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Abstract. Sea ice thickness is one of the most sensitive
variables in the Arctic climate system. In order to quan-
tify changes in sea ice thickness, CryoSat-2 was launched in
2010 carrying a Ku-band radar altimeter (SIRAL) designed
to measure sea ice freeboard with a few centimeters accu-
racy. The instrument uses the synthetic aperture radar tech-
nique providing signals with a resolution of about 300 m
along track. In this study, airborne Ku-band radar altime-
ter data over different sea ice types have been analyzed. A
set of parameters has been defined to characterize the dif-
ferences in strength and width of the returned power wave-
forms. With a Bayesian-based method, it is possible to clas-
sify about 80 % of the waveforms from three parameters:
maximum of the returned power waveform, the trailing edge
width and pulse peakiness. Furthermore, the maximum of
the power waveform can be used to reduce the number of
false detections of leads, compared to the widely used pulse
peakiness parameter. For the pulse peakiness the false clas-
sification rate is 12.6 % while for the power maximum it is
reduced to 6.5 %. The ability to distinguish between differ-
ent ice types and leads allows us to improve the freeboard
retrieval and the conversion from freeboard into sea ice thick-
ness, where surface type dependent values for the sea ice den-
sity and snow load can be used.

1 Introduction

While Arctic sea ice extent and its changes have been stud-
ied widely in the last decades (Kwok, 2002; Comiso et al.,
2007; Stroeve et al., 2012), sea ice thickness and its de-
crease remain one of the least observed variables of the Arc-

tic climate system (Laxon et al., 2003; Maslanik et al., 2007;
Giles et al., 2008; Kwok and Rothrock, 2009). Ice thick-
ness data are sparse and only available from a few cam-
paigns with upward-looking sonar on submarines and moor-
ings (Rothrock et al., 1999, 2008) or helicopter surveys using
electro-magnetic induction (Haas et al., 1997, 2010, 2011;
Hendricks et al., 2011). Satellite laser and radar altimeters
have provided large-scale coverage of ice thickness data in
the Arctic, but the operations were limited to certain pe-
riods and regions. ICESat’s high-resolution laser altimeter,
with a footprint of 70 m, covered the area up to 86◦ N, while
its temporal coverage was limited to two five-week opera-
tion periods per year from 2003 to 2009 (Kwok et al., 2004;
Kwok and Untersteiner, 2011). Conventional radar altime-
ters on board ERS-1/2 and Envisat provided continuous high-
density measurements from 1992 to 2012, but have a rela-
tively coarse resolution, with a footprint of several kilome-
ters, and only cover the polar regions up to 81.6◦ N (Laxon
et al., 2003). In 2010 CryoSat-2 was launched addressing
the shortcomings of previous altimeter missions (Wingham
et al., 2006; Laxon et al., 2013). CryoSat’s payload instru-
ment is the SAR/Interferometric Radar Altimeter (SIRAL),
which uses the synthetic aperture radar (SAR) technique
to enhance the resolution along track. When operating in
SAR mode over sea ice, CryoSat-2 has a footprint of about
270 m× 1000 m, which is a significant improvement com-
pared to the previous ERS and Envisat altimeters. CryoSat-2
orbits the earth with an inclination of 92◦, which enables the
measurement of sea ice thickness at high latitudes.

Radar altimeter signals from sea ice have been analyzed
in many studies since the 1980s (Dwyer and Godin, 1980;
Onstott et al., 1987). Dwyer and Godin(1980) published the
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first analysis of radar altimeter waveform signals over sea
ice using data from the GEOS-3 satellite. They found altime-
ter power waveforms over smooth sea ice to rise to a higher
value than over the rough open ocean.Drinkwater(1991) and
Ulander(1987) found correlations between radar backscatter
in SAR images and radar altimeter echo strength and width.
Fedor et al. (1989) observed a reduction of the signal re-
sponse from flat to ridged sea ice. The strongest return signal
has been found to come from leads with calm, open water
or thin ice, producing specular echo power waveforms (Fet-
terer, 1992). Encouraged by these findings, the possibility for
sea ice classification based on radar altimeter data alone has
been discussed in several studies (Chase and Holyer, 1990;
Drinkwater, 1991; Laxon, 1994a). Even though the results
were promising, the methods have not been developed any
further. The current Envisat algorithm for example only dis-
tinguishes between leads and ice floes, and large open water
areas are masked out by the use of passive microwave data
(Laxon et al., 2003; Giles et al., 2008; Ridout et al., 2012).
Leads are most commonly identified by the pulse peakiness
parameter – the ratio of signal maximum and accumulated
power (Peacock and Laxon, 2004; Giles et al., 2007). Sea ice
thickness is calculated using prescribed values for ice density
and climatological snow depth (Warren et al., 1999).

All the assumptions used in this algorithm are based on
conventional altimeters where the waveform is essentially
a step function. Once the power has reached the maximum,
it remains there for many delay intervals as the area con-
tributing to the power echo is constant over time (Brown,
1977). For synthetic aperture radar altimeters, the signal de-
cays more rapidly after the peak as the area contributing to
the response signal decreases with the square root of time
(Raney, 1998). The different sampling techniques, and the
resulting different echo shape, suggest that a classification of
different sea ice types using only waveform data from syn-
thetic aperture radar altimeters may be possible.

In this paper we present a method to distinguish between
first-year ice and multi-year ice based on the shape of the
radar echo waveform alone. The data used in the study were
obtained by an airborne synthetic aperture radar altimeter,
ASIRAS, during pre-launch calibration and validation cam-
paigns for CryoSat-2. Different parameters to describe the re-
turned signal and techniques for classification have been ex-
plored. The paper contains the following sections: in Sect.2
we describe the radar altimeter ASIRAS as well as the valida-
tion data sets used. Parametrization of the echo power wave-
forms is described in Sect.2.2 and the used classification
methods in Sect.2.3. The distribution of each parameter for
different surface types and the resulting classification rates
are given in Sect.3. In Sect.4 our results are compared to
previous findings, and perspectives for further applications
are discussed.

2 Data and methods

2.1 Instrument and data campaigns

To examine the possibilities of surface classification based on
radar altimeter data, measurements from ESA’s CryoSat cal-
ibration and validation experiments CryoVEx 2007 and Cry-
oVEx 2008 have been used. Both airborne operations were
coordinated by the National Space Institute, Danish Tech-
nical University (DTU Space) and the Alfred Wegener In-
stitute (AWI). In 2007 the campaign took place from April
15 to April 25 while in 2008 it lasted from April 15 un-
til May 8. In this study we mainly use data from the Air-
borne Synthetic Aperture and Interferometric Radar Altime-
ter System (ASIRAS). The instrument operates at a cen-
ter frequency of 13.5 GHz (Ku-band) and features along-
track resolution enhancement by using the synthetic aperture
radar technique like its satellite counterpart SIRAL on board
CryoSat-2. ASIRAS operates with an antenna beam pattern
of 10 degrees along track and 2.5 degrees across track. The
footprint size depends on flight altitude but can be consid-
ered to be around 10 m× 50 m at a flight altitude of 300 m.
Synthetic aperture radar processing is used to increase the
resolution along track, which results in a sampling resolution
of 3 m. The return echo power for each data point is recorded
with a vertical resolution of approximately 0.095 m and sam-
pled in a 24 m range window, corresponding to 256 bins.

Since CryoSat-2 was primarily designed to measure trends
in perennial sea ice, the main validation campaigns took
place north of Greenland and Canada, which is an area
known to be mostly covered by this type of ice. Single flights
have also been performed in areas covered by first-year ice
such as Baffin Bay and around the Svalbard archipelago.
Therefore we were able to analyze the returned signal wave-
form over different surfaces such as leads, first-year ice (FYI)
and multi-year ice (MYI) (see Table 1). In the area of acqui-
sition, surface types have been identified on contemporary
Envisat ASAR wide-swath images (see Fig. 2). In some of
the areas, as in the first-year and multi-year ice cases north of
Alert, detailed in situ measurements were also available. The
area has also been surveyed by an airborne electromagnetic
induction device (EM-Bird), which measures the combined
snow and ice thickness. Additionally, data from downward-
looking optical cameras on board the airplanes were avail-
able. The combination of these data sets gives an excellent
knowledge of the ice conditions and allows for a detailed
study of the waveform signal over different surface regimes.
More information about the campaigns can be found in tech-
nical reports (Helm and Steinhage, 2008; Hvidegaard et al.,
2009). An overview of the location of the cases analyzed is
given in Fig. 1. Further details of the study areas are provided
in Table1.
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Table 1. Overview of the study areas and numbers of available echo waveforms for each case. We evaluated nine cases: two for leads (L),
four for first-year ice (FYI) and three for multi-year ice (MYI), each containing several hundred waveforms. Additional data sets, which have
been used for obtaining information about the surface type, are listed in the right column. ASAR indicates that an Envisat ASAR wide-swath
image was available.

Cases Date Description No. of echoes Additional data sets

L1 27.04.2008 Leads northeast of Greenland 566 ASAR, photo camera
L2 01.05.2008 Leads north of Alert 1635 ASAR, photo camera
FYI 1 21.04.2007 Svalbard Walenbergfjorden, fast ice 3273 ASAR
FYI 2 06.05.2008 Baffin Bay 10755 ASAR
FYI 3 01.05.2008 Thin, flat, snow-covered ice north of Alert 5248 ASAR, in situ, EM-Bird, photo camera
FYI 4 01.05.2008 Validation area north of Alert 513 ASAR, photo camera
MYI 1 27.04.2008 Big ice field northeast of Greenland 7223 ASAR, photo camera
MYI 2 01.05.2008 Sea ice field north of Alert 7205 ASAR, photo camera
MYI 3 01.05.2008 Validation area north of Alert 796 ASAR, in situ, EM-Bird, photo camera
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Fig. 1.Map showing the approximate location for each of the evalu-
ated cases (see detailed description in Table1). Cases with leads (L)
are marked in red colors, first-year ice (FYI) in blue and multi-year
ice (MYI) in green.

2.2 Parametrization of waveform shape

The return signal from the airborne radar altimeter is sam-
pled in a range window of 256 bins, each with a size of
about 0.095 m. The signal is usually referred to as power
echo waveform or simply waveform. To be able to describe
the shape of the waveform quantitatively and account for the
differences in strength and width of the signal, the following
parameters have been used (see Fig. 3):

– Maximum (Max)value of the power echo.

– Pulse peakiness (PP)is the ratio of the maximum power
to the accumulated echo power (first defined byLaxon,
1994b).

PP=
max(power)∑256

i=1power(i)
(1)

Fig. 2: Example of background information available to retrieve sea ice type north of Alert. Left:
Envisat ASAR Wide Swath image overlaid with contemporary ASIRAS track from May 1 2008. In
green the ASIRAS track over MYI is shown, in blue FYI and in red the leads. Right: Example of
camera images used for identifying leads within the ice.
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Fig. 2.Example of background information available to retrieve sea
ice type north of Alert. Left: Envisat ASAR wide-swath image over-
laid with contemporary ASIRAS track from 1 May 2008. In green
the ASIRAS track over MYI is shown, in blue FYI and in red the
leads. Right: example of camera images used for identifying leads
within the ice.

– Leading edge width (LeW)is obtained by fitting a Gaus-
sian curve to the leading edge (starting at the bin con-
taining an echo power larger than 1 % of the power max-
imum and ending two bins after the bin with the max-
imum value). The distance between 1 % and 99 % of
maximum power echo is defined as the leading edge
width (e.g.,Legresy et al., 2005).

– Trailing edge width (TeW)is obtained by fitting an ex-
ponential decay function to the trailing edge starting
with the bin containing the maximum power. The trail-
ing edge width is the distance between the 99 % and 1 %
of the power maximum.

www.the-cryosphere.net/7/1315/2013/ The Cryosphere, 7, 1315–1324, 2013
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Fig. 3.Subset of the averaged waveform for first-year ice, calculated
as the mean of all waveforms retrieved over first-year ice (specified
in Table1). The approximate width of the leading edge and trailing
edge are indicated for visualization of these two waveform parame-
ters.

– Trailing edge slope (TeS)is the decay factor for the ex-
ponential fit (e.g.,Legresy et al., 2005).

2.3 Classification parameters and methods

To evaluate which parameters are most distinct for each sur-
face type, and therefore suitable to distinguish between sur-
face classes, the Kolmogorov–Smirnov test (KS test) has
been applied. In statistics, the KS test makes it possible to
determine if two data sets differ significantly by quantifying
the distance between the empirical cumulative distribution
functions of two samples. No assumption about the distribu-
tion of the two data samples is made, but the test is sensitive
to differences in location and shape of the distribution func-
tions.

After analyzing the probability distributions and finding
the parameters that are most suitable for classification, two
different classification methods have been explored: (1) rule-
based threshold method and (2) Bayesian classifier. The
threshold method is the one most commonly applied to de-
tect leads within sea ice. The Bayesian classifier is a simple
and robust classification method based on supervised learn-
ing that formulates the classification problem in probabilistic
terms.

2.3.1 Rule-based threshold

By analyzing the distribution functions for different surface
classes and waveform parameters, it seems straightforward
to base a classification on simple thresholds between the
classes. This is a widely used method to identify leads, and
usually the pulse peakiness parameter or the Maximum are
used (Peacock and Laxon, 2004; Giles et al., 2007; Röhrs

et al., 2012). We selected an equal number of waveforms
from each surface class and set the threshold by maximizing
the number of correct classified waveforms from this selec-
tion. To minimize the number of false detections, a margin
was set around the threshold. The size of the margin equals
approximately 2 % of the range of each parameter. Wave-
forms with classification parameters within this margin are
labeled as not classified. The advantages of this rule-based
threshold method are that no assumption on the distribution
is made and, after setting the threshold, it is very easy to im-
plement.

2.3.2 Bayesian classifier

For the classification with the Bayesian approach, our data
set has been divided into two different parts: a learning data
set with 40 % of all available waveforms and a testing set
with 60 %. The Bayesian classifier is based on Bayes’ theo-
rem (Hanson et al., 1991), which formulates the classification
problem in probabilistic terms: based on the probabilities of
each surface class and probabilities of the waveform param-
eters for each class, a probability calculation is used to make
a classification decision. The used parameters are PP, Max,
TeW, TeS and LeW, and the classes are the three surface
types, FYI, MYI and leads. In our study we used Gaussian
kernel density estimates to model the parameter densities for
each class. It is assumed that parameters are conditionally
independent and their class distributions are calculated inde-
pendently. This is a simplification but as the parameters are
partly depending on different surface properties, it is reason-
able for our purpose. To reduce the number of wrong classi-
fications, we added the requirement that the probability be-
longing to one class has to be higher than 70 %; otherwise
waveforms were labeled as not classified.

3 Results

3.1 Typical waveform

As a first qualitative analysis we show mean waveforms for
different surface types in Fig. 4. To account for the difference
in surface elevation, all waveforms have been moved so that
their maximum values are located in the same sampling bin.
The mean of the maximum echo power resulting from reflec-
tion over leads is more than 8 times higher than from those
coming from sea ice; and even 4 times higher than the mean
maximum coming from flat first-year ice (Fig. 4a). The dif-
ference in the maximum from the waveforms coming from
first-year ice and multi-year ice is less distinct. In Fig. 4b
normalized waveforms are shown in order to visualize the
difference in the width of the power echo.

Based on the visual analysis of the waveforms, there is a
clear difference in the decay after the peak, with multi-year
ice having a lower decay rate and a wider trailing edge than

The Cryosphere, 7, 1315–1324, 2013 www.the-cryosphere.net/7/1315/2013/
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Fig. 4. Averaged waveforms for the three evaluated surface types:
leads (red), FYI (blue) and MYI (green). Additionally the mean
waveform over flat FYI is shown (black). The waveforms have been
calculated as a mean of all available measurements for these surface
type as listed in Table1. (a) Mean reflected waveform for each sur-
face type.(b) Normalized mean waveform to show the difference in
the width of the reflected signal.

first-year ice and leads. Reflection over flat FYI (black line)
does not result in a wider signal than over leads.

3.2 Distribution of the parameters

For each of the waveforms for the analyzed cases, we calcu-
lated the five parameters PP, Max, TeW, TeS and LeW. The
cumulative probability distributions for each parameter and
case are shown in Fig. 5. The more separated the distribu-
tions are from one surface type to another, the easier it is to
classify the surface type.

For all parameters the spread of the distributions coming
from FYI is quite large. Since the term first-year ice refers to
a wide range of conditions – ranging from undeformed thin
ice to ice that has undergone a high rate of deformation – this
is in accordance to our expectations.

The spread of the Max parameter for the FYI distribu-
tions is very wide and reaches both extremes: distributions
are observed with much smaller and higher values than com-
ing from the MYI cases. The two cases of sea ice with the
strongest signal are flat new ice (FYI3) and fast ice (FYI1).
In all cases the distributions differ substantially from those
obtained over leads (L1 and L2).

The distributions for PP coming from MYI and leads
closely resemble each other within these classes. The distri-
butions for FYI in turn largely differ from case to case. The
PPs resulting from the power echo waveforms of flat thin ice
(FYI3) are almost as high as those resulting from the wave-
form of leads, while all other cases clearly show smaller PP
values. On average, reflection from FYI results in higher PP

values than from MYI, but the cumulative probability dis-
tributions from FYI and MYI largely overlap. For all cases
a clear difference between the distributions from MYI and
leads can be found.

The distributions of the parameters related to the leading
and trailing edge (the TeW, LeW and TeS) look much alike.
We find narrow and similar distributions for the two evalu-
ated cases of leads: a wide spread in the distributions for FYI
and wide distributions with long tails for the MYI.

However, even though we found a large spread in the dis-
tributions for each class and sometimes large overlaps be-
tween single cases from different classes, the KS test shows
the averaged distributions for each class are significantly dif-
ferent at a 5 % level for each of the five parameters. To find
the parameters best suitable for surface classification, we an-
alyzed the difference between the waveform shapes coming
from different surface types more quantitatively. We calcu-
lated the mean difference in the cumulative probability dis-
tributions for each parameter (Table2). The difference be-
tween the distributions is much larger between leads and sea
ice (0.72) than between FYI and MYI (0.52), making it much
easier to detect leads within the ice than to distinguish be-
tween the two sea ice classes. Differences between the pa-
rameters are very small, but they might be large enough to
increase the rate of correct classification.

The largest difference between leads and sea ice can be
found for the distribution of the Max and the LeW and TeW.
Since flat ice is the biggest challenge for the lead detection
– flat ice results in a waveform similar to that obtained over
leads – we analyzed the difference in the distributions from
leads and flat first-year ice (FYI3) more closely (right column
in Table2). We found the larger difference for the Max and
TeW and selected these two parameters for lead detection
within the ice. Together with the Max and the TeW, we found
the TeS to be an adequate parameter to distinguish between
MYI and FYI (Table2). However, as the TeW and TeS are
highly correlated, the TeS has been excluded from further
analysis.

3.3 Detection of surface types

Results from the two classification methods based on PP,
Max and TeW are shown in Table3. A simple threshold
method based on PP is the approach used in the Envisat pro-
cessing chain (Ridout et al., 2012). Therefore, PP has been
included in the analysis for comparison. In Table3 we do not
show all possible parameter combinations but present only
those leading to the best classification rates. Our classifica-
tion rates are calculated as described in the following para-
graphs.

The rates of correct classification for the different surface
classes are the percentage of the waveforms coming from one
class that have been correctly classified:

correct classificationclass1=
#(classclass1∩ knownclass1)

#knownclass1
. (2)

www.the-cryosphere.net/7/1315/2013/ The Cryosphere, 7, 1315–1324, 2013
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Fig. 5. Cumulative probability distributions for the nine cases (see Table1) for the five waveform parameters: Max, PP, LeW, TeW and TeS.
Distributions obtained from waveforms resulting from leads are shown in red colors, from first-year ice in blue and multi-year ice in green
colors.

The rates of false detection are the percentage of wave-
forms classified as one class while actually belonging to an-
other one:

false classificationclass1=
#(classclass2∩ knownclass1)

#classclass2
. (3)

As we selected and divided our waveforms by random
choice (for the threshold method we selected an equal num-
ber of waveforms of each class, and for the Bayesian ap-
proach our data set has been divided into a learning and test-
ing data set), each method has been performed 100 times.
The presented classification rates are mean values, and the
standard deviation of our results did not exceed 2 %.

Almost 95 % of the leads can be identified correctly based
on the PP (Table3). We found a lower average rate of correct
classification of 87 % and a detection rate for leads around
83.8 % based on the Max. The percentage of waveforms re-
flected from sea ice, but falsely classified as a lead, is strongly
reduced for the Max parameter (6.5 %) compared to results
obtained with the PP (12.6 %). Our Bayesian approach does
not significantly increase the detection rate of leads, but does
lead to a decrease in false classifications for both leads and

Table 2. Mean distances between the empirical cumulative distri-
bution functions of the five parameters determined from KS test:
pulse peakiness (PP), trailing edge slope (TeS), leading edge width
(LeW), trailing edge width (TeW), and the power maximum (Max).

Leads vs. FYI vs. Leads vs.
sea ice MYI flat FYI

PP 0.718 0.518 0.236
TeS 0.716 0.523 0.250
LeW 0.721 0.511 0.251
TeW 0.720 0.527 0.269
Max 0.737 0.521 0.307

sea ice. The advantage of the Bayesian method can also be
shown by analyzing the critical case of flat first-year ice
(FYI3 in Fig. 5 and Table1). For the basic threshold method
based on the PP parameter, more than 97 % of the waveforms
coming from flat ice have been classified as leads, while for
the Bayesian approach combining TeW and PP only 87 % are
(not shown in the Table).

Results for the two methods for the classification of FYI
and MYI are shown in Table3. Here the use of the Bayesian
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Table 3. Results for the two different classification methods: rule-based threshold and Bayesian classifier. The overall classification rates,
the probabilities of correct and false detection for ice and leads (left) and for first-year ice and multi-year ice (right) are presented. The
classification rates are defined in Eqs. (2) and (3). The used parameters are the pulse peakiness (PP), the power maximum (Max) and the
trailing edge width (TeW).

Method Threshold Bayes’ Method Threshold Bayes’

Parameter PP Max TeW Parameter PP TeW TeW
and and and
max Max PP

Correct classifications [%] Correct classifications [%]
All 88.0 87.3 91.3 all 72.4 80.3 79.9
Leads 94.2 83.8 94.9 FYI 72.6 78.7 80.5
Ice 79.5 90.8 89.1 MYI 68.6 81.7 75.5

False classifications [%] False classifications [%]
Leads 12.6 6.5 6.2 FYI 26.0 10.4 23.7
Ice 5.6 12.0 2.3 MYI 19.2 9.1 15.7
Not classified 4.6 3.7 6.9 not classified 6.2 11.3 12.8

method allows for a strong improvement of the classification
by about 8 %, resulting in an average detection rate of almost
80 %. The rate of false classification can be lowered to about
10 % by using a combination of TeW and Max. The simple
threshold method results not only in a poor classification rate
but also in a high rate of false classification, where 26 % of
the waveforms classified as FYI are actually MYI.

4 Discussion

In this study we present a method to distinguish between
different sea ice types and leads using airborne Ku-band
radar altimeter power waveforms. A method to distinguish
between FYI and MYI is presented based on the waveform
parameters PP and TeW. With a Bayesian-based method, we
were able to classify around 80 % of the waveforms correctly.
We can further confirm that a simple threshold method based
on the PP parameter is a sufficient method to detect leads.
Adding more parameters or using a more advanced method
such as the Bayesian classifier does not significantly improve
the rate of correct classification. Using Max instead of PP
can increase the accuracy in distinguishing leads from unde-
formed first-year ice, but it also leads to a reduction in the
detection rate of leads.

A related analysis was performed byDrinkwater(1991),
who analyzed data from a conventional pulse-limited radar
altimeter in the marginal ice zone. He found similar results
to ours: bare first-year ice results in a high peak value of
backscatter and a steep decay; deformed first-year ice re-
sults in a lower backscatter and a lower decay gradient; and
multi-year ice results in a low peak and a low decay gradient.
Despite these findings and even some clustering results that
show a clear separation between FYI and MYI, he was skep-
tical about the possibilities of sea ice classification. In con-
trast to our study, his analysis was performed in the marginal

ice zone where ice floes were smaller than the footprint size.
Fedor et al.(1988, 1989) also published sea ice classification
results based on conventional airborne radar altimeter wave-
forms in the Beaufort Sea. They showed that the returned
signal decreases from dark nilas over gray ice to more de-
formed ice types such as rough first-year ice and multi-year
ice.Laxon(1994a) presented a method for sea ice classifica-
tion based on the ERS data by parameterizing the waveform
shape, but the method has only been used to distinguish be-
tween leads and sea ice. In addition to a qualitative analysis,
as done in previous studies, the classification method pre-
sented here provides quantitative results. We show that the
selected waveform parameters differ significantly for various
surface classes and present a method where a combination of
waveform parameters leads to a correct classification of 80 %
of the waveforms.

Numerous studies have been performed to understand the
shape of the radar altimeter waveform and its sensitivity to
surface conditions. Laboratory experiments have shown that
close to nadir the influence of electrical properties can be ne-
glected (Beaven et al., 1995). The influence of surface rough-
ness has been described byBrown(1977) andRaney(1998).
Based on the same laboratory experiments,Beaven et al.
(1995) showed that the radar return originates at the snow/ice
interface, and snow influence – as long as the snow is dry and
cold – can be neglected. Dielectric properties of water have
been found to dominate over those of dry snow for volumet-
ric water contents of 1 % (Howell et al., 2005), which can
occur at temperatures above−5◦C (Garrity, 1992). Based
on forward modeling of the reflected radar signal,Makynen
and Hallikainen(2009) found that this wet snow cannot be
neglected because it alters the waveform shape substantially
by adding more volume scattering to the power echo.Willat
et al. (2011) confirmed the influence of snow on the radar
signal based on data from a dedicated field campaign. The
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influence of surface roughness cannot be separated from the
influence of snow properties in the analysis presented. We
can only conclude that the combination of difference in ice
and snow properties is sufficient to generate a significant dif-
ference in the waveform shape.

Therefore more analyses are required to test how our find-
ings can be adapted to satellite-borne altimeter systems. The
main difference between the ASIRAS data used in this study
and CryoSat-2 data is the resolution. While ASIRAS has a
bin width of 9 cm and a footprint of tens of meters, SIRAL
on board CryoSat-2 has a bin width of 45 cm and a resolu-
tion ranging from hundreds to thousands of meters. With this
large footprint size, it is more likely that a mixture of differ-
ent sea ice types occurs within each footprint, which makes
a clear separation more difficult. The narrow bin width in
the ASIRAS data allows for a detailed record of the returned
power. For CryoSat-2 the wide bin width only allows for a
detection of large-scale changes in surface structure and sig-
nal strength. This further limits the possibility of distinguish-
ing between surface types. A more detailed study is needed
to analyze the impact of the different resolutions as well as
the influence of snow and roughness on the SIRAL wave-
form. This has to include measurements from radar and laser
altimeters, snow radar, and EM measurements, as well as
large-scale information about surface roughness (e.g., AS-
CAT scatterometer dataAndersen et al., 2007) and snow re-
trievals from passive microwave measurements.

As with any other sea ice classification technique based
on remote sensing, the method presented here might be lim-
ited to the central Arctic in cold seasons (e.g.,Kwok et al.,
1992; Zakhvatkina, 2012), where ice types are more distinct
and a sufficient area of the radar footprint is covered by ice.
The possibility of distinguishing FYI from MYI by radar al-
timeter data alone is not intended to replace well-established
large-scale classification methods based on scatterometer or
passive microwave data (Fetterer et al., 1994; Fowler et al.,
2004; Andersen et al., 2007; Maslanik et al., 2011). The
main benefit of ice classification from radar altimeter data
is for improvement of freeboard retrieval and sea ice thick-
ness calculation. Freeboard, the height of the ice above the
water level, is retrieved by detecting leads between the ice
and finding the difference in elevation of ocean and ice floes.
To retrieve the elevation, a re-tracker needs to be applied to
determine the position on the leading edge belonging to the
surface. For the current Envisat algorithm, different meth-
ods are applied for waveforms from sea ice and leads (Rid-
out et al., 2012). In our study we found the shape of the
radar echo waveform to differ significantly between first- and
multi-year ice. Therefore we suggest that the identification of
different sea ice types can be used to develop a more accurate
re-tracker. This could be done by using different fitting pro-
cedures to the waveforms depending on surface type. More
work is required to test this possibility. The calculation of
sea ice thickness from the freeboard measurements is based

on the assumption of hydrostatic equilibrium

hi =
fiρw

ρw − ρi
+

hsρs

ρw − ρi
, (4)

wherefi is the ice freeboard,ρi the ice density,ρw the den-
sity of water,ρs density of snow andhs the snow load. The
highest uncertainties in sea ice thickness have been found
to come from the freeboard retrieval itself, the snow load and
from the density of the ice (Forstr̈om et al., 2011; Alexandrov
et al., 2010). So far snow load has been taken from climatolo-
gies (Warren et al., 1999) that are based on measurements
on multi-year ice. Recent results from IceBridge laser data
over Arctic sea ice reveal a significantly smaller snow load
on first-year ice compared to multi-year ice where the snow
accumulates over the entire season (Kurtz and Farrell, 2011).
Therefore the method presented allows not only the possi-
bility of improving the freeboard retrieval but also using ice
type dependent values for the sea ice density and snow load.
Previously this has been done by using large-scale sea ice
classification retrievals based on scatterometer or passive mi-
crowave retrievals. Our method has the benefit of not being
dependent on other instruments and providing synchronous
information about the surface type. It can improve the sea ice
thickness estimates, both on regional and Arctic-wide scales,
and improve our knowledge about changes in sea ice thick-
ness.

5 Conclusions

In this study, airborne Ku-band radar altimeter data over dif-
ferent sea ice types have been analyzed. It was found that the
radar altimeter waveforms retrieved over first-year ice and
multi-year ice differ significantly. Various parameters to de-
scribe the shape of the radar echo waveforms coming from
first-year ice, multi-year ice and leads were evaluated. The
maximum of the returned power echo and the trailing edge
width were selected as the most suitable ones for sea ice clas-
sification. A Bayesian approach used in combination with the
waveform parameters was found to be a successful method
to distinguish between first-year ice and multi-year ice. With
this method it was possible to detect 80 % of the waveforms
correctly. In addition, a simple threshold method based on
the pulse peakiness parameter was used for lead detection.
It was shown that the use of the maximum parameter could
lower the rate of false detection of leads. For the pulse peak-
iness parameter, the false classification rate is 12.6 % while
for the power maximum it is reduced to 6.5 %. More analyses
are required to test the presented method for satellite-based
altimeters. The method has the potential to improve the free-
board retrieval by developing a more accurate re-tracker al-
gorithm and improve the conversion of freeboard into sea ice
thickness by applying surface-dependent values for sea ice
density and snow load.
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