of the individ-
ual standard deviations has been performed. We have chosen
to detrend data before computing the standard deviation in
order to suppress the direct impact of a trend on the stan-
dard deviation that could obscure our analysis of the poten-
tial links between those two variables discussed in Sect.3.2.
The monthly standard deviation indicates that the variabil-
ity strongly differs between models. In February, 15 mod-
els have a standard deviation higher than the observed one,
and all of the 24 models overestimate the standard deviation
during September. Consequently, the multi-model mean of
standard deviations does not fit very well the observations.
It overestimates the standard deviation all over the year, par-
ticularly during winter. The interannual variability in some
models is significantly larger during winter months than dur-
ing summer months. As a result these models have a pro-
nounced seasonal cycle of their standard deviation, in con-
trast to the observations, which display a relatively constant
value throughout the year. The causes of the overestimated
winter variability of modelled sea ice have not been iden-
tified yet. We have performed some preliminary analyses
that indicate that, for some models, changes in the oceanic
convection could be associated to the higher winter variabil-
ity (not shown). The oceanic or the atmospheric circulations
may also play a role in the high winter sea ice variability sim-
ulated by the models. However, this aspect is out of the scope
of the present study and it will be addressed in future work.

The analysis of Fig.2b tells us two important things. On
the one hand, it points out the inability of the majority of
models to reproduce the observed interannual variability. In
particular, they all overestimate the winter interannual vari-
ability. On the other hand, it highlights the fact that some

The Cryosphere, 7, 451–468, 2013 www.the-cryosphere.net/7/451/2013/

ftp://ftp.cerfacs.fr/pub/globc/exchanges/cassou/Michael/Aspen_CMIP5_wrkshop_cassou_2.ppt
ftp://ftp.cerfacs.fr/pub/globc/exchanges/cassou/Michael/Aspen_CMIP5_wrkshop_cassou_2.ppt
ftp://ftp.cerfacs.fr/pub/globc/exchanges/cassou/Michael/Aspen_CMIP5_wrkshop_cassou_2.ppt
ftp://ftp.cerfacs.fr/pub/globc/exchanges/cassou/Michael/Aspen_CMIP5_wrkshop_cassou_2.ppt
http://www.met.reading.ac.uk/~swr06jir/presentations/JIR_dept_seminar.pptx
http://www.met.reading.ac.uk/~swr06jir/presentations/JIR_dept_seminar.pptx
http://www.met.reading.ac.uk/~swr06jir/presentations/JIR_dept_seminar.pptx


V. Zunz et al.: CMIP5 1979–2005 Southern Ocean sea ice 457

Fig. 1. Multi-model mean of sea ice concentration, computed from historical simulations over the period 1979–2005. White (black) line
refers to the sea ice edge, i.e. the 15 % concentration limit of the multi-model ensemble mean (observations,Comiso, 1999, updated 2008).
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Fig. 2. (a) Monthly mean of Southern Ocean sea ice extent, computed over the period 1979–2005.(b) Standard deviation of detrended
Southern Hemisphere sea ice extent, computed over the period 1979–2005 for each month of the year. Colours correspond to the ensemble
mean of historical simulations from 24 different models. Dotted lines refer to models that provide both historical and hindcast simulations, but
here results are only from historical simulations. Orange bold line is the multi-model mean. Black bold line refers to observations (Cavalieri
and Parkinson, 2008).

models are characterized by a very different magnitude of
the interannual variability from one season to the other. In
order to avoid a loss of information, we have thus chosen
in the following analysis to work with seasonal mean rather
than with annual mean and to treat the summer and winter
separately.

3.2 Trend over the period 1979–2005

For the historical simulations, we have computed for each
member of the ensemble the trend from 1979 to 2005 of
summer (average of January, February and March) and win-
ter (average of July, August and September) sea ice extent.
Each trend has been computed through a linear regression of
the yearly values (between 1979 and 2005) of the summer or
winter sea ice extent. We have checked if the trends were sig-

nificant at the 95 % level (see Table S2 and S3 of the Online
Supplement Tables of this paper). The autocorrelation of the
residuals has been taken into account in the computation of
the standard deviation of each trend as well as in the num-
ber of degrees of freedom used to determine the threshold of
significance, as proposed bySanter et al.(2000) and applied,
for instance, byStroeve et al.(2012). In addition to a direct
evaluation of model skill, one of our goals is to analyse if
a relationship can be established between the mean state, the
interannual variability simulated by the model and the ability
to reproduce the observed trend.

Observations show that the summer sea ice extent ex-
panded between 1979 and 2005 at a rate of approximately
149 000 km2 per decade. The seasonal trends of the obser-
vations are not statistically significant at the 95 % level,
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Fig. 3. Sea ice extent trend for the period 1979–2005 over the whole Southern Ocean vs. mean(a, c) and standard deviation(b, d). The
first row corresponds to summer (JFM), the second to winter (JAS). The different colours correspond to the historical simulations from 24
different models. For each colour, the small dots refer to model individual members and the symbol specified in the legend is for the model
ensemble mean. The number of members in each model is indicated in brackets in the legend. Orange refers to multi-model means, for which
the diamond sign is for the average over all the models, circle sign is for the mean of models with interactive chemistry (in bold in Table2)
and triangle sign is for the mean of models with 35 atmospheric levels or more on the vertical. Black square is for the observations (Cavalieri
and Parkinson, 2008), surrounded by 2 standard deviations (dark-grey rectangle). Horizontal (vertical) solid black line with the light-grey
shade refers to the trend (mean/standard deviation) of the observations along with 2 standard deviations. The computed standard deviation of
the observed trend takes into account the autocorrelation of the residuals (see for instanceSanter et al., 2000; Stroeve et al., 2012).

in contrast to the trend of the annual mean (not shown).
In Fig. 3a it appears that almost all of the simulations
performed with the 24 models fail in simulating the sign
of this observed trend. Only three models (FGOALS-g2,
GFDL-CM3 and GISS-E2-R) have an ensemble mean with
a positive trend, while most of them simulate a relatively
large negative trend. For four additional models (CCSM4,
CSIRO-Mk3.6.0, HadCM3 and MRI-CGCM3), some en-
semble members display a positive trend. Nevertheless,
CCSM4, CSIRO-Mk3.6.0 and FGOALS-g2 have a mean
summer sea ice extent much larger than what is observed,
while GFDL-CM3 and GISS-E2-R are well below the ob-
servations. Moreover, CCSM4 and CSIRO-Mk3.6.0 have an
interannual variability which is on average twice the one of
the observations.

For summer sea ice extent, some given models display
a standard deviation that could be quite different between
members (Fig.3b). Besides, the individual means of ensem-
ble members performed with the same model are relatively
similar (Fig.3a). The range of values reached by the trends of
the different members belonging to one model’s simulation
also differs strongly from one model to the other (Fig.4a).
We quantify the various ranges provided by the different
models, thanks to the ensemble standard deviation of the
trends, for models that have at least 3 members in their his-
torical simulations. This ensemble standard deviation of the
trends stands between 26 000 km2 per decade for MIROC-
ESM and 470 000 km2 per decade for BCC-CSM1.1 (see Ta-
ble S2 of the Online Supplement Tables of this paper). On
average the ensemble standard deviation of the trend equals
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Fig. 4. Ensemble mean, minimum and maximum value of the sea ice extent trend for the period 1979–2005 over the whole Southern Ocean
for summer(a) and winter(b). The different colours correspond to the historical simulations from the 15 models that have at least 3 members
in their ensemble. Dots refer to the ensemble means of the trends. Horizontal bars show the minimum and the maximum value of the
trend reached by the members of one model ensemble. Solid black line is for the trend of the observations (Cavalieri and Parkinson, 2008)
surrounded by 1 standard deviation (dark grey shade) and 2 standard deviations (light grey shade). The computed standard deviation of the
observed trend takes into account the autocorrelation of the residuals (see for instanceSanter et al., 2000; Stroeve et al., 2012).

166 000 km2 per decade. If we consider this average as an es-
timate of the range of the trend that can be associated with in-
ternal variability, the observed positive trend of 149 000 km2

per decade is well among the values that could be due to natu-
ral processes alone and compatible with the available ensem-
ble of model results. Nevertheless, given that many models
have an interannual variability that is much larger than the
one of the observations, it is not sure whether the range of
the trends they provide is representative of the reality.

The comparison between the trend, the mean extent, and
standard deviation does not display any clear link in summer
between those variables: some of the models that simulate
an increase in the ice extent in at least one of their members

overestimate the observed mean and variability, some under-
estimate it. Figure3b also underlines the fact that models
with little ice during summer often have a small interannual
variability of summer sea ice extent, in agreement with re-
sults ofGoosse et al.(2009a). Moreover, the spread of the
sea ice extent trends and standard deviations of members be-
longing to one model ensemble grows with the mean summer
sea ice extent.

Winter sea ice extent also increased between 1979 and
2005 by approximately 86 000 km2 per decade. Two mod-
els have an ensemble mean whose trend is positive: GFDL-
CM3 and IPSL-CM5A-MR (Fig.3c). The ensemble mean of
GFDL-CM3 (5 members) has a positive trend which is close
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(a) 1981−2005 JFM hindcast VS. historical trend (b) 1981−2005 JAS hindcast VS. historical trend
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Fig. 5.Hindcast vs. historical Southern Ocean sea ice extent trend for summer(a) and winter(b), computed over the period 1981–2005. The
different colours refer to the different models. For each model the dot refers to the ensemble mean of the trends and the horizontal (vertical)
bar shows the ensemble mean of the standard deviations of the trends in the historical (hindcast) simulations. Black square is for the trend
of the observations (Cavalieri and Parkinson, 2008). The vertical and the horizontal black bars are for the standard deviation of the observed
trend which are barely distinguishable due to their small values. Dashed line represents the liney(x) = x. The computed standard deviations
of the trends takes into account the autocorrelation of the residuals (see for instanceSanter et al., 2000; Stroeve et al., 2012).

to the observed one, but it strongly underestimates the mean
winter sea ice extent. It is also an ensemble whose mem-
bers are highly scattered along the trend axis, three having
a positive trend (from approximately 470× 103 to 1300×
103 km2decade−1) and two having a negative one (from ap-
proximately−290×103 to −1120×103 km2decade−1). The
IPSL-CM5A-MR ensemble is made up of one member only.
Its trend and its mean are both close to observations.

The 22 remaining models all have an ensemble mean
showing a decrease in winter sea ice extent. However, as no-
ticed for summer, a few of them have ensemble members
displaying positive trends (BCC-CSM1.1, CSIRO-Mk3.6.0,
IPSL-CM5A-LR and MRI-CGCM3). Two of three BCC-
CSM1.1 historical simulation members present a positive
trend. The last one has a very negative trend, reaching
−2520×103 km2decade−1. Contrarily, the mean sea ice ex-
tent does not vary much between members of BCC-CSM1.1,
all of them being larger than the observations. CSIRO-
Mk3.6.0 ensemble contains 10 members. They all simulate
a mean sea ice extent in winter relatively close to the ob-
servations. Only one member shows an increase in sea ice
extent.

Figure3d confirms that all the 24 models overestimate the
interannual variability in winter. It also underlines the fact
that simulations that have an ensemble mean of the trends
close to the observed one have generally a standard deviation
which is much larger than the one of the observations. IPSL-
CM5A-MR single member, which has a trend and a mean

state relatively close to the observations, has a standard de-
viation equals to 0.85×106 km2, while the observed stan-
dard deviation stands around 0.25×106 km2. GFDL-CM3 is
a model that has a very high standard deviation (around 4
times the standard deviation of the observations). It is also a
model with a large range of trends reached by its members
(Fig. 4b).

For winter sea ice extent, considering again models
that have at least 3 members in their historical sim-
ulations, the ensemble standard deviation of the trends
varies between 100×103 km2decade−1 for FGOALS-s2 and
1 704×103 km2decade−1 for BCC-CSM1.1 (see Table S3
of the Online Supplement Tables of this paper). On aver-
age, this ensemble standard deviation of the trends equals
428 000 km2decade−1. As for summer, if this value is repre-
sentative of the range of trends due to internal variability, the
observed trend of 86 000 km2 per decade appears compatible
with natural processes and the model ensemble. However, the
model biases in their representation of the variance in winter
during the last 30 yr is even larger than in summer, making
this estimate of the uncertainty based on model results very
questionable.

From this analysis of historical simulations, it appears
that among all the simulations analysed, only a few of them
present a positive trend of the sea ice extent, for both summer
and winter. 12 members over 85 have a positive trend over
the last 30 yr in summer and 10 over 85 have a positive trend
in winter. Those positive values appear thus as relatively rare
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Fig. 6. Correlation between Southern Ocean summer (JFM) sea ice extent in model results and observations. For each model the correlation
is computed from a series of 4 hindcasts ensembles, initialized every 5 yr between January 1981 and January 1996 (between November 1980
and November 1995 for HadCM3). In each plot the dashed line refers to the 95 % significance level.

events, but are within the range of internal variability accord-
ing to model results. The important point here is that these
positive trends are generally found in models that overesti-
mate the interannual variability. Because of their high inter-
annual variability, such models can provide a large range of
possible trends, some of them agreeing with the observations.

3.3 Stratospheric ozone

CMIP5 models all take into account the stratospheric ozone
depletion that occurred during the last 30 yr (see Table2
for details). However, this improvement compared to CMIP3
brought to the stratospheric ozone does not lead to major
changes in their representation of the trend in sea ice extent
in the Southern Ocean.
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Fig. 7.Correlation between Southern Ocean winter (JAS) sea ice extent in models results and observations. For each model the correlation is
computed from a series of 4 hindcasts ensembles, initialized every 5 yr between January 1981 and January 1996 (between November 1980
and November 1995 for HadCM3). In each plot the dashed line refers to the 95 % significance level.

To go a step further, we discuss if the way stratospheric
ozone is treated has an influence on the results. The mod-
els with interactive chemistry (activated during the simula-
tion or used in an offline simulation to compute the ozone
dataset) and the ones with higher atmospheric vertical reso-
lution (≥ 35 layers) have on average a slightly smaller extent
of sea ice in summer (Fig.3a, respectively circle and trian-
gle orange symbols). In winter the models with high atmo-

spheric resolution underestimate the sea ice extent, while the
ones with interactive chemistry overestimate it (Fig.3c). The
influence on the trend is hardly detected. This shows that, on
average, the inclusion of an interactive chemistry or an in-
creased vertical resolution does not make major differences
compared to other models.
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Looking now at individual models, we have seen in
Sect. 3.2 that CSIRO-Mk3.6.0, GFDL-CM3 and IPSL-
CM5A-MR provide results for sea ice extent trends in win-
ter in relatively good agreement with observations, but with
much too high a standard deviation for GFDL-CM3 and
IPSL-CM5A-MR. CSIRO-Mk3.6.0 has a quite coarse resolu-
tion in its atmosphere component (18 vertical layers) and pre-
scribes the ozone from the AC&C/SPARC database. GFDL-
CM3 and IPSL-CM5A-MR have a finer resolution (48 and 39
layers, respectively). They both have interactive chemistry,
but IPSL-CM5A-MR treats the interaction between ozone
and climate through a semi-offline approach. Again, from
the available ensemble, the representation of ozone in mod-
els does not seem to be the dominant factor influencing the
simulation of the trend in sea ice extent.

4 Hindcast simulations

We have shown in Sect.3 that the lack of agreement between
simulated and observed variance over the last 30 yr does not
allow us to confidently establish the link between the inter-
nal variability and the positive trend found in observations of
the sea ice extent. Nevertheless, if this link exists and if the
internal variability in the Southern Ocean is in some way pre-
dictable, an adequate initialization of the system should im-
prove the results of the simulated evolution of the sea ice ex-
tent. This hypothesis is tested in this section using the hind-
cast simulations performed in the framework of CMIP5. In
contrast to the historical simulations, the hindcasts are ini-
tialized through data assimilation of observations. The data
assimilation method and the variables assimilated vary from
one model to the other, as summarized in Table3.

4.1 Impact of the initialization on the simulated trends

The models used for the hindcast analysis have been chosen
on the basis of the availability of their results. Fortunately,
we see on Fig.2 that these 10 models (dotted lines) constitute
a subset which represents reasonably well the variety of gen-
eral circulation models. In order to outline the effect of the
initialization on the simulated trend in sea ice extent for each
model, we have computed the ensemble mean of the trends
in hindcast simulations spanning the period 1981–2005, for
winter and summer extent, and compared them to the ones
from historical simulations (i.e. uninitialized) over the same
time period. This period has been chosen as no hindcast was
started in 1979. Here the hindcasts were initialized in Jan-
uary 1981 for all the models except HadCM3, whose hind-
cast members were started in November 1980. On Fig.5,
showing the trend in sea ice extent computed from hindcast
simulations against the one computed from historical simula-
tions, a dot located on the liney(x) = x means that the trend
in hindcast simulation equals the one of historical simulation.
If the trend simulated by hindcast is greater (smaller) than the

one computed from historical simulation, then the dot will be
above (below) the liney(x) = x.

Regarding summer sea ice extent (Fig.5a), the initializa-
tion through a data assimilation procedure does not improve
systematically the simulated trend. HadCM3, MIROC4h and
MRI-CGCM3 hindcasts trends are closer to the observa-
tion than are their historical trends, but they remain neg-
ative. BCC-CSM1.1, CNRM-CM5, IPSL-CM5A-LR and
MPI-ESM-LR simulate a more negative trend in their hind-
casts than in their historical runs. FGOALS-g2 has a largely
positive trend in its hindcast, while the trend in its histori-
cal simulation is slightly negative. CCSM4 hindcast displays
a slightly positive trend, while the one of its historical simu-
lation is negative.

When initialized through data assimilation of obser-
vations, CCSM4, FGOALS-g2, CNRM-CM5 and BCC-
CSM1.1 present a systematic drift (not shown). This drift
is likely responsible for the high positive or negative trends
found in the hindcasts of these models. Such a drift has its
origin in the initialization of a model with a state that forces
it to produce much more (or less) sea ice than its climatolog-
ical mean. After the initialization, the model does not have
any constraint from observations anymore, and the simula-
tion tends to go back towards the model’s climatology. We
do not have information about the method used to initialize
the models FGOALS-g2 and CCSM4. The use of raw data
in the initialization procedures applied to BCC-CSM1.1 and
to CNRM-CM5 may partly account for the drift occurring in
their hindcast simulations.

Similarly, for winter sea ice extent, the initialization with
observations does not systematically lead to a simulated
trend in better agreement with observations. Figure5b shows
that hindcast simulations of MIROC4h, MIROC5 and MRI-
CGCM3 have trends that are slightly closer to the observa-
tion than are the historical trends. The 7 other models per-
form worse or do not offer any improvement when they are
initialized with observations. As in the case of summer sea
ice extent (Fig.5a), FGOALS-g2 simulates a large positive
trend in its winter sea ice extent when it is initialized with
observations, and CNRM-CM5 has a more negative trend in
its hindcast for the same reasons as the one proposed above.
For BCC-CSM1.1, the hindcast trend in winter sea ice extent
does not differ significantly from the historical trend.

Results presented in Fig.5 show that the initialization of
models through data assimilation of observation does not
bring significant improvement on the simulated trend. When
raw data are used instead of anomalies, the initialization ap-
parently deteriorates the trend in sea ice extent simulated by
models. Corrections can be introduced to take into account
that kind of bias (e.g.Troccoli and Palmer, 2007; Vannitsem
and Nicolis, 2008). Nevertheless, such a procedure requires
a larger amount of initialized simulations spanning several
decades. Proposing such a method for sea ice and analysing
how it would impact the analysis of the trend is out of the
scope of our study.
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4.2 Correlation between models and observations

The forecast skill of the models can also be assessed by
analysing the predictions a few years ahead. To do so, for
each model, we have computed the anomaly correlation co-
efficient used inPohlmann et al.(2009):

COR(t) =

∑N
i=1

∑M
j=1

[
xij (t) − x̄

][
oi(t) − ō

]√∑N
i=1

∑M
j=1

[
xij (t) − x̄

]2∑N
i=1M

[
oi(t) − ō

]2
, (1)

wheret is the lead time (in years),xij are the hindcast simu-
lations,i is the ensemble index (different indices correspond
to different times when the hindcast simulations are started)
andj is the index of the member belonging to the ensem-
ble i. N is the number of ensembles andM is the number of
members within each ensemble.oi is the observation cover-
ing the time period spanned by the ensemblei. The overbar
stands for the climatological mean of the uninitialized (his-
torical) simulation and of the observations, over the analysed
period (here 1981–2005).

The correlation between hindcast simulations and obser-
vations is shown for summer (Fig.6) and winter (Fig.7) sea
ice extent. This correlation has been computed from a se-
ries of 4 hindcasts ensemble simulations, initialized every
5 yr between January 1981 and January 1996 (every 5 yr be-
tween November 1980 and November 1995 for HadCM3).
The 95 % significance level is computed using a t-test. This
significance level varies from one model to another because
of the different number of members in each model ensemble
(see Table1).

In summer, none of the 10 models analysed here has
a significant correlation for the first year after initialization
(Fig. 6). HadCM3, IPSL-CM5A-LR and MIROC4h never
outstrip the 95 % significant level. The 7 remaining models
present one or two peaks of significant correlation several
years after the initialization, and almost all the models have
a negative correlation during most of the 10 yr. The emer-
gence of correlation later on in the simulation can occur ran-
domly, or it might still be a consequence of the initializa-
tion. Indeed, models might undergo an initial shock due to
the initialization procedure before getting stabilized and ben-
efit from the initialization. For winter sea ice extent (Fig.7),
the correlation is significantly positive during the first year
for CCSM4, MIROC5 and MPI-ESM-LR models, indicat-
ing some predictive skill. Then the correlation decreases and
reaches negative values. A negative correlation is also found
in the other models. The significant correlation after one year
in three models in winter likely arises from the initialization,
but the memory of the system is apparently not sufficient to
keep a significant correlation during the following years. Un-
like in the Arctic, sea ice around the Antarctic is relatively
young. It disappears almost entirely during the melting sea-
son and recovers during winter months, preventing this sea
ice to retain information from initialization. The ocean can
keep the information over longer periods, but in the available

experiments its role appears weak during the first year after
initialization. Still, it may be responsible for the emergence
of correlation several years after initialization, for both sum-
mer and winter sea ice extent, through local interactions or
teleconnections with remote areas.

In any case, the skill of model predictions for Southern
Ocean sea ice extent is quite poor compared to the one ob-
tained for other variables. For instance,Kim et al. (2012)
have analysed hindcasts results from seven CMIP5 models
and have shown that these models have a high skill in fore-
casting surface temperature anomalies over the Indian, North
Atlantic and Western Pacific oceans up to 6–9 yr ahead.
Matei et al.(2012a) have pointed out a significant correlation
between hindcast and observations for the Atlantic Merid-
ional Overturning Circulation (AMOC) strength at 26.5◦ N
up to 4 yr ahead.

5 Summary and conclusions

From 24 CMIP5 models available to date, we have analysed
results of historical and hindcast simulations. This is still
a small ensemble, but we consider that it is diverse enough
to constitute a reasonable sample to draw conclusions about
current models behaviour in the Southern Ocean.

The multi-model mean reproduces well the observed sum-
mer and winter sea ice edge as well as the annual cycle of
sea ice extent. The skill of individual models is much lower.
The majority of the biases in the simulated Southern Ocean
sea ice highlighted for CMIP3 models persist for the CMIP5
ones. Furthermore, all the models analysed here overestimate
the variability of the sea ice extent in winter. In addition, we
saw that, in contrast to observations, the variability in some
models can vary significantly from one season to the other.
We have thus chosen to analyse seasonal means rather than
annual mean, but the conclusions are similar whether we con-
sider summer or winter sea ice extent.

The analyses performed in this paper aimed at better un-
derstanding the role played by the internal variability in the
observed increase of sea ice extent in the Southern Ocean.
Our approach can be summarized in three questions that we
can now partly answer.

Firstly, is the trend of winter and summer observed sea ice
extent compatible with a combination of the forced response
and the internal variability according to model results? The
models generally respond to the external forcing by a de-
crease in their sea ice extent. Our analysis of its representa-
tion in the different models has shown that the inclusion of
stratospheric ozone depletion does not modify strongly the
sign of the simulated trend in sea ice extent in the Southern
Ocean compared to CMIP3, in which only half of the models
took into account this forcing. Moreover, models with inter-
active chemistry or with higher atmospheric vertical resolu-
tion do not provide better results that the other ones. Nev-
ertheless, natural variability can overwhelm the influence of
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the forced response, leading to a positive trend in some en-
semble members. This case appears relatively rare among
the available simulations. However, if we consider the wide
range of trends each model provides because of its own dy-
namics only, the positive observed trend in sea ice extent can
be accounted for by internal variability.

Secondly, does the models’ internal variability agree with
the one of the observations? From our model analysis, posi-
tive trends in sea ice extent, such as the observed one, can
arise from internal variability. Nevertheless, to have con-
fidence in this conclusion, the models’ internal variability
must fit the one of the observations. Unfortunately, we have
shown that the models often have a climatological mean
which is far from the observations, or too high an interannual
variability, or even both. None of the CMIP5 models provides
thus a reasonable estimate of all the main characteristics of
the sea ice cover over the last decades in the Southern Ocean,
in contrast to the Arctic (e.g.Stroeve et al., 2012; Massonnet
et al., 2012). Moreover, the few models that display an in-
crease in sea ice extent have such a large variability that the
sign of the trend is not robust. One may argue that the higher
internal variability found in the models, compared to the one
of the observations, is due to some transient, specific char-
acteristics of the last decades. However, this hypothesis has
not been confirmed since the mean state and the internal vari-
ability of the models is roughly constant over the past 150 yr.
Because of those models’ biases, we cannot reasonably con-
sider the results of these models as a good representation of
the behaviour of the Southern Ocean sea ice. As a conse-
quence, even if the positive observed trend in sea ice extent
is compatible with the models internal variability, the biases
of these models prevent us from firmly assessing the link be-
tween the internal variability in the Southern Ocean and the
observed increase in sea ice extent.

Thirdly, how does the initialization method impact the
simulated evolution of sea ice extent in the Southern Ocean?
If the internal variability is important, a correct initializa-
tion of the model state may lead to a better agreement with
data. In this hypothesis, constraining the model with obser-
vations would put the system in a state that favours an in-
crease in ice extent, for instance because of a more strati-
fied or colder ocean. However, results from hindcast simu-
lations have shown that there is no systematic improvement
of the simulation of sea ice extent observed trend. Previous
studies have demonstrated that models have a high poten-
tial predictability in the Southern Ocean region at decadal
time scales (e.g.Latif et al., 2010), i.e. in models there exists
deterministic decadal variability. The test in real conditions
has not shown such predictability for sea ice extent. This
may be due to some inadequate representation of physics
and/or feedbacks in models, but also to the initialization pro-
cedure. Indeed, observations required to initialize properly
the system are quite sparse in that area and the time period
they cover is relatively short. Furthermore, data assimilation
methods used in general circulation models are essentially

based on nudging, and improvement may be expected if more
sophisticated methods are applied and systematically tested
in the Southern Ocean.

To sum up, from an exclusive model approach, a positive
trend in the Southern Ocean sea ice extent spanning the last
30 yr, though being a rare event, can be accounted for by
the internal variability of the system. Nevertheless, we have
shown that the models display a mean state or an interannual
variability, or even both that disagree with what is observed.
As a consequence, this raises the question whether we can
consider these models results as reliable estimates of what
happens in reality, and it affects the level of confidence one
has in decadal predictions or projections of the evolution of
the sea ice around the Antarctic performed with those mod-
els.

Supplementary material related to this article is
available online at:http://www.the-cryosphere.net/7/451/
2013/tc-7-451-2013-supplement.pdf.
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