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Abstract. Understanding failure initiation within weak snow
layers is essential for modeling and predicting dry-snow slab
avalanches. We therefore performed laboratory experiments
with snow samples containing a weak layer consisting of ei-
ther faceted crystals or depth hoar. During these experiments
the samples were loaded with different loading rates and at
various tilt angles until fracture. The strength of the sam-
ples decreased with increasing loading rate and increasing
tilt angle. Additionally, we took pictures of the side of four
samples with a high-speed video camera and calculated the
displacement using a particle image velocimetry (PIV) al-
gorithm. The fracture process within the weak layer could
thus be observed in detail. Catastrophic failure started due to
a shear fracture just above the interface between the depth
hoar layer and the underlying crust.

1 Introduction

Most skier-triggered dry-snow slab avalanches release due to
the failure of a weak layer consisting of depth hoar, faceted
crystals, or surface hoar crystals (Schweizer and Jamieson,
2001). A macroscopic crack (O(10 cm) or more) in the weak
layer underlying a cohesive slab might lead to crack prop-
agation and eventually to the release of a slab avalanche
(Schweizer et al., 2003). The initial failure and its extension
to the critical crack size leading to fast crack propagation is
still not fully understood.

Heierli et al. (2008) suggested avalanche initiation to be
modeled as a mixed-mode anticrack where the main mecha-
nism behind weak layer failure is collapse of the weak layer.
Other authors such asMcClung(1979, 2009) or Bažant et al.
(2003) suggest that the layer first fails in shear.

Previous laboratory studies on the mechanical behavior
of snow mainly used displacement-controlled shear exper-

iments. Most experiments were made with homogeneous
snow (e.g.McClung, 1977; de Montmollin, 1982; Schweizer,
1998). Those studies showed that snow is a pressure-sensitive
and strain-softening material, the latter was assumed to be a
consequence of sintering processes inside the snow during
deformation (e.g.Colbeck, 1998; Reiweger et al., 2009b). In
addition, it was shown that snow strength decreases with in-
creasing rate of displacement (Narita, 1980).

Weak snow layers were tested in the field (Föhn et al.,
1998; Jamieson and Johnston, 2001) as well as in the lab-
oratory (Fukuzawa and Narita, 1993; Joshi et al., 2006; Rei-
weger and Schweizer, 2010; Walters et al., 2010; Walters and
Adams, 2012). The laboratory studies showed that the defor-
mation subjected to snow samples was concentrated in the
weak layer, which provides a preferential plane for shear fail-
ure. In the experiments we performed with samples contain-
ing a weak layer of surface hoar (Reiweger and Schweizer,
2010) we found that at least this kind of weak layer failed in
shear more likely than in compression.

We performed loading experiments with snow samples
containing a weak depth hoar layer with a new loading ap-
paratus especially designed for studying the (initial) failure
of snow with respect to avalanche release; due to the small
sample size we cannot study fracture propagation. In order
to obtain loading conditions similar to those in nature, the
samples were loaded by a combination of shear and normal
load depending on the tilt angle. A detailed description of our
loading apparatus is given inReiweger et al.(2010).

2 Methods

2.1 Snow samples and loading experiments

The snow samples containing a weak layer were either nat-
ural samples taken from the field (samples B, Table1) or
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Table 1.Characteristics of the different snow samples tested. Snow type is described as grain type according toFierz et al.(2009), average
grain size (in mm), and hand hardness index, whileN denotes the number of successful experiments performed with each type of sample.

Sample layering Density Thickness Length× Width Snow type N

(kg m−3) (mm) (mm)

rounded grains 225 35 120× 90 RG, 0.25, 1–2 8
depth hoar TRA 0.2 FC(DH), 1–1.5, 1
rounded grains 40 RG, 0.25, 1–2

rounded grains 190 35 120× 90 RG, 0.5, 2 4
faceted crystals LAY 0.2 FC(FCxr), 0.75, 1
rounded grains 35 RG, 0.5, 2

rounded grains 200 40 200× 100 RG(FC), 0.25–1.5, 2–3 17
depth hoar B 50 DH(FC), 1.25–3, 1
melt-freeze crust 20 MFcr, 1-2, 4

artificial samples (samples TRA and LAY, Table1) pro-
duced in the laboratory. The natural samples were carefully
cut out from the snow cover on the study plot behind the
SLF with a snow saw and directly carried to the labora-
tory. The artificial weak layers of faceted crystals and depth
hoar were grown by applying a strong vertical temperature
gradient to a layered snow sample. The snow samples for
growing faceted crystals consisted of a layer of low-density
snow (fresh new snow crystals produced by a snow machine;
Schleef et al., 2013) sandwiched between two dense snow
layers (ρ ≈ 300 kg m−3), produced by sieving new snow into
a box, compressing it and letting it sinter for 48 h. A de-
tailed description of this procedure is given inReiweger et al.
(2010), and the layering of the samples is shown in Table1.
The weak layer in the artificial samples was a thin layer
of faceted crystals, whereas the natural samples contained a
thick weak layer of large depth hoar crystals.

The loading experiments were performed at a tempera-
ture of −5◦C with the apparatus shown in Fig.1 and de-
scribed byReiweger et al.(2010). Loading rates varied be-
tween 10 Pa s−1 and 400 Pa s−1. Samples were tilted (0–35◦)
in order to mimic a “slope angle”α and loaded via the grav-
itational force. The normal and tangential load were thus
given byF · cosα andF · sinα, respectively. The weight of
the upper sample holder was compensated.

2.2 Particle image velocimetry

In order to monitor the displacement field on the sides of
our samples we took photos during the measurements. These
photos were then analyzed with a particle image velocimetry
algorithm (PIV). The PIV algorithm recognizes patterns on
a photograph taken from the snow sample and tracks them
over various subsequent photographs. The snow sample was
sprayed with paint to achieve sufficient contrast for the PIV
algorithm to find a pattern. Assuming plane strain conditions,
the displacement field on the side of the sample should be
representative for the displacement field also within the sam-

Fig. 1. Snow sample in loading apparatus. ∆x and ∆z denote the shear and normal displacement, α denotes
the tilt angle (Reiweger et al., 2010).

Fig. 2. Strength in kPa for samples TRA and LAY as function of tilt angle and loading rate (N = 11). The
squares represent fracture, the circle indicates the one sample that did not fracture at this tilt angle and loading
rate.
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Fig. 1. Snow sample in loading apparatus.1x and1z denote the
shear and normal displacement,α denotes the tilt angle (Reiweger
et al., 2010).

ple. In a set of validation experiments the accuracy of the
displacement calculated by the PIV algorithm was found to
be ±0.01 mm. A detailed description of the PIV algorithm
can be found inRoesgen and Totaro(1995); its application to
snow is described inReiweger et al.(2009a). For the fast ex-
periments with samples B8, B9, B10, and B17, we acquired
images at a high rate with a high-speed video camera (cam-
era type VDS Vosskühler HCC-1000, resolution 1024 by 512
pixels, recording rate 300 frames per second). Since the weak
layer B was several centimeters thick we could observe what
was happening within the weak layer shortly before and dur-
ing fracture.
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Fig. 1. Snow sample in loading apparatus. ∆x and ∆z denote the shear and normal displacement, α denotes
the tilt angle (Reiweger et al., 2010).

Fig. 2. Strength in kPa for samples TRA and LAY as function of tilt angle and loading rate (N = 11). The
squares represent fracture, the circle indicates the one sample that did not fracture at this tilt angle and loading
rate.
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Fig. 2.Strength in kPa for samples TRA and LAY as function of tilt
angle and loading rate (N = 11). The squares represent fracture, the
circle indicates the one sample that did not fracture at this tilt angle
and loading rate.

3 Results

3.1 Strength

We performed 29 experiments with three sample types for
various loading rates. The load needed to fracture the sam-
ples was measured. Detailed results of all measurements can
be found in Table2.

Figure2 shows the strength for samples of types TRA and
LAY as function of tilt angle and loading rate. Due to the
limited number of experiments for each loading rate and tilt
angle, we calculated the standard deviation with a bootstrap
algorithm (Davison and Hinkley, 1997), using 2000 sample
data sets. It can be see that strength decreases with increasing
tilt angle (Fig.4) and increasing loading rate. For samples
TRA and LAY both these trends are clearly larger than the
standard deviation.

For samples of type B (Fig.3) the decrease of strength
with increasing tilt angle and loading rate is still apparent
– as the highest strength values are clearly found at a tilt
angle of 0◦ – but not as obvious, since the strength differ-
ences between 25 and 35◦ are of the same order of mag-
nitude as the standard deviation (again calculated with the
bootstrap algorithm). Comparing the measurements below
and above a loading rate of 150 Pa s−1, however, the decrease
with strength with increasing loading rate remains evident.

3.2 Fracture behavior

The fracture of samples B8, B9, B10, and B17 was monitored
with a high-speed video camera. The images from the high-
speed videos were again analyzed with the particle image
velocimetry (PIV) algorithm. Detailed results are given for

Table 2. Overview of all successful measurements.α, σ̇ , andσc
denote the slope angle, the loading rate, and the sample strength,
respectively.

Sample α σ̇ σc
(◦) (Pa s−1) (kPa)

TRA1 20 60 2.1
TRA2 20 150 1.9
TRA3 30 60 0.5
TRA4 30 60 0.8
TRA5 20 60 2.1
TRA6 20 150 1.1
TRA7 20 150 2.4
TRA8 20 150 1.5

LAY1 10 150 2.5
LAY2 10 60 5.3
LAY3 10 150 2.6
LAY4 10 60 > 10

B1 25 42 1.6
B2 25 200 0.7
B3 25 84 2.4
B4 25 9 2.3
B5 25 14 2.0
B6 35 10 3.8
B7 35 200 1.0
B8 35 200 1.2
B9 35 18 1.7
B10 35 20 0.8
B11 0 444 2.7
B12 0 439 2.5
B13 0 30 2.5
B14 0 15 2.5
B15 25 290 1.3
B16 0 42 6.0
B17 25 220 1.7

sample B9, which was loaded with a loading rate of 18 Pa s−1

at a tilt angle of 35◦ (Table2).
For the PIV analysis we chose two different sections

of the snow sample, i.e. an upper rectangle (dimensions
22 mm× 87 mm, Fig.5a) where a local fracture happened
and a lower rectangle (dimensions 16 mm× 64 mm, Fig.5b)
where the catastrophic fracture of the whole sample com-
menced. The arrows in Fig.5 mark those two fracture lo-
cations. The weak layer is approximately located between
the two red lines (Fig.5a). Analysis of the 33 images before
and after the onset of the final crack allowed us to exactly
follow the fracture process. The PIV results show the dis-
placement between the first of the 33 images and imagei,
wherei = 2, . . . ,33. The time difference between two sub-
sequent images was 1/300 s, and the displacement was aver-
aged across the width of the rectangles shown in Fig.5. The
first series of PIV results shown in Fig.6 shows the displace-
ment caused by the local fracture within the upper rectangle
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Fig. 3. Strength in kPa for samples of type B as function of tilt angle and loading rate (N = 17).

Fig. 4. Strength in kPa for sample types TRA/LAY and B over tilt angle for different loading rates (N = 28).

Table 1. Characteristics of the different snow samples tested. Snow type is described as grain type according
to Fierz et al. (2009), average grain size (in mm), and hand hardness index, while N denotes the number of
successful experiments performed with each type of sample.

Sample layering Density Thickness Length ×Width Snow type N
(kg m−3) (mm) (mm)

rounded grains 225 35 120 × 90 RG, 0.25, 1-2 8
depth hoar TRA 0.2 FC(DH), 1-1.5, 1
rounded grains 40 RG, 0.25, 1-2

rounded grains 190 35 120 × 90 RG, 0.5, 2 4
faceted crystals LAY 0.2 FC(FCxr), 0.75, 1

rounded grains 35 RG, 0.5, 2

rounded grains 200 40 200 × 100 RG(FC), 0.25-1.5, 2-3 17
depth hoar B 50 DH(FC), 1.25-3, 1

melt-freeze crust 20 MFcr, 1-2, 4
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Fig. 3.Strength in kPa for samples of type B as function of tilt angle
and loading rate (N = 17).
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Fig. 4. Strength in kPa for sample types TRA/LAY and B over tilt angle for different loading rates (N = 28).
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Sample layering Density Thickness Length ×Width Snow type N
(kg m−3) (mm) (mm)

rounded grains 225 35 120 × 90 RG, 0.25, 1-2 8
depth hoar TRA 0.2 FC(DH), 1-1.5, 1
rounded grains 40 RG, 0.25, 1-2

rounded grains 190 35 120 × 90 RG, 0.5, 2 4
faceted crystals LAY 0.2 FC(FCxr), 0.75, 1

rounded grains 35 RG, 0.5, 2

rounded grains 200 40 200 × 100 RG(FC), 0.25-1.5, 2-3 17
depth hoar B 50 DH(FC), 1.25-3, 1

melt-freeze crust 20 MFcr, 1-2, 4
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Fig. 4. Strength in kPa for sample types TRA/LAY and B over tilt
angle for different loading rates (N = 28).

(Fig. 5a). The parallel arrows in the middle of the displace-
ment fields indicate that the catastrophic failure has started,
as the snow starts moving to the right and downwards as a
cohesive block (Fig.8a). The seemingly chaotic and even
upward movement during fracture (Fig.6) reflects the layer
being crushed and pieces of snow being pressed out of the
sample sideways. The second series of images (Fig.7) shows
the PIV results of the onset of the final crack within the lower
rectangle (Fig.5b). At image 29 we see the onset of the catas-
trophic shear fracture, the upper arrows pointing forward, the
lower arrows pointing backward. The image of sample B9
0.3 s after the image shown in Fig.5 (which were taken 0.01 s
before the first local failure at the top of the sample appeared)
is displayed in Fig.8b. The upper and lower parts of the sam-
ple are still fairly intact, but the weak layer is squashed and
the snow has crumbled away sideways. The final image of

Fig. 5. a: Section (green rectangle) where first local failure occurred. b: Section where the crack propagation
started. The red lines mark the position of the weak layer. Sample B9.
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Fig. 5. (a) Section (green rectangle) where first local failure oc-
curred.(b) Section where the crack propagation started. The red
lines mark the position of the weak layer. Sample B9.

the high speed camera sequence (Fig.8c), taken 1 s after the
images in Fig.5, shows the sample holders after the samples
has fractured catastrophically. The movies taken during the
experiments with samples B8, B10, and B17 showed similar
behavior.

4 Discussion

When testing samples including a weak layer, the sample ge-
ometry and loading conditions are often not perfect. Natural
depth hoar samples are especially difficult to harvest, since,
in contrast to layers of buried surface hoar, they are usually
at the bottom of the snowpack and hardly ever have a cohe-
sive layer beneath them. In the case of samples of kind B, we
were lucky to have a crust below the depth hoar layer, which
made it possible to cut and transport samples. The height of
the samples had to be chosen quite large for the reason of
keeping the crust at the bottom. We are aware that this gives
an unfavorable area to height ratio for the whole sample.

The Cryosphere, 7, 1447–1453, 2013 www.the-cryosphere.net/7/1447/2013/
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Fig. 6. Horizontally averaged displacement field within the upper rectangle (Fig. 5a) during the failure process
of sample B9. The displacement is shown between image 1 and images 2-33, respectively. The uppermost
arrow in each sequence is only for reference, its coordinates are [0.8 mm, 0.8 mm]. The time difference
between subsequent images was 1/300 s.

12

Fig. 6. Horizontally averaged displacement field within the upper
rectangle (Fig.5a) during the failure process of sample B9. The
displacement is shown between image 1 and images 2–33, respec-
tively. The uppermost arrow in each sequence is only for reference,
its coordinates are [0.8 mm, 0.8 mm]. The time difference between
subsequent images was 1/300 s.

Fig. 7. Averaged displacement field within the lower rectangle during the initiation of the catastrophic fracture
(Fig. 5b) of sample B9. Displacement is shown between image 1 and images 18-33. Again uppermost arrow
for reference, coordinates [0.8 mm, 0.8 mm] (same as in Fig. 6).

13

Fig. 7. Averaged displacement field within the lower rectangle dur-
ing the initiation of the catastrophic fracture (Fig.5b) of sample B9.
Displacement is shown between image 1 and images 18–33. Again
uppermost arrow for reference, coordinates [0.8 mm, 0.8 mm] (same
as in Fig.6).

The artificial samples had a thin weak layer, which im-
proved the area to height ratio, especially since for layered
samples the deformation is concentrated within the weak
layer (Reiweger et al., 2009a; Reiweger and Schweizer,
2010). For the artificial samples TRA and LAY we found
a strong decrease of sample strength with increasing tilt an-
gle, suggesting a failure in shear rather than in compression.
The measurements with the natural samples B showed this
trend as well, though less prominent. We assume that this is
due to the height of the samples, which was unfavorably high
compared to the sample area, as discussed above.

The well-known (Fukuzawa and Narita, 1993; Schweizer,
1998) rate dependence of snow strength was reproduced well
for all our samples, i.e. sample strength decreased with in-
creasing loading rate. The absolute strength of the samples
might be higher than the strength of a similar weak layer
in a natural snowpack due to the finite size of the (rela-
tively small) samples (Bažant and Pang, 2007). The ten-
dency, i.e. the strength decrease, should not be affected by
size effect, however, and can therefore be assumed to be valid
also for natural weak layer in the field.

The high-speed video images from the fracture of samples
B9 show that a small fracture occurred at an arbitrary place
within the weak layer, and this fracture then triggered a shear
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Fig. 8. Sample B9, during catastrophic failure. The images b and c were taken 0.1 s and 0.9 s after image a,
respectively.
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Fig. 8. Sample B9, during catastrophic failure. The images(b) and
(c) were taken 0.1 s and 0.9 s after image(a), respectively.

crack at the interface between the weak layer and the crust
at the bottom. This crack spread through the whole sample
(in x direction, Fig.1) and caused the sample to fail catas-
trophically. A similar fracture mechanism was observed for
all four samples which were filmed with the high-speed cam-
era. These observations might be specific to our thick sam-
ples of natural depth hoar.

The movies from samples B8, B9, B10, and B17 are
unique in showing the actual formation of the catastrophic
fracture of a weak depth hoar layer. All four movies sug-
gest that the catastrophic fracture started as a shear fracture
(Fig. 7, image 29) at the interface of the depth hoar layer and
the crust below the layer. This catastrophic failure was trig-
gered by some disturbance somewhere within the weak layer,
maybe at a point where the weak layer had a particularly
weak spot due to the inherent small-scale inhomogeneity of
snow layers. During fracture the samples then collapsed com-
pletely (Fig.8).

A prerequisite for avalanche release is an initial crack, and
its formation from diffuse damage is labeled “failure initia-
tion”. Once the initial crack reaches its critical size it prop-

agates across and up and down the slope (“crack propaga-
tion”) thus leading to the release of an avalanche (Schweizer
et al., 2003). Recently, crack propagation propensity has been
studied with field experiments (Gauthier and Jamieson, 2008;
Schweizer et al., 2011; Sigrist and Schweizer, 2007; van Her-
wijnen et al., 2010). The weak layer in an elongated snow
column is cut with a saw (so that the overlying slab slightly
bends) until a self-propagating crack starts. These experi-
ments can well be interpreted with the numerical solution by
Heierli et al.(2008).

Within our present experiments we only studied fracture
initiation, since self-propagation cracks were not observed
within our relatively small (maximum length 20 cm) sam-
ples. This is in accordance with observations (McClung,
2011) and theoretical predictions (Heierli et al., 2008) which
indicate that critical lengths are often greater than 20 cm.

Field studies on the influence of slope angle on snow
failure reveal ambiguous results, albeit all trends are small.
Jamieson(1999) found a stability decrease with increasing
slope angle studying compression test (CT) results, in agree-
ment with the evaluation of Rutschblock (RB) tests at dif-
ferent slope angles byCampbell and Jamieson(2007). On
the other hand,Heierli et al. (2011) and Bair et al. (2012)
reported increasing extended column test (ECT) score with
increasing slope angle.

5 Conclusions

We performed 29 loading experiments with samples con-
taining a weak layer of either facets or depth hoar to study
failure initiation but not crack propagation. Sample strength
decreased with increasing loading rate and tilt angle. The
decrease in strength with increasing tilt angle suggests that
facets and depth hoar are more prone to failure in shear than
to failure in compression, as was previously shown for sam-
ples containing a weak layer of surface hoar (Reiweger and
Schweizer, 2010). For natural avalanche release this means
that steep terrain favors the damage process leading to the
formation of an initial crack.

During the experiments with the thick depth hoar samples
we could actually follow how the initial failure started. It
seemed to start as a local failure at a seemingly arbitrary po-
sition within the weak layer, which induced a shear crack at
the weak interface between the depth hoar layer and the crust
below. So the inherent disordered nature of snow seems to
be important for failure initiation, and a weak layer or weak
interface is needed where a macroscopic crack, which can
grow large enough for crack propagation, can form.

Supplementary material related to this article is
available online athttp://www.the-cryosphere.net/7/
1447/2013/tc-7-1447-2013-supplement.zip.
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