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Abstract. We introduce a novel, higher order, finite element
ice sheet model called VarGlaS (Variational Glacier Simula-
tor), which is built on the finite element framework FEniCS.
Contrary to standard procedure in ice sheet modelling, Var-
GlaS formulates ice sheet motion as the minimization of an
energy functional, conferring advantages such as a consis-
tent platform for making numerical approximations, a coher-
ent relationship between motion and heat generation, and im-
plicit boundary treatment. VarGlaS also solves the equations
of enthalpy rather than temperature, avoiding the solution of
a contact problem. Rather than include a lengthy model spin-
up procedure, VarGlaS possesses an automated framework
for model inversion. These capabilities are brought to bear
on several benchmark problems in ice sheet modelling, as
well as a 500 yr simulation of the Greenland ice sheet at high
resolution. VarGlaS performs well in benchmarking experi-
ments and, given a constant climate and a 100 yr relaxation
period, predicts a mass evolution of the Greenland ice sheet
that matches present-day observations of mass loss. VarGlaS
predicts a thinning in the interior and thickening of the mar-
gins of the ice sheet.

1 Introduction

Models have become an important tool in the study of glacier
and ice sheet physics, with applications to the prediction
of cryosphere/climate interactions, sea level rise, and funda-
mental questions of ice dynamics. In recent years, while con-
ceptual and theoretical advances in the development of ice
sheet models have been made, computational constraints lim-
ited practical ice sheet models to low-order asymptotic ap-

proximations of ice physics. Early models (and many modern
ones) relied upon the shallow ice approximation, sacrificing
accuracy in regions of complex flow for efficiency at large
scales (Hutter, 1983; Scḧafer et al., 2008). Models including
higher order physics were also used, but the increased com-
putational demand made operating at high resolutions infea-
sible. Additionally, many models were based on finite dif-
ference schemes, which made variable resolutions over dif-
ferent regions in the computational domain difficult. Recent
increases in computing power and the availability of paral-
lel libraries, in tandem with the finite element method and
unstructured meshes, have made possible the use of higher
order physical approximations coupled with the high resolu-
tion necessary to resolve fine-scale features of glacier flow.
The ice sheet modelling community has been quick to take
advantage of these advances, for example, inLarour et al.
(2012), Seddik et al.(2012), Gillet-Chaulet et al.(2012),
Leng et al.(2012), and Bueler and Brown(2009), among
others. In this work, we present a new thermomechanically
coupled, prognostic ice sheet model called VarGlaS (Varia-
tional Glacier Simulator). As stated above, there are already
a few examples of so-called “next-generation” ice sheet mod-
els in existence, but this model differs in implementation
strategy in several critical regards. Namely, these are the use
a of a variational principle in the model formulation, the so-
lution of an enthalpy equation, the use of a kinematic bound-
ary condition, and the use of automatic differentiation for
data assimilation. The implementation of these features is
streamlined by building the model upon the framework of-
fered by the open-source FEniCS project (Logg et al., 2012).
FEniCS offers access to a variety of finite element solvers
and tools, as well as a very deep integration of automatic
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1162 D. J. Brinkerhoff and J. V. Johnson: Variational ice sheet model

differentiation, which makes many of the more unique capa-
bilities of VarGlaS possible.

VarGlaS treats the solution to the momentum balance
(Stokes’ equations) as the minimization of an energy func-
tional. The existence of a variational principle for nonlinear
Stokes’ flow was shown byBird (1960). When applied to
ice sheets, the method consists in minimizing the dissipation
of gravitational potential energy by viscous and frictional
heat generation. This approach has been suggested bySchoof
(2006), Dukowicz (2012), andBassis(2010). This type of
treatment stands in contrast to the heretofore standard treat-
ment of the velocity field, which is to explicitly account for
the balance of viscous stresses and forcing by gravity, as is
done in most other ice sheet models (e.g.Larour et al., 2012;
Seddik et al., 2012; Leng et al., 2012; Bueler and Brown,
2009; Rutt et al., 2009). Viewing the problem as a variational
minimization problem confers a number of advantages. The
most important advantage is that the momentum balance is
uniformly derived from a single scalar conservation state-
ment. When approximations to the physics are made, they are
made to the scalar quantity, and these changes are automati-
cally propagated through the rest of the model. This is partic-
ularly useful when automatic differentiation is available. As
noted above, the FEniCS software offers strong automatic
differentiation capabilities, with particularly strong support
for the calculation of Ĝateaux derivatives, which is the nec-
essary operation for deriving equations of motion from a
variational principle (Dukowicz, 2012). The procedure of
generating the code for a new approximation to the Stokes’
equations is as simple as making a change to the variational
principle. This makes an extension of the model to different
asymptotic approximations straightforward. Other potential
advantages are that the variational principle is coordinate-
independent, streamlining the transition to a curvilinear or
geographic coordinate system. Boundary conditions are also
implicitly defined within the variational principle, meaning
that the often complex process of imposing boundary con-
ditions is simplified. The use of a variational principle also
confers several computational advantages. For example, the
operators derived from the variational principle are guaran-
teed to be at least symmetric and semi-definite. Also, these
operators are already in the appropriate form for use with the
finite element method, requiring no further manipulation.

Treatment of the energy balance by VarGlaS also differs
from standard methods. Typically, temperature is the variable
of interest in the energy balance (Larour et al., 2012; Seddik
et al., 2012; Greve and Hutter, 1995; Rutt et al., 2009; Pattyn,
2003). Computing the temperature field is a contact problem
where the temperature must be constrained to remain below
the phase boundary. Different methods have been employed
to enforce this constraint, such as treating temperate and cold
ice as two separate fluids (Greve and Hutter, 1995), manip-
ulating heat sources and sinks such that heat sources are ap-
plied to the temperature equation when below the melting
point and to calculate a melt rate when the ice is at the pres-

sure melting point (Rutt et al., 2009), or solving a contact
problem (Zwinger et al., 2007). To avoid inconsistency and
heuristics, we eschew the temperature formulation in favour
of an enthalpy treatment that tracks total internal energy den-
sity rather than sensible heat. This eliminates the need for
special numerical treatment of the cold-temperate transition
surface, at the expense of introducing a nonlinearity in en-
ergy diffusion (Aschwanden et al., 2012). While enthalpy is
more straightforward computationally, the temperature field
is still necessary for the computation of ice rheology and for
interpretation of model results. Temperature can be recov-
ered from enthalpy in a straightforward way through a bijec-
tion between enthalpy, temperature, and water content.

VarGlaS is equipped with a kinematic boundary condition
that allows for the evolution of ice geometry. Many models
calculate change in surface elevation as the flux divergence of
the vertically averaged horizontal velocity field (Larour et al.,
2012; Rutt et al., 2009; Bueler and Brown, 2009). We treat
it as the advection of the ice surface by the surface velocity
field, as is done inSeddik et al.(2012) andLeng et al.(2012).
The two forms are equivalent, and both are numerically un-
stable. VarGlaS, similar to other modern finite element mod-
els, uses streamline upwind Petrov–Galerkin finite elements
to stabilize the free surface problem (Larour et al., 2012; Sed-
dik et al., 2012). Additionally, transitions between glaciated
and ice-free regions of the model domain produce numerical
instabilities which need to be addressed with methods be-
yond upwinding in order to maintain higher order accuracy.
To this end, VarGlaS also introduces a discontinuity captur-
ing scheme to maintain stability in the presence of large gra-
dients. VarGlaS uses a unique and fully explicit total vari-
ation diminishing Runge–Kutta scheme for time discretiza-
tion. This method guarantees that no new spurious extrema
are generated by the time-stepping scheme, and provides sec-
ond order in time accuracy without necessitating a complex
and expensive coupling between the momentum balance and
time evolution.

For both diagnostic and prognostic modelling, it is impor-
tant to constrain the model to match observed values of state
variables as closely as possible. To this end, VarGlaS pos-
sesses tools for data assimilation, again based on the auto-
matic differentiation capabilities of FEniCS. With this func-
tionality in place, calculating the adjoint state of a model and
the gradient of a given objective function with respect to arbi-
trary parameters under the constraint that a forward model be
satisfied is simple and automated. We use this capability in
two complementary ways. First, we have been able to invert
for sliding velocity (or basal traction) to best match surface
velocities, a classic problem in glacier modelling (MacAyeal,
1993; Goldberg and Sergienko, 2011; Larour et al., 2005;
Gudmundsson and Raymond, 2008; Morlighem et al., 2010;
Brinkerhoff et al., 2011). In contrast to many implementa-
tions of data assimilation in ice sheet modelling (MacAyeal,
1993; Morlighem et al., 2010), VarGlaS uses an unsimplified
adjoint (Goldberg and Sergienko, 2011; Brinkerhoff et al.,
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D. J. Brinkerhoff and J. V. Johnson: Variational ice sheet model 1163

2011). We can also minimize the total imbalance in mass
continuity with respect to basal topography (e.g.Morlighem
et al., 2011), although this procedure is presented in a sepa-
rate paper (Johnson et al., 2013). These methods are impor-
tant for long-term simulations, as velocity assimilation repro-
duces a plausible velocity that is of leading order importance
in calculating surface rates of change, while mass conserva-
tion assimilation helps to eliminate strong transients result-
ing from estimates of basal topography that are incoherent
relative to the ice physics and observed data.

The paper is structured as follows. Section2.1 discusses
the continuum mechanical formulation of the model physics.
Section2.2 deals with the numerical implementation of the
model physics, and the difficulties arising from their dis-
cretization. Section3 involves the application of the model to
a few numerical experiments including well-known bench-
marks involving idealized geometry, as well as the entire
Greenland ice sheet. Finally, in Sect.4 we discuss how the
combination of advances has allowed VarGlaS to success-
fully simulate both numerical benchmarks and continental-
scale ice dynamics, as well as the fundamental limitations of
the model and what directions should be explored in order to
overcome these.

2 Model

VarGlaS solves for the three-dimensional ice sheet veloc-
ity, enthalpy, and geometry through time. All three of these
variables are strongly coupled. We first present the contin-
uum formulation of ice sheet physics, followed the numerical
treatment for each.

2.1 Physics

2.1.1 Momentum balance

Our development of a variational principle for the momen-
tum balance largely followsDukowicz (2012). The varia-
tional principle for a power law rheology with linear basal
sliding under the constraints of incompressibility and bed im-
penetrability is

A[u,P ] =

∫
�

 2n

n + 1
η(ε̇2)ε̇2︸ ︷︷ ︸

Viscous Dissipation

+ ρg · u︸ ︷︷ ︸
Potential

− P∇ ·u︸ ︷︷ ︸
Incomp.

 d�

+

∫
0B

 β2

m + 1
hr(u · u)

m+1
2︸ ︷︷ ︸

Friction

+ Pu · n︸ ︷︷ ︸
Impen.

 d0 (1)

+

∫
0E

 −Peu · n︸ ︷︷ ︸
Env. Pressure

 d0,

whereu is the ice velocity anḋε the rate of strain tensor,
P the pressure,η(ε̇2) the strain-rate-dependent ice viscosity,
g the gravitational vector,β2 the basal sliding coefficient,
h the ice thickness,r a factor determining the relationship
between basal traction and thickness,m a factor determin-
ing the nonlinearity of the frictional term,n the outward nor-
mal vector, andPe, the environmental pressure, either atmo-
spheric or water (see Table1 for a complete listing of sym-
bols used in this manuscript). The expression is minimized
over the ice domain� with boundaries0, where0B is the
grounded portion of the ice sheet.0E is the non-grounded
portion of the ice sheet, and is defined by0E = 0 \ 0B .
Each of the additive terms in Eq. (1) has a specific meaning.
Terms integrated from left to right over� are viscous dis-
sipation, gravitational potential energy, and the incompress-
ibility constraint, respectively. Terms under the first bound-
ary integral are frictional heat dissipation and the impenetra-
bility constraint. Note that basal traction is scaled by thick-
ness compared to the standard form of the sliding law. For
r = 1, this eliminates the covariance between basal traction
and pressure evident in previously computed basal traction
fields (e.g.Larour et al., 2012). For r = 0, it is obvious that
this form reduces to the standard sliding law. The term under
the second boundary integral is the pressure at the ice–air or
ice–water interface. Note that, at this point, VarGlaS does not
allow these boundary domains to change, implying a static
grounding line. The constitutive relationship for ice given by
Glen(1955) gives a viscosity of

η(ε̇2) = b(T ,ω)[ε̇2
]

1−n
2n , (2)

whereε̇2 is defined to be the square of the second invariant
of the strain rate tensor, andb(T ,ω) is a temperature- and
water-content-dependent rate factor:

b(T ,ω) =

[
Ea(T ,ω)e−

Q∗(T )
RT ∗

]−1
n

. (3)

Here,E is an enhancement factor, witha(T ,ω), Q∗(T ) and
R parameters, andT ∗ is temperature-corrected for pressure
melting point dependence. The traditional momentum bal-
ance form of the Stokes’ equations can be recovered (in weak
form) by taking the variation of Eq. (1). This is the functional
that VarGlaS minimizes in order to solve the Stokes’ prob-
lem.

The Stokes’ functional is a relatively complete statement
of ice physics (the only assumptions being negligible inertial
terms), but it includes four degrees of freedom per computa-
tional node (three velocity components and pressure) and is
a saddle point problem due to the presence of the Lagrange
multiplier pressure terms. A considerable simplification can
be made to the Stokes’ functional by expressing vertical ve-
locities in terms of horizontal ones through the incompress-
ibility and bed impenetrability constraints, that is
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1164 D. J. Brinkerhoff and J. V. Johnson: Variational ice sheet model

Table 1.Table of symbols.

Symbol Value Units Description

A J a−1 Stokes’ energy functional
A1 J a−1 First-order energy functional
a(T ) Pa−n a−1 Temperature-dependent ice hardness
ȧ m a−1 Surface accumulation/ablation rate
α Regularization weighting factor
B m Bed elevation

b Pa a
1
3 Linear viscosity factor

β2 Pa am m−(m+r) Basal traction coefficient
C CFL stability maximum
Cp 2009 J kg−1 K−1 Heat capacity of ice
Cw 4181 J kg−1 K−1 Heat capacity of liquid water
c Mesh cell
ċ Compensatory accumulation
D m Vector cell size
D m Scalar cell size
E Enhancement factor
e m a−1 Cell error
ε̇ a−1 Strain rate tensor
ε̇0 10−30 a−1 Strain rate regularization
F Nonlinear equation system
F Forcing function on model interior
G Forcing function on model boundary
g m s−2 Gravitational acceleration vector
γ 9.76× 10−8 K Pa−1 Melting point pressure dependence
0 Model domain boundary
H0 J Atmospheric melting enthalpy
Hm J Pressure-corrected melting enthalpy
H J Enthalpy
Hess m−1 a−1 Hessian of surface velocity
h m Ice thickness
η Pa a Ice viscosity
I ′ Unconstrained objective functional
I Constrained objective functional
J Jacobian of nonlinear equation system
K m2 a−1 SUPG diffusivity
Kshock m2 a−1 Shock capturing diffusivity
k 6.62× 107 J a−1 K−1 m−1 Thermal conductivity of cold ice
κ m2 a−1 Diffusivity of temperate and cold ice
L 3.35× 105 J Latent heat of fusion
3 m−1 a−1 Eigenvalues of Hess
λ m a−1 Adjoint velocity
M m−1 a−1 Anisotropic error metric
Mb m a−1 Basal melt rate
m Sliding law nonlinearity parameter
n Outward unit normal vector
n 3 Glen’s flow law parameter
ν 3.5× 103 kg m−1 a−1 Moisture diffusivity in temperate ice
P Pa Isotropic pressure
Q J m−3 a−1 Internal heat generation
Q∗ J mol−1 Activation energy
qgeo 42 mW m−2 Geothermal heat flux
qfriction mW m−2 Frictional heat flux
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Symbol Value Units Description

R m a−1 Residual of free surface equation
R 8.3 J mol−1 K−1 Universal gas constant
R̂ Newton relaxation parameter
r Sliding law thickness exponent
ρ 910 kg m−3 Ice density
S m Surface elevation
Ŝ m Analytic surface elevation
T Tikhonov regularization functional
T K Temperature
T ∗ K Pressure-corrected temperature
Tm K Melting temperature
T0 273.15 K Triple point temperature
τgls m2 Pa−1 a−1 Galerkin least squares stabilization parameter
U i Solution vector at nonlinear iterationi
u m a−1 Velocity vector
uobs m a−1 Observed velocity vector
u‖ m a−1 Horizontal velocity vector
û m a−1 Analytic velocity vector
V Eigenvectors of Hess
w m a−1 Vertical component of velocity vector
� Model domain
ω Water content

w(u‖) = −

z∫
B

∇‖ · u‖ dz′ (4)

with boundary condition

wB = u‖B · ∇‖B. (5)

Substitution of these expressions intoA yields an uncon-
strained and positive definite integro-differential functional
which is equivalent to Eq. (1). However, the integral terms
that result from the vertical integration of the mass conserva-
tion equation are undesirable. Standard methods for the nu-
merical solution of partial differential equations (PDEs) are
not equipped to handle integral terms of this type, so we seek
a simplification that eliminates them. In order to derive the
functional associated with the so-called “first-order” equa-
tions of ice sheet motion (Blatter, 1995; Pattyn, 2003), two
assumptions must be made. First, bed slopes are small, which
is also equivalent to assuming cryostatic pressure. Second,
horizontal gradients of vertical velocity are small compared
to other components of the strain rate tensor. This eliminates
vertical velocity terms in the interior of the ice, as well as at
the surface and grounded basal boundaries. After these as-
sumptions and some manipulation, the first-order functional
is

A1[u‖] =

∫
�

 2n

n + 1
η(ε̇2

1)ε̇2
1︸ ︷︷ ︸

Viscous Dissipation

+ ρgu‖ · ∇‖S︸ ︷︷ ︸
Potential

 d�

+

∫
0B

 β2

m + 1
hr(u‖ · u‖)

m+1
2︸ ︷︷ ︸

Friction

 d0 (6)

+

∫
0E

Pw (u · n)︸ ︷︷ ︸
Env. Press.

d�, (7)

whereu‖ is the velocity vector in the horizontal directions,
S the elevation of the ice surface, andε̇2

1 the first-order strain
rate tensor given byPattyn(2003) andDukowicz(2012). The
first-order assumption does not allow a decoupling of the ver-
tical velocity where the ice is not grounded, which is a direct
consequence of assuming that vertical resistive stresses are
negligible. Thus we assume, for the first-order model, that
any ice beyond the grounding line instantly calves and is no
longer considered. Thus we drop the last term in Eq. (6).
Since the first-order equations are only associated with hor-
izontal velocity components, this formulation yields signif-
icant computational savings, as well as desirable numerical
properties such as guaranteed positive definiteness. Vertical
velocity for the grounded ice sheet is recovered from Eqs. (4)
and (5).
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1166 D. J. Brinkerhoff and J. V. Johnson: Variational ice sheet model

2.1.2 Enthalpy

VarGlaS uses an enthalpy formulation of the energy balance
(Aschwanden et al., 2012). Enthalpy methods track total in-
ternal energy, rather than sensible heat, which corresponds
bijectively to temperature for ice below the pressure melting
point, and to water content for ice at the pressure melting
point. The enthalpy equation is a typical advection–diffusion
equation with a nonlinear diffusivity:

ρ (∂t + u · ∇)H = ρ∇ · κ(H)∇H + Q, (8)

whereH is enthalpy,ρ ice density, andQ strain heat gen-
erated by viscous dissipation, given by the dissipative term
in the momentum balance functional.κ is an enthalpy-
dependent diffusivity given by

κ(H) =

{
k

ρCp
if cold

ν
ρ

if temperate,
(9)

wherek is the thermal conductivity of cold ice andCp is heat
capacity.ν is the diffusivity of enthalpy in temperate ice, and
can also be thought of as a parameterization of the subgrid-
scale intraglacial flow of liquid water. It is not clear what the
value ofν should be. BothHutter (1982) andAschwanden
et al.(2012) have suggested that it be a function of both water
content and gravity, but intra-glacial liquid modelling is be-
yond the scope of this work, and we set this value toν �

k
Cp

.
This implies that heat does not move diffusively within tem-
perate ice, and that any heat generation immediately goes to-
wards melting. The definitions for cold and temperate ice are
as follows:{

cold (H − Hm(P )) < 0

temperate (H − Hm(P )) ≥ 0,
(10)

where Hm is the pressure melting point expressed in en-
thalpy,

Hm(P ) = −L + Cw(T0 − γP ), (11)

andCw is the heat capacity of liquid water,γ the dependence
of the melting point on pressure,T0 the triple point tempera-
ture of water, andL the latent heat of fusion for water.

At the ice surface, we specify a Dirichlet boundary con-
dition corresponding to surface temperature. At the basal
boundary, we apply the Neumann boundary condition:

κ(H)∇H · n = qg + qf − MbρL, (12)

whereqg is geothermal heat flux, assumed known,qf fric-
tional heat generated by basal sliding, andMb the basal melt
rate. Frictional heat is given by the frictional term in the mo-
mentum balance functional. Note that in temperate ice, where
κ(H) is nearly zero (no diffusion), this relation defines the
basal melt rate. In cold ice, a value must be specified for the

basal melt rate (which can be negative to account for basal
freeze-on). We usually take this to be zero.

Enthalpy is uniquely related to temperature and liquid wa-
ter in the following way:

T (H,P ) =

{
C−1

p (H − Hm(P )) + Tm(p) if cold

Tm if temperate

ω(H,P ) =

{
0 if cold
H−Hm(P )

L
if temperate,

(13)

whereω is fractional water content, whileHm andTm are the
pressure melting points expressed in enthalpy and tempera-
ture, respectively.

2.1.3 Dynamic boundaries

The ice sheet geometry evolves over time according to the
kinematic boundary condition

(∂t + u‖ · ∇‖)S = w + ȧ, (14)

whereȧ is the accumulation rate.

2.1.4 Marine outlet treatment

For the Stokes’ model, VarGlaS currently treats the ground-
ing line in the simplest way possible, which is to keep its
location fixed. At this point, ice can not become ungrounded.
For transient runs, the geometry of calving fronts is fixed so
that mass loss due to calving is effectively proportional to the
velocity at the calving front. At the scale of outlet glaciers,
this is a limitation and is a major priority in ongoing devel-
opment, but the physics of the shelf is treated. As mentioned,
the first-order approximation is not conducive to the treat-
ment of a coupled sheet–shelf system, and so ice flowing past
a pre-specified grounding line is assumed to calve immedi-
ately.

2.2 Numerical methods

In the following sections, we discuss how the continuum me-
chanical equations discussed above are discretized in order
to be made computationally tractable.

2.2.1 Finite element discretization using FEniCS

VarGlaS is built upon the finite element package FEniCS
(Logg et al., 2012). FEniCS is a powerful development en-
vironment for performing finite element modelling, includ-
ing strong support for symbolic automatic differentiation, na-
tive parallel support and parallel interface with linear alge-
bra solvers such as PETSc (Balay et al., 2012) and Trilli-
nos (Heroux et al., 2005), and automatic code generation and
compilation for compiled performance from an interpreted
language interface. The Python scripting environment makes
the generation and linking of new code straightforward. We

The Cryosphere, 7, 1161–1184, 2013 www.the-cryosphere.net/7/1161/2013/
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find that this interface provides a level of extensibility that
makes VarGlaS promising for distributed development and
rapid prototyping of models for additional components of the
cryosphere.

FEniCS has a large library of finite elements available. We
use only one, the continuous, linear Lagrange finite element,
defined over an unstructured triangular mesh. This choice of
element is unstable for advection-dominated equations, such
as the kinematic boundary condition and the enthalpy equa-
tion (in most cases), as well as for Stokes’ equations due to
the pressure term. We cover stabilization procedures in the
following sections.

The velocity field and enthalpy equations are both non-
linear. These are each solved by using a relaxed Newton’s
method (e.g.Deuflhard, 2004) with a Jacobian calculated by
automatic differentiation:

J[U i
]1U = −F [U i

], (15)

U i+1
= U i

+ R̂1U, (16)

whereU i is the solution vector at thei-th iteration,1U a
solution update,J the Jacobian matrix, andF the system of
nonlinear equations.̂R is a relaxation parameter that arbitrar-
ily shortens the step size in order to improve numerical stabil-
ity. The amount of damping required is specific to the prob-
lem, but we find that a relaxation parameter between 0.7 and
1.0 is typically sufficient to achieve convergence. We specify
both a relative and absolute tolerance as convergence criteria
for Newton’s method. The solution is considered converged
if the L∞ norm of 1U is less than 10−6 m a−1 or theL∞

norm of 1U
Un is less than 10−3.

In order to resolve the coupling between enthalpy and ve-
locity, we use a fixed point iteration. Each of these nonlinear
equations is solved independently, and the result is iteratively
used as input in calculating the other variable. Convergence
is assumed when both the velocity and temperature updates
are less than 10−6 m a−1 and 10−6 K, respectively.

2.2.2 Mesh refinement

The model domain is discretized using a tetrahedral mesh
which is unstructured in the horizontal dimensions, and
structured in the vertical. In order to equidistribute discretiza-
tion error, we use the anisotropic error metric according to
Habashi et al.(2000):

e(c) ∝ maxi∈ExT
i Mxi, (17)

wheree(c) is a cell-wise error estimate,E a given mesh cell,
xi an edge inE andM a metric tensor, in this case defined
by

M = V T
|3|V . (18)

V and3 are the respective eigenvectors and eigenvalues of
the Hessian matrix of the field over which error is to be
equidistributed (Habashi et al., 2000). For all the meshes pre-
sented forthwith, we use the Hessian of an observed veloc-
ity norm (either observed or modelled) in calculating error
metrics. A discrete approximation for each component of the
Hessian matrix is obtained iteratively for each level of mesh
refinement by solving the variational problem∫
�

Hessijφ d� = −

∫
�

∂U

∂xi

∂φ

∂xj

d� +

∫
0

∂U

∂xi

φnxi
d0, (19)

where Hessij denotes the components of the Hessian andU

is the surface speed. With error estimates in hand, we isotrop-
ically refine all cells that are above a specified proportion of
the average error. In order to account for the directional na-
ture of the velocity field, we incorporate anisotropy by us-
ing Gauss–Seidel iterations (Habashi et al., 2000) to solve
approximately an elasticity problem, with computed edge er-
rors as “spring constants”. This mixed isotropic–anisotropic
technique yields high quality and efficient meshes with both
the structural simplicity of isotropic refinement, as well as
the better error to mesh size ratio of anisotropic techniques.
An example of a mesh created with this method is shown in
Fig. 1. Note that this algorithm does not allow mesh coarsen-
ing, so the refinement procedure is initialized with a coarse
mesh.

2.2.3 Data assimilation and regularization

Many physical quantities of leading order relevance to
glacier and ice sheet flow are either practically impossible
to collect, or are point measurements which cannot gener-
ally be extrapolated to a broader spatial context. Examples
of the former include historic variables such as a detailed
record of surface temperature or ice impurity content at de-
position. Examples of the latter include basal water pressure,
basal temperature, enhancement factors, and geothermal heat
flux. A particularly important parameter which must usually
be estimated is the coefficient of basal traction, which re-
lates basal shear stress to sliding velocity. In many cases,
sliding makes up nearly all of a glacier’s surface velocity
(e.g.Weis et al., 1999). Thus, any model that wishes to re-
produce plausible velocity and thermal structures must pa-
rameterize traction. The availability of widespread surface
velocity data, and the conceptually simple relationship be-
tween surface and bed velocities have made the inversion of
surface velocities for basal traction a popular choice for per-
forming this parameterization (MacAyeal, 1993; Goldberg
and Sergienko, 2011; Larour et al., 2005; Gudmundsson and
Raymond, 2008; Morlighem et al., 2010; Brinkerhoff et al.,
2011).

We have implemented basal traction inversion in VarGlaS
using a partial differential equation-constrained optimization
procedure. In the following, we illustrate the method using
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Fig. 1. Observed surface velocity projected onto an anisotropically
refined mesh of Greenland’s northeast ice stream.

surface velocity in the cost functional, and basal traction as
the control variable, but the procedure is analogous to any
choice of objective function of control variable. The funda-
mental concept behind this method is to define a scalar ob-
jective function, to calculate its gradient, and to use standard
minimization techniques to find the minimum. We use a gen-
eral form for the definition of the cost functionalI ′. Exam-
ples include a linear cost functional:

I ′
[u] =

∫
0S

||u − uobs|| d0 (20)

or a logarithmic one

I ′
[u] =

∫
0S

[
log

||u||

||uobs||

]2

d0. (21)

We require that the velocity field obtained by this functional
satisfies the equations of motion by imposing the momentum
equations via a Lagrange multiplier:

I[u,β2
] = I ′

+ δA[u,β2
;λ], (22)

whereδ implies the first variation operator, andA is one of
the energy functionals defined in Sect.2.1.1. λ is a Lagrange
multiplier used to enforce the forward model as a constraint.
Taking the variation ofI with respect tou, β2, andλ yields,
respectively, a forward model, an adjoint model, and an ex-
pression for the gradient of the objective function with re-
spect toβ2, which is expressed in terms ofu andλ. Note that

no simplifying assumptions about the nature of the forward
model are made. In particular, when possible we use the full
adjoint, calculated via automatic differentiation, rather than
making the assumption that the viscosity does not depend
on u, as is done in many inversion procedures (e.g.Gold-
berg and Sergienko, 2011; Larour et al., 2012). In the case
where strong mismatches between the modelled and surface
velocity exist, stability of the inversion numerics necessitates
fixing the viscosity, and using an incomplete adjoint, as in
Goldberg and Sergienko(2011), but only for the first few it-
erations.

In order to impose a minimum bound on the smoothness of
the solution, we add a Tikhonov regularization term, which
penalizes wiggles in the control variable. This regularization
is of the form

T = α

∫
0B

||∇β2
· ∇β2

|| d0, (23)

where α is a positive weighting tensor. This value is
different for different objective functions and different
model domains, and the means to determine its value is
not obvious. In the glaciological literature, L-curve anal-
ysis is a popular choice that involves solving the in-
verse problem with increasing regularization until a notable
change in the rate of objective function increase is found
(e.g. Gillet-Chaulet et al., 2012). It is assumed that this in-
flexion point represents the optimal balance between regular-
ization and minimization of the objective function. We prefer
to use heuristics, assuming (and imposing) a maximum rate
of spatial variability in the basal traction field based on fac-
tors such as ice thickness. Note that applying Tikhonov regu-
larization on the gradient in this way is equivalent to applying
an anisotropic diffusion operator to the control variable.

With a means of efficiently computing the objective func-
tion and its gradient with respect to the control variable in
hand, we can use any number of optimization algorithms to
minimizeI. We use the quasi-Newton algorithm LBFGSB
(Nocedal and Wright, 2000). We used a parallel implementa-
tion of the L BFGSB algorithm derived from that appearing
in the dolfin-adjoint library (Farrell et al., 2012). Termination
criterion for the optimization routine is essentially heuristic,
with the optimization procedure terminating upon the objec-
tive function reaching a valley. The definition of a reliable
convergence criterion is a subject of ongoing research, with
the methods ofHabermann et al.(2012) particularly promis-
ing.

2.2.4 Time evolution

We use two different algorithms for the discretization of time.
For the enthalpy equation, we use a semi-implicit

Crank–Nicholson time-stepping scheme, with an arbitrary
Lagrangian–Eulerian (ALE) treatment of the convective ve-
locities in order to compensate for the moving mesh (Donea
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et al., 2005) (ALE operates by subtracting the mesh veloc-
ity from the fluid velocity). This semi-implicit method is
acceptable because of the relatively minor nonlinear cou-
pling between enthalpy and the velocity field; linearization
is achieved by calculating the nonlinear dependence with the
values of the previous time step. Crank–Nicholson provides
second-order accuracy in time, provided that the Courant–
Friedrich–Lewy criterion

1t max

(
κ

1

D · D
,u ·

1

D

)
≤ C (24)

is satisfied, whereD is the vector of cell dimensions in each
direction andC is a constant, usually taken to be12. Note
that this condition can be restrictive in some outlet glaciers,
where the combination of 1 km-scale spatial resolution and
> 1 km a−1-scale velocities requires time steps on the order
of a month.

For the free surface equation, the nonlinear coupling be-
tween velocity and surface elevation is stronger, so lineariza-
tion is not a desirable option, and solving the full nonlin-
ear problem implicitly is inefficient. We instead choose to
use a fully explicit total variation diminishing Runge–Kutta
(TVD-RK)-type scheme of second or third order (Gottlieb
and Shu, 1998). The total variation diminishing property im-
plies that no spurious oscillations should be created as a re-
sult of the time discretization. This must be coupled with a
non-oscillatory spatial discretization (such as streamline up-
winding) in order to maintain a stable solution. The TVD
property is important in suppressing spurious oscillations
near sharp margins (such as those characterizing glacial ter-
mini). Being a Runge–Kutta method, we must solve the mo-
mentum balance once for each order of accuracy, but we find
that the added stability and accuracy of using a higher order
explicit method makes this increase in computational over-
head worthwhile.

2.2.5 Stabilization

Both the enthalpy and free surface equations are hyperbolic,
and the standard centred Galerkin finite element method
gives rise to spurious oscillations. In order to provide sta-
bilization, we apply streamline upwind Petrov–Galerkin
(SUPG) methods (Brooks and Hughes, 1982). For the en-
thalpy equation, this consists of adding an additional diffu-
sion term of the form

ρ∇ ·K∇H, (25)

whereK is a tensor valued diffusivity defined by

Kij =
D

2

uiuj

||u||
, (26)

whereD is a cell size metric. Alternatively, we can view this
stabilization as using skewed finite element test functions

φ̂ = φ +
D

2

u

||u||
· ∇φ (27)

to weight the advective portion of the governing equation.
Since the time derivative is implicitly defined, there is no
need to apply upwind weighting to the time derivative or
source terms, and because linear elements are used, applying
this weighting to the diffusive component would necessitate
second derivatives of test functions, which are always zero
for linear elements.

For the free surface equation, a similar procedure is used,
where modified Galerkin test functions

φ̂ = φ +
D

2

u‖

||u‖||
· ∇‖φ (28)

are used to discretize the equations. Note that in this case, due
to the explicit time-stepping scheme, the augmented weight-
ing function is applied consistently to the entire residual, in-
cluding the time derivative. In addition to streamline upwind-
ing, we apply a shock-capturing artificial viscosity in order to
smooth the sharp discontinuities that occur at the ice bound-
aries, where the model domain switches from ice to ice-free
regimes (Donea and Huerta, 2003). This additional term is
given by

∇ ·Kshock∇S, (29)

whereKshock is the nonlinear residual-dependent scalar

Kshock=
D

2||u||
[∇‖S · ∇‖S]

−1R2. (30)

Here,R is the residual of the original free surface equation.
For the Stokes’ equations to remain stable, it is neces-

sary either to satisfy or to circumvent the Ladyzhenskaya–
Babuska–Brezzi (LBB) condition. The typical way of doing
this is to use a mixed second order in velocity, and first order
in pressure finite element (the Taylor–Hood element). While
VarGlaS has the capacity to use this formulation, we find that
the additional degrees of freedom introduced by the higher
order elements lead to an unacceptable loss of computational
performance. Instead, we circumvent this condition by using
a Galerkin least squares (GLS) formulation of the Stokes’
functional

A′
[u,P ] =A−

∫
�

τgls(∇P − ρg) · (∇P − ρg) d�, (31)

whereτgls is a stabilization parameter (Baiocchi et al., 1993).
For a linear Stokes’ problem, the usual value forτgls is

τgls =
D2

12η
. (32)

Sinceτgls is a function of the ice viscosity,τgls should rightly
be nonlinear. However, we have found through experimen-
tation that ignoring the strain rate dependence of the viscous
term yields acceptable results and much better numerical sta-
bility. Thus we use

τgls =
D2

12η̄
, (33)
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where η̄ is some linear estimate ofη. We have foundη̄ =

103
× b(T ) to yield an appropriate blend of fidelity to the

governing equations and stabilization. Note that this has the
effect of adding a diffusive term over pressure to the conser-
vation of mass equation.

2.2.6 Parallelism

VarGlaS has been developed to take full advantage of the in-
nate parallel capabilities of PETSc (Balay et al., 2012) and
FEniCS (Logg et al., 2012), on which it is built. All compu-
tationally intensive components of the model are compatible
with parallel usage, such as the nonlinear solvers, time step-
ping, and optimization. VarGlaS exhibits good scaling be-
tween 1 and 16 cores, the largest cluster to which the authors
have access. Parallel efficiency for a nonlinear solution of the
first-order equations over all of Greenland for over a million
degrees of freedom is shown in Fig.2.

2.2.7 Verification with the method of manufactured
solutions

We use the method of manufactured solutions (MMS,Salari
and Knupp, 2000) to construct analytical solutions to the mo-
mentum balance and surface evolution equations in order to
determine the extent to which our numerical solutions repro-
duce the exact results. This procedure is known as verifica-
tion, which ensures that the given equations are being solved
correctly and consistently (this is held in contrast to valida-
tion, which is the procedure of ensuring that the appropriate
equations for a given physical scenario are being solved). The
use of MMS in the context of glaciological models has been
previously developed byBueler et al.(2005), with more re-
cent results bySargent and Fastook(2010) andLeng et al.
(2013). We adopt a similar approach to these works, but like
Leng et al.(2013) and unlikeBueler et al.(2005), we explic-
itly forego verifying thermomechanical coupling.

The main idea behind MMS is to select an arbitrary solu-
tion, and then construct a source function that produces that
solution. To that end, we select the following functions for
the components of the ice velocity and free surface:

û(x, t) = ud

[
1−

Ŝ(x, t) − z

Ŝ(x, t) − B(x)

]
+ ub, (34)

v̂(x, t) = 0, (35)

ŵ(x, t) = −

z∫
B(x)

[
∂û

∂x
(x′, t) +

∂v̂

∂y
(x′, t)

]
dz′, (36)

Ŝ(x, t) = −x tanα + Amp(1− e−
t
τ )

× sin

(
2π

L
x

)
sin

(
2π

L
y

)
. (37)

Also, we have thatB(x) = S(x, t = ∞)− 103, L = 104, and
Amp= 500, which corresponds to the geometric set-up of
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Fig. 2.Parallel efficiency computed for one complete Newton solve
of the first-order equations for meshes with different degrees of
freedom. All linear solves were performed using parallel GMRES
(generalized minimal residual method) preconditioned with Hypre-
AMG.

ISMIP-HOM A (Pattyn et al., 2008). We setud = 20 m a−1

andub = 10 m a−1

We begin by verifying the computation of the velocity
field, which is a pseudo-steady-state calculation; the veloc-
ity field’s only dependence on time is through the problem
geometry. This implies that we can verify the velocity field
independent of time, and for this procedure sett = 0.

We seek vector-valued functionsF(x, t) andG(x, t) such
that the functionŝu(x, t) that we have selected minimize the
functional

Â[û] =

∫
�

[
2n

n + 1
η(ε̇2)ε̇2

+ G · û

]
d�

+

∫
0

û diag(G) ûT d0, (38)

where diag(G) is a diagonal matrix with the components ofg
on the diagonal. Note that we have eliminated the Lagrange
multiplier P from the functional, sincêu is constructed to
be divergence-free. Taking the variation with respect toû

yields the Stokes’ equations with arbitrary forcings within
the model domain and at the boundary. Sinceû is analytical,
we can invert forF and G. The procedure is the same for
finding the forcing functions for the first-order equations, but
we use the first-order functional Eq. (6).

While the functions used in the MMS are arbitrary, we
note a few features of our selection. We have eliminatedP

from the formulation by a specific choice of velocity field.
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One may view the pressure as itself being an arbitrary forc-
ing function, and in this case it becomes part ofF and G.
Also, we have chosen̂v = 0 because it greatly simplifies the
analytical source terms, and also because it allows us to carry
out an important test of rotational symmetry by swapping the
definitions ofû andv̂ (and their spatial arguments).

With the analytic forcing functionsF andG in hand, as
well as their corresponding analytical solutions, we can solve
the discrete model over progressively finer meshes and eval-
uate whether the error in the numerical solution tends to-
wards zero as the discrete domain better approximates the
continuum. In practice, computational intensity limits the
maximum level of refinement, and it is sufficient to show
that a discretization converges towards the analytical solu-
tion at close to the theoretical order of accuracy, which for
linear finite elements isO(1x2) (Salari and Knupp, 2000).
We solved both of these problems over meshes ranging from
1x = 5×103 m to1x = 40 m, two orders of magnitude. The
resulting error profiles are shown in Fig.3. The slope of the
relativeL2 norm for both approximations is close tom = 2
in logarithmic space, which is the theoretically correct result
for linear elements. This confirms that our discretization pro-
cedure shows theoretical order of accuracy convergence and
thus correctly solves the governing equations for the velocity
field.

Verification for our free surface evolution scheme pro-
ceeds similarly, except that refinements to the computational
domain are carried out both in time and space. We seek a
compensatory accumulation fielḋc, such that the kinematic
boundary condition

∂t Ŝ + û
∂Ŝ

∂x
+ v̂

∂Ŝ

∂y
= ŵ + ċ (39)

holds for the pre-defined, analytical functionsŜ and û.
Again, it is a simple matter to determine a closed form ex-
pression forċ. We use the same analytical functions as de-
fined above, but allowt to vary. To test the convergence of
our time-stepping scheme, we progressively refine1t and
run the model tot = τ using the compensatory accumulation
ċ in place ofȧ in Eq. (14) and evaluate the error in surface
elevation at that time. Note that because we are using an ex-
plicit time-stepping algorithm, the Courant–Friedrich–Lewy
(CFL) condition applies, limiting the minimum cell size that
can be used for a given time step. Simultaneously, we require
a certain spatial accuracy such that errors in the temporal dis-
cretization are not overwhelmed by errors resulting from the
spatial discretization. Thus, as we refine the time step, we
also refine the spatial resolution such that the Courant num-
berC = 0.1 for all simulations. This ensures that instability
due to a violation of the CFL condition does not occur, and
that an appropriately fine spatial resolution is used for a given
time step.

We refine between1t = 50 a and1t = 0.1 a, which corre-
spond to spatial resolutions between1x = 104 m and1x =
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Fig. 3. Error between numerical and analytical solutions versus
mesh cell size and time step. The slopes of these lines represent the
convergence rates of the spatial and temporal discretization methods
used by VarGlaS.

20 m. Surface elevation errors are shown in Fig.3. The theo-
retical behaviour of our RK2 algorithm implies a single-step
error ofO(1t3) and a cumulative error over time ofO(1t2)

(Gottlieb and Shu, 1998). These errors correspond to a slope
of m = 3 andm = 2 respectively, and we expect the slope of
the error in surface height at timeτ with respect to1t to be
between these two values. Indeed, we find thatm = 2.8 for
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both theL2 andL∞ norms. This result shows that our time-
stepping scheme possesses theoretical convergence proper-
ties, and can be considered verified.

We noted earlier that our choice of velocity fields could
be used to test symmetry. We performed both of the above
convergence tests for a swappedû and v̂ (with associated
swapped coordinatesx andy), and produced convergence re-
sults that were identical to machine precision. Thus we con-
clude that VarGlaS possesses the appropriate properties of
rotational symmetry.

3 Numerical experiments

In order to assess the correctness and efficiency of model,
we apply it to a number of well-known ice sheet modelling
benchmark experiments, before turning it towards a large-
scale data assimilation and prognostic time-stepping simula-
tion for the whole Greenland ice sheet.

3.1 ISMIP-HOM

The Ice Sheet Model Intercomparison Project–Higher Order
Model (ISMIP-HOM) benchmarks are a widely used test of
higher order model capabilities (Pattyn et al., 2008). In order
to verify our model performance, we run ISMIP-HOM tests
A, B, C, D, and F using both the first-order and Stokes’ equa-
tions for the momentum balance. All meshes for the ISMIP-
HOM experiments used structured grids with 20 elements in
each horizontal dimension, and 10 elements in the vertical
dimension, for 4851 degrees of freedom.

ISMIP-HOM A and ISMIP-HOM B simulate steady ice
flow with no basal slip over a sinusoidally varying bed with
periodic boundary conditions. B varies from A in that the
basal topography does not vary in the transverse direction,
whereas in A it does. Note that despite the fact that B is uni-
form in one spatial dimension, we still treat it as a three-
dimensional problem and use the same discretization and
boundary conditions (periodic, namely) as for A. Figures4
and5show the simulated surface velocity for all length scales
outlined in the benchmarks.

ISMIP-HOM C and ISMIP-HOM D simulate steady ice
flow with sinusoidally varying basal traction over a flat bed
with periodic boundary conditions. Again, D varies from C
in that only C is transversely varying. Figures6 and7 show
the simulated surface velocity for all length scales outlined
in the benchmark. This experiment specifies thatr = 0 in the
sliding law.

Experiments A–D were run in serial with a 2.2 GHz laptop
computer. Runs using the first-order approximation took ap-
proximately 10 s, while runs using the Stokes’ approximation
took around 60 s.

After running the ISMIP-HOM C experiment forward, we
have in hand the velocity field predicted by the model for
a given basal traction. We used this as an opportunity to

test the inverse capabilities of the model, and to invert for a
known basal traction. We performed the inversion using the
first-order approximation. Starting from an initial guess of a
uniform basal traction of 103 Pa a m−1, we allow the inverse
model to predict the basal traction field that produces the ve-
locity field of the forward model (which we know to be a
sinusoid). In assessing misfits, we used the linear cost func-
tional Eq. (20), because the velocity scale varies relatively
little over the domain. This problem was unregularized, so
α = 0. Figure8 shows both the rate of convergence as well
as the “observed” and modelled basal tractions and surface
velocities along theL

4 transect of the ISMIP-HOM model
domain using the results for the first-order approximation at
theL = 10 km length scale. Results for other length scales are
similar.

ISMIP-HOM F simulates unsteady ice flow over a Gaus-
sian bump with periodic boundary conditions under slip and
non-slip conditions, and evaluates the surface geometry and
velocity as they relax to steady state. Experiment F also man-
dates a linear rheology, son = 1. Figure9 shows the simu-
lated surface velocities and elevations for the slip and non-
slip cases, using a time step of1t = 1 a. These experiments
were run on a 4-core machine with 8 GB of memory and
2.2 GHz per processor. Using the first-order approximation,
the 500 a run took approximately 50 min. Using the Stokes’
approximation, the run took 5.5 h.

3.2 EISMINT II

The European Ice Sheet Model INTercomparison II (EIS-
MINT II) benchmarks are an older set of benchmarks than
ISMIP-HOM, and were designed for use with models em-
ploying the shallow ice approximation (Payne et al., 2000).
While ISMIP-HOM generally tests the accuracy of the mo-
mentum balance scheme over varying length scales, the
EISMINT experiments are more focused towards assessing
the time-dependent mass and energy balances. EISMINT II
stresses the dynamic evolution of the system and provides a
test for the long-term stability of our time-stepping scheme.
We know of no other higher order model operating on an
unstructured grid that has demonstrated a capacity to run for-
ward on such timescales.

In EISMINT II A, a radially symmetric surface mass bal-
ance and temperature field are imposed on an initially ice-
free, flat bed. The model geometry and temperature field are
allowed to evolve for 200 ka. Our chosen mesh had a cell
size of 25 km in the horizontal dimension, and 10 vertical
layers, for a total of approximately 32 000 degrees of free-
dom. We used a time step of 10 a, and on a 16-core machine
with 400 GB of memory and 2.9 GHz per processor, this run
(and EISMINT II F) took approximately 65 h. At the end of
this period, the total energy and mass were changing by less
than 104 % a−1, implying near-steady-state conditions. Fig-
ure 10 shows the resulting thickness and basal temperature
fields. Thickness and basal temperature at the centre point of
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Fig. 4. ISMIP-HOM A performed using first-order and Stokes’ approximations.

the ice sheet were 3647 m and 255.4 K respectively. These
are important metrics for intercomparison performance, and
lie near the benchmark means of 3688 m and 255.605 K.

EISMINT II F is identical to experiment A, except that im-
posed surface temperatures are 15◦ C colder throughout the
model domain. The results of this experiment are similar to
those of experiment A, albeit with a thicker ice sheet, and
a slightly different basal temperature profile. The resulting
thickness and basal temperature fields are given in Fig.10An
interesting difference between the resulting temperature field
here and that documented in the EISMINT II paper is that
VarGlaS does not predict the breakdown in radial symmetry
that occurred in all of the finite difference models of the inter-
comparison. We suspect that this is due to VarGlaS using an
unstructured grid, which alleviates some of symptoms of grid
dependency seen in the original experiment. This hypothesis
is supported by the work ofSaito et al.(2006), who provides
evidence that suggests that the “spoking” phenomenon seen
in Payne et al.(2000) is numerical in origin. It could be the

case that using an unstructured grid removes the grid-induced
pathways that allow these spokes to form.

3.3 Greenland

We applied VarGlaS to a large-scale problem in glaciology,
namely the transient simulation of the Greenland ice sheet.
The strategy in so doing was to initialize the model us-
ing measured present-day geometry, apply data assimilation
tools to obtain an initial estimate of the basal traction field,
and then allow Greenland’s geometry, velocity, and temper-
ature to evolve over 500 yr. We performed all simulations of
Greenland using the first-order approximation for the mo-
mentum balance (see Eq.6).

3.3.1 Data

We relied on the SeaRISE model set-up for input data
(SeaRISE, 2012). Bedrock and surface geometry were from
Bamber et al.(2001) with updated basal topography in the
Jakobshavn region from CReSIS, surface temperatures from
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Fig. 5. ISMIP-HOM B performed using first-order and Stokes’ approximations.

Fausto et al.(2009), basal heat fluxes fromShapiro and Ritz-
woller (2004), and surface mass balances fromEttema et al.
(2009). We used InSAR-derived 2007–2008 average surface
velocities fromJoughin et al.(2010) for a surface velocity
target. The Joughin data set is incomplete. The gaps were
filled with balance velocities, with gradients between the two
reduced by systematically exploring the uncertainties in the
accumulation rate. Specifically, we used a steepest descent
algorithm to minimize the misfit between the edges of the
InSAR velocities and the corresponding balance velocities
by varying the surface mass balance subject to the constraint
that it remains within its reported point-wise error bounds.

3.3.2 A mesh for Greenland

The boundary of Greenland was digitized using the 1 m con-
tour of theBamber et al.(2001) thickness data. We created
an initial two-dimensional (map plane) mesh by imposing a
2 km element size at the margins, grading to a variable but
much coarser resolution at the centre of the ice sheet. This

ensured that the mesh captured the complexity of the bound-
ary while maintaining appropriate coarseness in the interior.
We refined the mesh using the techniques of Sect.2.2.2. We
extruded this footprint over 10 vertical layers. Greenland,
when more highly resolved in the vertical dimension, demon-
strates convergence problems during Newton’s method solu-
tion process. Similar issues have been reported by other high-
resolution, higher order models, such as Elmer/Ice (Seddik
et al., 2012) and ISSM (Larour et al., 2012). Larour et al.
(2012) in particular demonstrated that this convergence issue
is a result of very low aspect ratio elements producing poor
matrix conditioning. This is a significant limitation, and at-
tempts to overcome it are ongoing. Preliminary experimen-
tation suggests that using the shallow ice approximation as
a physically motivated preconditioner may help ameliorate
this problem, but we have thus far been unsuccessful in ap-
plying this scheme at a continental scale. The generated mesh
which is used for the data assimilation experiment has around
4.4× 105 nodes, corresponding to 8.8× 105 degrees of free-
dom for the first-order model. The horizontal resolution for
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Fig. 6. ISMIP-HOM C performed using first-order and Stokes’ approximations.

this mesh is variable, but grades from 500 m at the edges of
the domain to approximately 100 km over the interior of the
ice sheet. We used a coarser mesh with 4× 104 nodes for our
transient run, corresponding to 8× 104 degrees of freedom
for the first-order model. This corresponds to a minimum
horizontal resolution of 5000 m up to approximately 100 km
in the interior.

3.3.3 Data assimilation

We calculated a basal traction field using the techniques of
Sect.2.2.3. We begin by calculating steady-state velocity and
enthalpy fields for an arbitrary basal traction (with an initial
guess of 4 Pa a m−2), with r equal to unity (which implies
that basal traction is linearly scaled by thickness; this effec-
tively eliminates the dependence of sliding speed on normal
force, and eliminates the covariance betweenβ2 andh). With
this initial state in hand, we ran the BFGS algorithm using a
fixed viscosity (and an incomplete adjoint) for the first 10
iterations, before switching to a full adjoint. The selection

of the regularization parameterα is motivated by the results
of Balise and Raymond(1985), which indicate that below
the one ice thickness length scale, variations in basal traction
do not propagate to the surface. As such, we selectα = h2,
which corresponds to applying smoothing with a Gaussian
kernel with standard deviationh to the basal traction field.
The temperature field was also recomputed every 50 evalua-
tions of the objective function in order to maintain thermal
equilibrium. After the first 10 iterations, the velocity field
was visually indistinguishable from that of the data, and the
convergence between temperature and velocity fields became
a fixed point iteration on the enthalpy field. The BFGS algo-
rithm was allowed to run for 200 evaluations of the objective
function, which took approximately 3.5 h on a 16-core ma-
chine with 2.9 GHz per processor and 400 GB of memory.
Convergence of the algorithm is shown in Fig.11. The ob-
served and modelled velocities, along with basal traction and
temperature fields, are shown in Fig.12. To illustrate some
of the fine-scale detail of both the mesh and the data assimi-
lation result, Fig.13 shows a close-up of Kangerdlugssuaq

www.the-cryosphere.net/7/1161/2013/ The Cryosphere, 7, 1161–1184, 2013



1176 D. J. Brinkerhoff and J. V. Johnson: Variational ice sheet model

0.0 0.2 0.4 0.6 0.8 1.0
4

6

8

10

12

14

16

18

20
5 km

0.0 0.2 0.4 0.6 0.8 1.0
12

13

14

15

16

17

18

19
10 km

0.0 0.2 0.4 0.6 0.8 1.0
10

12

14

16

18

20

22

24

26
20 km

0.0 0.2 0.4 0.6 0.8 1.0
10

15

20

25

30

35

40

45
40 km

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120
80 km

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300
160 km

ISMIP-HOM Experiment D

Normalized X coordinate

Ic
e
Sp
ee
d
(m
/a
)

FOA Output
Stokes Output

Full Stokes Mean
Full Stokes Std. Dev.

First Order Mean
First Order Std. Dev.

Fig. 7. ISMIP-HOM D performed using first-order and Stokes’ approximations.

glacier in eastern Greenland. The modelled velocity field
matches the observed field closely, and the RMS error for
the whole ice sheet is approximately 36 m a−1. For outlet
glaciers like Kangerdlugssuaq, we see that surface velocity
can be explained by spatially variable basal traction field
composed of both low traction streaming features, and sticky
pinning points that slow flow. Basal temperature is also re-
lated to basal traction, where fast sliding is associated with a
melted bed.

3.3.4 Prognostic run

After performing the data assimilation procedure outlined
above, we allowed the ice sheet to evolve through time for
500 yr under the C1 (constant climate) SeaRISE experiment,
with a time step of 0.1 a. On a 16-core machine with 400 GB
of memory and 2.9 GHz per processor, this run took 27 h.
The present-day measured surface elevation of Greenland is
not in a steady state with respect to the basal topography
and the inverted velocity field, which is unsurprising given

the errors associated with the basal topography, the surface
velocity field, and the approximations made by the model
physics. Because of this mismatch, large transient signals
propagate through the system at the beginning of the run.
We monitored the size of these transients as theL∞ norm
of the ∂tS field, given by Fig.14. Note the exponential de-
cay rate; this gives some estimate of how much relaxation
a model requires in order to eliminate transients. Results
from Pritchard et al.(2009) show that the average∂tS of the
Greenland ice sheet (GrIS) is−0.84 ma. An ice sheet model
should have relaxed to around this level before any conclu-
sions should be drawn from additional forcing being applied
to it. For VarGlaS, with the specified data inputs, this pro-
cess takes about 100 a. We also monitored the mass of the
entire ice sheet throughout time. After the initial transient pe-
riod of ice increase, we found an annual average total ice de-
crease of 10−3 % a−1 (2.63× 103 Gt a−1), which is in order-
of-magnitude agreement with the GRACE-derived ice loss
of approximately 6× 10−3 % a−1 (17.7× 103 Gt a−1) (Baur
et al., 2009). As seen in Fig.15, the qualitative distribution
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of the basal temperature field changes relatively little over
500 yr. Although relative to the magnitude of their initial val-
ues, thickness and velocity also change relatively little; they
show an interesting qualitative pattern that explains the mass
loss of Fig.14. We see that over time the combination of
surface mass balance and basal traction tends towards thin-
ning the interior of the ice sheet, while thickening the edges.
This change is most notable where ice stream development is
apparent, such as Jakobshavn and Kangerdlugssuaq, as well
as the outlet glaciers of the southern GrIS. This increase in
thickness generates a steeper ice surface at outlets, elevating
the flux through the lateral boundaries. Since ice loss due to
surface mass balance is constant (because surface mass bal-
ance itself is constant), the change in total mass for the GrIS
is driven wholly by this increased boundary flux. This pattern
of thickness and velocity evolution is also seen in compara-
ble simulations of the GrIS, such as inSeddik et al.(2012)

andLarour et al.(2012). This pattern is problematic, because
it suggests an opposite redistribution of mass from that mea-
sured through remote sensing (Pritchard et al., 2009; Baur
et al., 2009). More work is needed to determine if this mass
loss rate is believable.

4 Discussion

VarGlaS performs well in a number of standard benchmark-
ing experiments and can also simulate the evolution of the
GrIS using higher order physics and thermomechanical cou-
pling, as well as an advanced treatment of time evolution.

For the diagnostic and isothermal ISMIP-HOM bench-
mark experiments, both VarGlaS first-order and Stokes’
solvers perform well with respect to existing benchmark re-
sults, with our first-order solver generally predicting values
close the the Stokes’ mean, and our Stokes’ solver generally
predicting velocities slightly slower than those reported by
the benchmark. Our data assimilation procedure is able to re-
produce effectively these simple imposed basal traction fields
through model inversion. Both first-order and Stokes’ solvers
performed well on the prognostic ISMIP-HOM F, yielding
velocity and surface elevation fields that are in good agree-
ment with other models. Results for the EISMINT II exper-
iments are similar, with model results comparing favourably
to mean values from the original publication. Also, thickness
and temperature fields compare well with the results ofPat-
tyn (2003) andSaito et al.(2003), who also applied higher
order models to these experiments. Note that this is the first
time that the EISMINT II experiments have been performed
with a higher order finite element model using an unstruc-
tured mesh.

VarGlaS’ behaviour over the entire Greenland ice sheet
echoes what has been determined by various investigators
in the past, which is that after the relaxation of a strong
transient signal derived from the incompatibility of flawed
basal topography, surface velocities, and surface mass bal-
ance data, the ice sheet seems to be losing mass on the order
of 10−3 % a−1, which is in agreement with contemporary es-
timates, although the qualitative distribution of this mass loss
is not entirely believable. Performing simulations of this tem-
poral length and at this spatial resolution has only been made
possible by a combination of advances in ice sheet modelling
technology, namely variable spatial resolution, data assimila-
tion, and parallelism.

We used an adjoint model derived from automatic differ-
entiation to invert the model at continental scale, yielding
plausible velocity fields. Inversion was a critical step for a
few reasons; insofar as the measured velocity and surface el-
evation fields are correct and the geometry of the ice sheet is
self-consistent, the inversion procedure minimizes transient
signals, and allows the model to reach a self-consistent state
more quickly than would be otherwise possible with a less
sophisticated starting procedure. This reasoning extends to
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Fig. 9. ISMIP-HOM F performed using first-order and Stokes’ approximations.

the calculation of a starting enthalpy field, which would be
of a much lower quality without incorporating the very sig-
nificant heat source due to friction at the bed.

We employed an anisotropically refined, variable resolu-
tion mesh in order to minimize superfluous degrees of free-
dom in slowly varying regions of the ice sheet while main-
taining detailed solutions in regions of large velocity gradi-
ents. Although variable resolution modelling is not impos-
sible with finite differences (Colella et al., 2000; Cornford
et al., 2013), it is applicable to finite elements in a straight-
forward way.

Parallelism was another critical component in modelling
the whole Greenland ice sheet. The number of degrees of
freedom is simply too large for one processor to handle in a
reasonable amount of time. We found that we retained bet-
ter than 50 % parallel efficiency for nearly 1 million degrees
of freedom and 16 processors, using an iterative solver. This
corresponds to a speed-up of around a factor of 10. With the
increasing availability of large computers with many proces-
sors, the benefit of incorporating parallelism into model de-

sign is clear. Diagnostic modelling of very large ice sheets at
resolutions similar to those of contemporary data products is
possible with even modest computers. For example, in this
paper, we perform data assimilation over the entire Green-
land ice sheet at the horizontal scale of a few ice thicknesses
using 16 cores in 3.5 h, which we believe is reasonable. For
prognostic simulations with this same resolution, particularly
past the century timescale, larger clusters are necessary. For
example, for prognostic simulations with a 0.1 a time step
and the same spatial resolution as the data assimilation exer-
cise, using the same machine, we can simulate one year of
model time in one day of real time. This is not practical. For-
tunately, there now exist many clusters with many thousands
of processors, and this type of computing power is becoming
more available, such that, with sufficient parallel efficiency,
solutions of problems at long timescales and at high spatial
and temporal resolution are plausible.

VarGlaS currently does not possess a detailed treatment
of marine terminal processes, namely grounding line migra-
tion dynamics and a prognostic calving law. Each of these
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Fig. 10.Thickness and basal temperature fields for EISMINT II A and F at 200 ka.
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presents its own computational and theoretical challenges.
It is well known that grounding line dynamics operates at
a scale that is typically sub-grid relative to the whole ice
sheet field equations (Nowicki, 2007; Favier et al., 2012).
In many cases, relatively small changes in the position of the
grounding line probably do not greatly affect the evolution of
an ice sheet at a continental scale, particularly in cases like
Greenland where outlets are spatially localized, and topog-
raphy is the primary control on outlet configuration. Never-
theless, scenarios such as the potential collapse of the West
Antarctic ice sheet due to a fundamentally unstable bed ge-
ometry provide a strong motivation for getting the physics
right, and higher order physics is mandatory in so doing. Var-
GlaS is in a good position to incorporate a detailed treatment
of grounding line dynamics. The detailed spatial resolution
necessary for capturing the physics can be managed by the
existing mesh refinement code. Additionally, VarGlaS also
possesses robust free surface stabilization that will certainly
be necessary for performing simulations of grounding line
migration on complex real world topography. A prognostic
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Fig. 12. Modelled and measured surface velocities, basal traction,
and basal temperature of the GIS after assimilation of surface ve-
locity. RMS velocity mismatch is 36 m a−1.

calving would also be necessary to simulate accurately the
grounding line dynamics. VarGlaS currently does not have
the capacity to move the lateral bounds of its computational
domain. Leaving the thickness at the lateral boundaries fixed
is equivalent to making the assumption that any flux through
the boundary in excess of the present rate calves immedi-
ately, or is otherwise removed from the ice sheet, and that
the height of that boundary is fixed. This may be valid for
continental scale model runs where the geometry of the ice
sheet is not expected to adjust dramatically. This treatment
is certainly insufficient for regional-scale experiments such
as modelling the response of inland glaciers to ice shelf col-
lapse.

Data assimilation is an essential part of correctly mod-
elling ice surface velocities. Without using inverse methods
to estimate the value of the basal traction field, the observed
pattern of surface velocities is not well reproduced, and the

Fig. 13. Modelled and measured surface velocities, basal traction,
and basal temperature of Kangerdlugssuaq glacier in eastern Green-
land after assimilation of surface velocity.

present-day ice configuration is not (and should not be) cap-
tured. Additionally, without relying on inverse methods, long
and computationally expensive spin-up procedures are re-
quired, which are not feasible from a processing standpoint,
even with the efficient structure of VarGlaS and other mod-
ern ice sheet models. Simultaneously, we must recognize the
limitations of inverting for the basal traction field. The inver-
sion is ill-posed and often lacks a physically motivated stop-
ping point for optimization algorithms. Even with the inclu-
sion of a regularization term, there generally exist multiple
solutions for the basal traction field that produce plausible
surface velocity results (although many qualitative features
must exist in all solutions). This lack of uniqueness makes
drawing conclusions about basal conditions at specific points
from inverted models tenuous. Also, the inversion procedure
does not allow for time dependency of the basal traction
field. Basal traction is believed to be fundamentally linked
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total ice mass over a 500-year model run.

to subglacial water routing and pressure. Under changing
climate scenarios, delivery of water to the bed may change
dramatically, and this could fundamentally alter basal trac-
tion. Similarly, changes in ice sheet geometry are expected
to change the pattern of basal traction through changes in ice
overburden pressure as well as surface-elevation-forced wa-
ter input. For a non-trivial portion of the ice sheet, basal trac-
tion is a zero-order control on all model physics. Long-term
prognostic simulations involving major changes in climate or
ice sheet geometry must include a mechanism for estimating
changes in basal traction.

With the major increases in efficiency gained from par-
allelism and anisotropic mesh refinement, it is tempting to
model on increasingly detailed meshes, simply due the phi-
losophy that this will give us more detailed and thus more
meaningful results. In an ideal scenario, the data from which
we draw our surface elevations, bed elevations, surface ve-
locities, and surface mass balances are effectively error-free
and at spatial resolutions much finer than the grids on which
we model. This may have been the case in the past, when
the errors derived from using the shallow ice approximation
were larger than those inherent in data, and low spatial res-
olution grids could average from a number of data points
falling within a given pixel. It is certainly not the case now.
It is simple to generate meshes with a horizontal resolution
of near an ice thickness, but it is not simple to determine
how to interpolate accurately from 5 km thickness data down
to this resolution. Nevertheless, in some heavily studied re-

Fig. 15. Velocity, surface elevation, and basal temperature change
through a 500-year simulation of the Greenland Ice Sheet.

gions of the GrIS, data at thickness-scale horizontal resolu-
tion exist (e.g. Jakobshavn, Russell–Isunnguata Sermia), and
these should be incorporated when possible. For the future,
we intend to incorporate error metrics over all of VarGlaS’s
input data into our mesh generation procedure, in order to
avoid obtaining spurious results and using unnecessary com-
putational resources as a result of over-resolving in regions
where the data do not have a commensurate level of detail.

5 Conclusions

In this paper, we have introduced a novel next-generation ice
sheet model called VarGlaS. VarGlaS is built upon the finite
element package FEniCS, and borrows heavily on the innate
capabilities of FEniCS, with such features as automatic dif-
ferentiation of the adjoint state, an interface to a variety of
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efficient solvers, and demonstrably scalable parallelism. Var-
GlaS eschews the common stress balance formulation of ice
flow physics in favour of formulation as the problem of min-
imizing a scalar variational principle representing the con-
version of gravitational potential energy into heat under the
constraint of incompressibility. We use an enthalpy formula-
tion for the energy balance equations, exchanging the tem-
perature equation’s contact problem for additional nonlinear-
ity. VarGlaS treats conservation of mass using the kinematic
boundary condition.

We applied VarGlaS to the ISMIP-HOM benchmarks for
higher order models, as well as several of the EISMINT II
experiments. VarGlaS performed well in all of these bench-
marks, proving that it correctly solves the field equations.
Additionally, we applied VarGlaS’s data assimilation to one
of the benchmark experiments, showing that it can recover a
simple basal traction field from an observed velocity field.

We then turned model to diagnostic and prognostic simu-
lation of the Greenland ice sheet. We began by solving for
basal traction using interferometrically derived surface ve-
locities. Using this basal traction field, and other data from
the SeaRISE data set, we solved for the geometry, temper-
ature, and velocity of Greenland 500 yr into the future. We
found that, after a brief period of relaxing transient signals,
the model predicts a 10−3 % a−1 decrease in total mass over
the 500 yr period.

Code repository

A developmental version of VarGlaS including many of
the experiments discussed above is available athttp://code.
launchpad.net/um-feism.
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