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Abstract. The objective of this study is the production of
an Alpine Permafrost Index Map (APIM) covering the en-
tire European Alps. A unified statistical model that is based
on Alpine-wide permafrost observations is used for debris
and bedrock surfaces across the entire Alps. The explana-
tory variables of the model are mean annual air tempera-
tures, potential incoming solar radiation and precipitation.
Offset terms were applied to make model predictions for to-
pographic and geomorphic conditions that differ from the
terrain features used for model fitting. These offsets are
based on literature review and involve some degree of sub-
jective choice during model building. The assessment of the
APIM is challenging because limited independent test data
are available for comparison and these observations represent
point information in a spatially highly variable topography.
The APIM provides an index that describes the spatial distri-
bution of permafrost and comes together with an interpreta-
tion key that helps to assess map uncertainties and to relate
map contents to their actual expression in the terrain. The
map can be used as a first resource to estimate permafrost
conditions at any given location in the European Alps in a
variety of contexts such as research and spatial planning.

Results show that Switzerland likely is the country with
the largest permafrost area in the Alps, followed by Italy,
Austria, France and Germany. Slovenia and Liechtenstein
may have marginal permafrost areas. In all countries the per-
mafrost area is expected to be larger than the glacier-covered
area.

1 Introduction

Permafrost in the European Alps is of practical and sci-
entific interest, and the regional estimation of its distribu-
tion is described in numerous studies (e.g.Hoelzle, 1994;
Imhof, 1996; Frauenfelder, 1998; Keller et al., 1998; Gru-
ber and Hoelzle, 2001; Lambiel and Reynard, 2001; BAFU,
2005; Bodin, 2007; Ebohon and Schrott, 2008). Modelling
strategies are not limited to the European Alps but have
been developed for and applied to different mountain re-
gions (e.g.Serrano et al., 2001; Tanarro et al., 2001; Janke,
2004; Lewkowicz and Ednie, 2004; Heggem et al., 2005; Et-
zelmüller et al., 2007; Lewkowicz and Bonnaventure, 2008;
Li et al., 2009; Bonnaventure et al., 2012). Regional per-
mafrost distribution models are typically based on empirical-
statistical relationships and give indications of permafrost
distribution, with limited accuracy demands (Harris et al.,
2009). PERMAKART (Keller, 1992) and PERMAMAP
(Hoelzle, 1992; Hoelzle et al., 1993) were the first mod-
elling approaches in the Alps that related topographic and
climatic variables to the existence of permafrost and that pro-
vided map-based products to visualize permafrost distribu-
tion. Both models have been applied to various regions, and
the basic relationships have been used/adapted for the devel-
opment of further models (Imhof, 1996; BAFU, 2005; Ebo-
hon and Schrott, 2008). As output, both models provide grid-
ded data spatially predicting permafrost occurrence by using
discrete classification schemes.

The existing work for the European Alps cannot easily be
compiled into an Alpine-wide permafrost map, because the
relevant studies (a) usually are regionally calibrated, (b) rely
on differing methods, and (c) exclude large parts of the Alps.
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The present study is aimed to overcome these limitations
and to provide one coherent Alpine Permafrost Index Map
(APIM).

Based on a systematic collection of permafrost evidence
(Cremonese et al., 2011), an Alpine-wide Permafrost MODel
(APMOD) has been developed recently (Boeckli et al.,
2012). Compared to previous studies, APMOD has a unique
data basis that is distributed over the entire Alps. However,
the difficult challenge that all permafrost distribution mod-
els have to deal with is that permafrost as a subsurface phe-
nomenon cannot easily be detected at the terrain surface, and
direct evidence for its presence or absence is generally rare.
Therefore, model development is strongly limited by the type
of calibration data available. As a consequence, the deriva-
tion of a map-based product from statistical models requires
the inference of permafrost conditions in morphological set-
tings other than those used for calibration. This task involves
some degree of subjective choice during model application,
which often is not declared or described in detail in previous
work. This paper complements the study ofBoeckli et al.
(2012) by describing the required steps towards and the first
results of an application of the APMOD.

Building upon the formulation of an Alpine-wide per-
mafrost distribution model byBoeckli et al.(2012), the aims
of this paper are

– to create a permafrost map (APIM) displaying index
values based on model-derived probabilities of per-
mafrost presence;

– to evaluate the APIM using independent data and dis-
cuss the general challenges inherent in this evaluation;

– to develop a legend and interpretation key that allow the
efficient use of the APIM as well as the communication
of its most important uncertainties; and

– to provide summary statistics regarding permafrost dis-
tribution in the Alps.

2 A permafrost index based on a probability model

The statistical model that is applied in this study, APMOD,
is described in detail byBoeckli et al.(2012). APMOD is
based on an Alpine-wide evidence collection (Cremonese
et al., 2011) and uses mean annual air temperatures (MAAT),
potential incoming solar radiation (PISR) and the mean an-
nual sum of precipitation (PRECIP) as explanatory vari-
ables. APMOD involves two sub-models for two different
land cover classes: The debris model has been calibrated
using rock glacier inventories and predicts the probability
of rock glaciers being intact as opposed to relict. The rock
model is based on mean annual rock surface temperatures
(MARST) and predicts the probability of finding MARST
≤ 0◦C in steep bedrock. Both models are combined based on
fuzzy membership (linear function depending on slope angle,

Sect.3.1) to the land cover types rock and debris, and allow
the inclusion of temperature offset terms. These offset terms
are required to generalize APMOD to other surface charac-
teristics than those used for model calibration. When applied
to digital elevation models (DEMs) of differing resolution,
scaling functions improve the coherence and comparability
of the results.

The probabilities of permafrost occurrence derived from
APMOD are translated into permafrost index values, because
the term “probability” is misleading and does not communi-
cate the uncertainties and assumptions that are integrated in
the final map-based product: The calibration of APMOD was
not possible for many surface types, because permafrost ob-
servations are not available in sufficient quality and quantity.
To derive a map-based product, we need to infer conditions
where we have no data and the uncertainty of such predic-
tions is difficult to assess. The term permafrost index thus
avoids the notion of probability as we introduce some es-
timated additional factors (temperature offsets) and cannot
evaluate true probability or extent. We suggest that the index
represents an indicator of the probability for permafrost oc-
currence, the spatial percentage of permafrost per cell and/or
the thickness of the permafrost body for current climatic con-
ditions. The index can also be interpreted as a proxy of the
mean annual ground temperature. However, permafrost ex-
tent, thickness or temperature cannot be allocated directly
with the values of the index, because various local and re-
gional processes are neglected or only approximated by the
model.

3 Data and methods

The topographic and climatic variables that are required to
apply APMOD are calculated according toBoeckli et al.
(2012). In the following, data and methods are combined
to derive an Alpine-wide surface cover that is considered
in APIM (Sect. 3.1), and to prepare evaluation data for
APIM (Sect.3.2). Section3.3describes the method to derive
Alpine-wide summary statistics.

The software R (version 2.14.1;R Development Core
Team, 2010) was used for all statistical analyses. Terrain and
geodata analyses were conducted with SAGA GIS (Olaya,
2004), “RSAGA” (Brenning, 2008) and “raster” (Hijmans
and van Etten, 2012) packages for R.

3.1 Surface types

A land cover map defining the two surface types (debris
cover and steep bedrock) for the application of the two sub-
models is required for APMOD. A transition zone with vary-
ing degree of membership for the two surface types is used
where APMOD is applied using a combination of the two
sub-models (debris and rock model). In this paper, additional
surface types are introduced as a spatial basis for addressing
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the offsets and assumptions described in Sect.4. The follow-
ing land surface types are differentiated and described below:
debris cover, steep bedrock, vegetation and glacier coverage.

3.1.1 Steep bedrock and debris cover

The distinction between these two model domains is based
on slope angle alone: We define an indexmr by

m
′

r =
S − Smin

Smax− Smin
, (1)

mr =

0 if m′
r ≤ 0

1 if m′
r ≥ 1

m′
r otherwise,

which describes the degree of membership in the steep
bedrock surface class, whereS is the slope angle of the grid
cell, Smin is a fixed threshold angle up to which only debris
cover occurs, andSmax is the assumed maximum slope angle
up to which the surface may be debris-covered. To be consis-
tent and applying the rock model to the same surface-cover
domain as it was calibrated for, we use the same definition of
steep bedrock as in Boeckli et al. (2012): “Steep bedrock”
is defined as terrain that (a) is not or only marginally af-
fected by a snow cover in wintertime, (b) does not contain
large amounts of blocks and/or debris, and (c) is without
vegetation coverage. Based on a literature review,Pogliotti
(2010) summarizes that slope angles of 35–37◦ represent the
upper limit of usually well snow-covered areas (Smin) and
slope angles of 55–60◦ define the upper limit of snow ac-
cumulation (Smax). Analysing the distribution of slope an-
gle values within training areas representing debris respec-
tively, bedrock cover (Fig.1) indicates similar values for
the two thresholds based on the data used here. The train-
ing areas were derived from the land cover map of Switzer-
land (Vector25,swisstopo, 2007) using randomly distributed
points (N = 4029 for rock andN = 4381 for debris cover).
Here, the distribution of slope angle values is biased be-
cause bedrock is also possible in flat terrain (e.g. glacier fore-
fields), and the points that are used for this analysis are sparse
for very steep slopes.

Finally, Smin was set to 35◦, which coincides with the
start of a strong increase in the presence of exposed bedrock
(Fig. 1) andSmax was set to 55◦. Slopes with greater slope
angles in the DEM rarely present debris surfaces (Fig.1),
and these can likely be attributed to errors in the DEM. To
address point (c) above, we assume a debris cover (mr = 0)
if the surface is covered by vegetation (see below).

3.1.2 Vegetation

The discrimination of vegetation from vegetation-free sur-
faced areas is based on the soil-adjusted vegetation index
(SAVI; Huete, 1988) and is derived from Landsat Thematic
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Fig. 1. Conditional density plot for the two surface classes debris
and rock (derived from Vector25) in relation to slope angle. Above,
the number of points that are used for this analysis are shown in
relation to slope angle.

Mapper (Landsat 5) and Landsat Enhanced Thematic Map-
per (Landsat 7) images using red and near-infrared (NIR)
wavelengths. SAVI accounts for the soil-induced influences
on vegetation index values and involves an additional con-
stantL to the formula of the normalized difference vegeta-
tion index (NDVI):

SAVI =
NIR – red

NIR + red +L
(1+ L). (2)

L was set to 1, since this value is suitable for characteriz-
ing low vegetation densities (Huete, 1988) present in moun-
tainous vegetation. Thirteen scenes cover the entire Alpine
region. Only images taken in August/September/October
were used, since vegetation is still well-developed as evi-
denced by remotely sensed phenology (cf.Fontana et al.,
2008) and snow cover is likely near its annual minimum. For
each of the 13 scene locations, the scene with lowest cloud
cover was chosen (Table1). After calculating the SAVI val-
ues, all 13 grids were merged (by using the maximum SAVI
value in areas of overlap) and resampled with bilinear inter-
polation to the resolution of ASTER GDEM.

A threshold for discriminating vegetation from vegetation-
free surfaced areas was chosen by analysing SAVI values
in training areas derived from Vector25. The training data
consist of randomly distributed points: 42 797 for vegetation
and 8419 for vegetation-free areas. The Vector25 land cover
classes rock and debris were treated as vegetation-free ar-
eas, while forest, open forest, bush land and remaining areas
were classified as vegetation. Finally, optimizing theκ co-
efficient (Cohen, 1960) as a function of the SAVI threshold,
pixels with SAVI< 0.335 are considered free of vegetation,

www.the-cryosphere.net/6/807/2012/ The Cryosphere, 6, 807–820, 2012
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Table 1.Landsat scenes used to calculate the SAVI.

Path Row Date (d/m/y) Sensor

191 27 14/10/2006 Landsat 5
191 28 14/10/2006 Landsat 5
192 27 05/10/2006 Landsat 5
192 28 22/08/2007 Landsat 5
193 27 20/10/2003 Landsat 5
193 28 34/08/2003 Landsat 5
194 27 21/08/2000 Landsat 7
194 28 32/10/2002 Landsat 7
195 27 24/08/2006 Landsat 5
195 28 18/10/2003 Landsat 5
195 29 06/09/2002 Landsat 7
196 28 23/08/2003 Landsat 5
196 29 23/08/2003 Landsat 5

and pixels with SAVI≥ 0.335 are classified as vegetation.
Further, a median filter (3× 3 cells) was applied to remove
artifacts, and all pixels wheremr = 1 (steep bedrock) were
considered free of vegetation.

3.1.3 Glaciers

Glacier outlines derived from Landsat images were provided
by Paul et al.(2011). The outlines represent glacier extent in
the year 2003, manually corrected for debris-covered glacier
parts.

3.2 Evaluation of a permafrost index map

The evaluation data are based on rock glaciers and point ob-
servations of permafrost presence and absence. Status infor-
mation (intact vs. relict) of rock glaciers can be used to evalu-
ate the output of APMOD in areas covered by rock glaciers.
As a result of matched sampling,Boeckli et al.(2012) ex-
cluded 394 intact and 2403 relict rock glaciers from model
fitting. They are available for model evaluation in the debris
cover domain (Fig.2). Further 352 observation points are
available within the permafrost evidence collection (Fig.2;
Cremonese et al., 2011) that were not used for model calibra-
tion. These observations are based on different methods and
were classified as permafrost presence or absence by each
individual data contributor. This classification was also rated
by the data contributor with an index that describes the cer-
tainty of this classification (PFcert). The point observations
allow to evaluate the map for other types of surfaces.

An additional measure describing the agreement of the ter-
rain attributes (PFloc) was calculated for each observation
point. This is necessary because some observation points are
not suitable for model evaluation and needed to be excluded
beforehand, which will be discussed in Sect.6.2. However,
the weighting scheme applied to derive PFloc is based on sub-
jective thresholds.
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Fig. 2.Spatial distribution of permafrost evidence data (Cremonese
et al., 2011), which were not used for model calibration inBoeckli
et al.(2012) and are thus available for evaluation. Blue dots repre-
sent rock glaciers, and red crosses represent evidence points (sum-
marized in Table3).

Table 2. Thresholds and corresponding weights per variable that
were used to characterize the agreement of the terrain attributes
(PFloc) for the evaluation data. The weight for the variable aspect
for slope angles≤ 15◦ (derived from ASTER GDEM) was fixed to
2, because uncertainties in this variable are large for flat terrain.

Weights Elevation Slope angle Aspect
(m) (◦) (◦)∗

2 < 100 < 10 < 25
1 100–250 10–25 25–50
0 > 250 > 25 > 50

∗ Only applied to observations with a slope angle> 15◦.

The terrain variable elevation, slope angle and aspect were
derived from the digital elevation model ASTER GDEM
(Hayakawa et al., 2008) for all 352 observation points and
then compared to the values that were manually entered by
the data provider into the permafrost evidence database. It is
not possible to automatically differentiate errors in the evi-
dence metadata from the effects of sub-grid variability with
this method. It is, however, useful to have this index of to-
pographical agreement for the interpretations of differences
in the comparison and for further investigating possible er-
rors in the evidence data. Differences in aspect values (1A)
were calculated using the absolute difference between aspect
angles modulo 360◦ in the interval (−180◦, 180◦). Absolute
differences in elevation, slope and aspect angle (Fig.3) were
used to manually define thresholds and to weight these differ-
ences (Table2). The weight of the variable aspect was disre-
garded for slope angles≤ 15◦, because uncertainties in this
variable are large for flat terrain. Multiplying the assigned
weights for the three measures elevation, slope angle and
aspect for each observation results in values ranging from
0 to 8, where a value≥ 4 is classified as “agree”, a value
of 1–2 “disagree” and a value of 0 “strongly disagree” (Ta-
ble3). The multiplication of the three weights implies that an

The Cryosphere, 6, 807–820, 2012 www.the-cryosphere.net/6/807/2012/
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Fig. 3. Absolute difference between terrain variables calculated
based on ASTER GDEM and the ones provided by the data con-
tributor into the permafrost evidence collection (Cremonese et al.,
2011).

observation with one of the three measures= 0 is classified
as “strongly disagree”, whatever the other two measures are.

Permafrost point-observations with PFcert equals “quite
likely” and PFloc equals “strongly disagree” are not consid-
ered for model evaluation, and the following evidence types
from Table3 were also excluded from evaluation: (a) ground
surface temperatures were not considered because of the
large inter-annual variability caused by the influence of the
snow cover (Hoelzle et al., 2003; Brenning et al., 2005);
(b) rock fall scars were excluded because only 4 observa-
tions remained after removing observations with PFloc equals
“strongly disagree”; (c) surface movements were not con-
sidered because only four observations are available; and
(d) other indirect evidence was excluded because no ad-
ditional information regarding measurement or observation
type is available.

To assess the discrimination of the permafrost index, the
area under the receiver-operating characteristics curve (AU-
ROC,Mason and Graham, 2002) was measured. This mea-
sure ranges from 0.5 (random discrimination) and 1 (perfect
discrimination).

3.3 Calculation of summary statistics

The term “permafrost index area” will be used to present the
result and refers to the area having an index equal to or higher

than a specified threshold. Glaciers are excluded from the
permafrost index areas. It is important to note the difference
to permafrost area that would be defined as the surface ac-
tually underlain by permafrost (cf.Zhang et al., 2000; Gru-
ber, 2012). The index area is the unit of interest for decision-
making (“Where do I need to consider permafrost?”) and the
actual result of the model presented. Permafrost area may be
important, e.g. for estimating water storage in subsurface ice,
but is more difficult to support by reliable data.

Pixel area of the unprojected ASTER GDEM grid de-
pends on latitude (φ) and the mean radius of the Earth (R =

6371 km). North–south (1y) and west–east (1x) for the 1′′

spherical grid were used to calculate the area:

1y =
πR

648 000
and1x = cos(φ)1y (3)

4 Estimation of offset terms

The MARST used for model calibration were measured in
homogenous rock following the procedure outlined inGru-
ber et al.(2003). This provides a quantification of the influ-
ence of topography on rock temperatures, but likely temper-
atures at greater depth in most rock faces are lower due to
effects of snow, debris and fracturing (Gruber and Haeberli,
2007). To address this, a temperature-offset term is included
in the rock model that is based on literature: Measurements in
the Swiss Alps showed that the spatial variation of tempera-
ture offset in rock faces is large and mainly depends on (a) ra-
diation exposure (Hasler et al., 2011), (b) snow depth and its
timing (cf. Pogliotti, 2010) and (c) the amount and charac-
teristics of cleft systems at the rock surface (Hasler et al.,
2011). Summarizing these three factors,Hasler et al.(2011)
postulate that radiation-exposed steep rock faces with inter-
spersed snow patches and/or large fractures are up to 3◦C
colder at depth (i.e. in the order of a few meters) compared
to MARST in snow-free and compact rock. In north-exposed
situations, the effect of snow and/or fractures is less impor-
tant, because short-wave radiation is less dominant. Based
on these findings, the offset term1R was implemented as a
linear function of PISR and applied to the rock model:

1R = Omin + PISR
Omax− Omin

350 W m−2
, (4)

whereOmin is the minimal andOmax is the maximal off-
set for pixels where PISR= 350 W m−2. The percentile of
350 Wm−2 is 0.88 in the cumulative distribution function of
PISR values.Omin was set to−0.5 andOmax = −2.5. Spatial
variation of1R is not considered.

The debris model provides an optimistic estimate (biased
towards an overestimation) of permafrost occurrence in de-
bris surfaces because of three main rock glacier characteris-
tics: (a) cooling effect of coarse block surface (e.g.Haeberli
et al., 2006), (b) rock glacier movement towards lower eleva-
tions (e.g.Barsch, 1978), and (c) delayed response of ice-rich
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Table 3. Overview of the different observation types (BH: borehole, GST: ground surface temperature, SC: rock fall scar, TR: trench and
construction site, SM: surface movement, GP: geophysical investigation, OIE: other indirect evidence) that remain for evaluation. For each
type, the number of permafrost-existence (PFyes) and permafrost-absence (PFno) observations is given (Certainty levels PFcert: 1 definite
proof, 2 quite certain, 3 quite likely; Agreement levels PFloc: a agree, d disagree, s strongly disagree).

Type PFyes PFcert (1/2/3) PFloc (a/d/s) PFno PFcert (1/2/3) PFloc (a/d/s)

BH 45 36/6/3 22/3/20 16 11/5/0 11/1/4
GST 49 18/25/6 37/3/9 41 3/16/22 34/1/6

SC 36 6/30/0 3/1/32 – – –
TR 38 25/12/1 22/0/16 9 3/6/0 6/2/1
SM 4 2/2/0 3/ 0/1 – – –
GP 70 29/35/6 61/4/5 11 3/8/0 11/0/0

OIE 33 7/19/7 23/4/6 – – –

Table 4.Temperature offsets (◦C) that were applied to the different
surface types. A positive sign means a positive temperature offset is
applied, which results in a more pessimistic permafrost estimate. A
negative sign means a more optimistic permafrost estimate.

Surface cover 1R 1Da 1Db total offset

Steep bedrock [−0.5,−2.5] – – [−0.5,−2.5]
Debris cover – 0.5 – 0.5
Vegetation – 0.5 2 2.5

permafrost to climatic forcing (e.g.Frauenfelder et al., 2008).
Consequently, it is desirable to find relationships to infer con-
ditions below surfaces other than rock glaciers. The first two
sources of bias are considered in this study, while the third
remains unaccounted for due to a lack of information that
would allow its estimation.

By moving down-slope, a rock glacier transports a cold
and ice-rich mass from its rooting zone to conditions that
may be less favourable for the formation of permafrost. The
melting of ice as a result of an increase in active layer thick-
ness can thus exert a cooling influence at depth and preserve
permafrost where it would not form without the advection
of ice-rich material. We approximate the magnitude of this
effect by the altitudinal extent of rock glaciers, i.e. the dif-
ference in elevation between the lowest and highest point of
each rock glacier, assuming that in the Alps only the rooting
zone of a rock glacier shows conditions for the development
of ice-rich permafrost. For the 5541 rock glaciers in the in-
ventory ofCremonese et al.(2011), the mean altitudinal ex-
tent is 139 m. In APMOD, a random point within each rock
glacier is taken for model calibration (Boeckli et al., 2012),
which, on average, corresponds to the centroid of the rock
glacier. Accordingly, the altitudinal extent is divided by two
resulting in a bias correction of 70 m, which corresponds to
an approximate difference in MAAT of 0.5◦C (assumed sur-
face temperature lapse rate 0.0065◦C m−1, cf. International
Organization for Standardization, 1975). This value is chosen

for the movement-related offset (1Da) and applied to the de-
bris model.

A surface cover of coarse blocks with no or little infill
by fine material usually results in markedly colder MAGT
than, for example, fine moraine-derived soil or solid bedrock.
This effect has been measured and discussed by several re-
searchers (e.g.Humlum, 1997; Harris and Pedersen, 1998;
Gorbunov et al., 2004; Hanson and Hoelzle, 2005; Gruber
and Hoelzle, 2008; Gubler et al., 2011). Ground temperatures
of coarse blocks in comparison to finer grained material may
be 1.3–2◦C (Juliussen and Humlum, 2008) to 4–7◦C (Har-
ris and Pedersen, 1998) colder. 1.6◦C to 2.2◦C reduction of
MAGT with respect to finer grained material was observed
during one year at Corvatsch (Switzerland) for a large data
set containing 390 temperature sensors distributed in 39 foot-
prints (Gubler et al., 2011). Accordingly, an offset of 2◦C
(1Db) is implemented in the debris model to address the ef-
fect of coarse blocks.

While 1Da is applied to the whole domain of the debris
model,1Db is applied to vegetated areas only, because these
areas are normally characterized by fine-grained debris and
can be detected by remote sensing for the entire Alps. Several
studies indicate that, in the European Alps, a closed vegeta-
tion cover usually indicates the absence of permafrost (Hae-
berli, 1975; Hoelzle et al., 1993). This relationship is not nec-
essarily true in all situations (e.g.Delaloye et al., 2003), but
provides a valuable indication. In the context of APIM, we
regard a closed vegetation cover to be indicative of fine ma-
terial and thus the absence of open-work block cover. There-
fore, the above-mentioned offset (1Db) addressing coarse
blocks is applied to account for thermal differences between
non-vegetated and vegetated areas.

5 Results

5.1 Interpretation key for the permafrost index

A sample map of APIM is shown for the entire Alps (Fig.4)
and the Rimpfischhorn in Switzerland (Fig.5). The map
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Fig. 4. Alpine Permafrost Index Map (APIM) shown for the European Alps (AT: Austria, CH: Switzerland, DE: Germany, FR: France, IT:
Italy, SL: Slovenia). The map should be interpreted together with the legend and interpretation key (Fig. 10).

should be used with the provided legend and interpretation
key (Fig. 10). An additional map showing the surface types
(Fig. 6) is necessary in order to understand the statistical
model parameters and to interpret the shown index value
more accurately.

The aim of the interpretation key provided with the per-
mafrost index map is to allow efficient use and understand-
ing of the map and to communicate the most important un-
certainties for practical use, e.g. by public authorities or for
infrastructure planning and maintenance. It consists of three
parts: (a) the legend itself and an accompanying text, (b) an
interpretation key that allows to refine the estimate shown
in the map based on additional surface cover observations
(e.g. based on air photo interpretation), and (c) a description
and a legend explaining the auxiliary surface-cover map pro-
vided (Fig. 10). The index varies from “permafrost in nearly
all conditions” to “permafrost only in very favourable con-
ditions” and describes semi-quantitatively the occurrence of
permafrost. The term “very favourable conditions” refers to a
situation (topography and ground characteristics) that locally
modifies favourably conditions for permafrost presence. The
terms used in the legend communicate to some degree an un-
certainty in the map, and they consequently allow for further
interpretations.

A different map signature is used for glaciers, which are
by definition not permafrost, although cold glaciers can have
permafrost conditions at their bed (e.g.Haeberli, 1976; Luthi
and Funk, 2001) and the development of permafrost after
the disappearance of temperate glaciers is possible (Kneisel
et al., 2000).

The accompanying text describes the most important limi-
tations of the map and explains the usage of the interpretation
key. Based on the pictures and the text of the interpretation
key, the map user should be able to understand and apply this
additional information. A “call for feedback” was sent to sev-
eral permafrost researchers in Europe. Seven replies helped
improve the legend and interpretation key.

5.2 Evaluation of the permafrost index map

Comparing the final map index with the distribution of in-
tact and relict rock glaciers shows the model performance in
debris-covered areas (Fig.7). 1863 of the 2403 relict rock
glaciers and 42 of the 395 intact rock glaciers show no index
value and permafrost is expected to be absent. The majority
(68 %) of the remaining 540 relict rock glaciers lies within a
permafrost index< 0.4, whereas most (63 %) of the remain-
ing 353 intact rock glaciers are located in areas with an in-
dex > 0.5 (mean index equals 0.58). The discrimination of
rock glacier status based on predicted permafrost index val-
ues results in an AUROC of 0.78 that is an acceptable value
according toHosmer and Lemeshow(2000).

The predicted permafrost index values for borehole tem-
peratures, geophysical investigations and trench or construc-
tion sites cover the entire range from 0 to 1 for permafrost-
existence observations (Fig.8) with mean index values of:
0.80 (borehole temperatures), 0.32 (geophysical investiga-
tions) and 0.38 (trench or construction sites). The index val-
ues of the permafrost-absence observations range from 0 to
0.44, except for one construction site. The discrimination
for these tree observations types shows an AUROC= 0.6.
When neglecting the offset terms discussed in Sect.4, the
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Fig. 5.Alpine Permafrost Index Map (APIM) shown for the area surrounding Rimpfischhorn (4199 m, red triangle) and Allalinhorn (4027 m,
yellow triangle) in Switzerland. The map should be interpreted together with the legend and interpretation key (Fig. 10).
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Fig. 6. Surface cover map showing the vegetation mask and the surface class indexmr (Eq. 1) for the same area as Fig.5. To grid cells
with a slope angle≤ 35◦ the debris model, for slope angles≥ 55◦ the rock model is used. In between, a fuzzy membership (linear function
depending on slope angle) is applied in order to provide a complete spatial coverage of APIM.

AUROC results in 0.56. If the offset term1Db is applied
based on local terrain and vegetation information provided
by Cremonese et al.(2011) instead of vegetation information
derived from SAVI, the AUROC results in 0.67.

5.3 Calculation of summary statistics

The area potentially influenced by permafrost in the Alps
(43◦–49◦ N, 4◦–16◦ E) ranges from 2000–12 000 km2 (Ta-
ble 5), and the meaning of this range will be discussed in
Sect.6. The largest extent of permafrost is between 2600 and
3000 m depending on the index chosen as threshold, whereas
the largest area of glaciers is located above 3000 m (Fig.9).
The offset1Db that is applied to the debris model for all
vegetated pixels plays an important role regarding the final
output map or summary statistic. Neglecting1Db increases

Table 5. Estimated permafrost index areas for the entire Alps. The
relative area refers to the total area of the Alps (ca. 200 000 km2).

Permafrost Total area Relative area
index (km2) (%)

≥ 0.1 11 627 6
≥ 0.5 6220 3
≥ 0.9 2007 1
Glaciers 2056 1

the potential permafrost area in the entire Alps by approxi-
mately 20 %, respectively 3147 km2 (calculated for an index
≥ 0.1, Table6).
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Fig. 7. Permafrost index values for intact and relict rock glaciers
that were not used for model calibration. A random point within
each rock glacier polygon was used for this figure.

Fig. 7. Permafrost index values for intact and relict rock glaciers
that were not used for model calibration. A random point within
each rock glacier polygon was used for this figure.
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Fig. 8. Box plots showing predicted permafrost index values for
the evidence types “Borehole temperatures” (BH), “Geophysical
investigations” (GP) and “Trench or construction sites” (TR) for
permafrost-existence (1) and permafrost-absence observations (0).

According to this analysis, Switzerland is the country that
contains the largest permafrost area (Table7). In Italy and
Austria also large permafrost areas exist.

6 Discussion

APIM is based on a larger calibration data set in comparison
with other map-based products. Further, existing permafrost

Table 6. Estimated permafrost index areas for the Alps calculated
without the offset1Db = 2 ◦C for vegetated areas.1A refers to the
difference in area between estimated permafrost distribution calcu-
lated with (Table5) and without offset1Db.

Permafrost Total area 1A

index (km2) (km2)

≥ 0.1 14 774 3147
≥ 0.5 6566 346
≥ 0.9 2011 4

distribution models are calibrated for a specific spatial do-
main or surface type (e.g. using basal temperature of snow
(BTS, Haeberli, 1973) measurements in gentle terrain) but
later applied to a whole mountain range. This spatial extrap-
olation that is required for every spatially distributed per-
mafrost model is done in a transparent manner in this work
by introducing temperature offsets (Sect.4).

6.1 Interpretation of permafrost index area

The comparison of permafrost index areas obtained in this
study with estimates from the literature is complicated by
differences in terminology and methods used. Considering
index values≥ 0.5 is one possible assumption to estimate
the area affected by permafrost (see Table7). For Switzer-
land, the estimated permafrost area then results in 2163 km2.
For comparison,Keller et al.(1998) estimated the permafrost
area in Switzerland to range from 4–6 %, which corresponds
to approximately 1651–2477 km2. In Austria, 1600 km2 were
assigned to mountain permafrost byEbohon and Schrott
(2008) and our estimate is 1557 km2. For France, a value of
1200 km2 is published (PERMAFRANCE, 2010), whereas
our estimate is 703 km2.

These estimates are consistent but subject to uncertainties
and face the problem of differing or missing definitions for
“permafrost area” as described in Sect.3.3.

6.2 Evaluation of APMOD

Existing data (Sect.3.2) allow to evaluate the map for differ-
ent surface types, but the following challenges remain: (a) the
number of observations is very small compared to the study
area, and the observations are strongly biased towards per-
mafrost existence; (b) even less evidence in steep bedrock
as well as in intermediate slopes between debris cover and
steep bedrock is available; (c) when combing data of differ-
ent research groups, based on different techniques and co-
ordinate systems, the quality and consistency of the data is
a major challenge and errors (e.g. shift in coordinates) can-
not be excluded; (d) while the output of APMOD is grid-
based with cells having an area of approximately 900 m2, the
observations represent point information within a complex,
spatially variable mountain topography. This problem relates
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Table 7. Estimated permafrost index areas (km2) for the Alpine
countries using different index values, and comparison to glacier
area (CH: Switzerland, IT: Italy, AT: Austria, FR: France, DE: Ger-
many, SLO: Slovenia, FL: Liechtenstein).

Country Index≥ 0.1 Index≥ 0.5 Index≥ 0.9 Glaciers

CH 3710 2163 754 1010
IT 3353 1786 569 441
AT 2907 1557 484 340
FR 1587 703 199 265
DE 44.1 7.6 0.8 0.6
SLO 25.7 3.6 0.1 0.0
FL 0.3 0.0 0.0 0.0

Total 11 626 6220 2007 2056

to sub-grid variability and scaling issues (cf.Gubler et al.,
2011). To address point (c) and (d), PFloc was introduced in
Sect.3.2to exclude unsuitable evaluation data in this context.

The evaluation of APMOD shows that the prediction of
the model is reasonable for rock glaciers and boreholes.
For “trench or construction sites” as well as for “geophys-
ical investigations,” the predicted permafrost index values
are in general too low for permafrost presence, but the dis-
crimination of permafrost absence and presence is correct.
All three observation types show low index values for per-
mafrost presence, which means that permafrost is also pos-
sible at low index values. Partly, this distribution of index
values can be explained by the bias towards permafrost ex-
istence observations (mean index value of all observations
from Fig. 8= 0.35) induced by the tendency of permafrost
researchers to choose locations that do have permafrost. The
discrimination of the model is slightly worse when the offset
terms are not included, which supports our chosen strategy
to include them. Further, the model performance increases
when introducing local terrain and vegetation information
to apply the offset terms. This highlights the importance of
small-scale heterogeneity and the potential to improve the
model’s prediction by using the interpretation key and site
observations.

6.3 Uncertainties and limitations of APMOD

The temperature offsets used in this study are based on a
qualitative assessment of recent literature and on the assump-
tion of spatial and temporal invariance in the model domain.
We consider these assumptions and estimates to be the best
possible guess given the information available at this time.

The radiation dependent offset (1R) that is included in
the rock model ranges from−0.5◦C (minimal PISR) to
−2.84◦C (maximal PISR), which corresponds to an al-
titudinal shift of 77–437 m (assumed surface temperature
lapse rate of 0.0065◦C m−1). Minimal and maximal offset
terms are based on investigations byHasler et al.(2011),
but the dependencies based on radiation represent a strong
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Fig. 9.Altitudinal distribution of permafrost index areas in the Alps,
calculated for elevation bands of 50 m.

simplification because no information of the surface and sub-
surface characteristics is available here. Therefore, the max-
imal uncertainty of the offset within the rock model is de-
rived from the difference between minimal and maximal off-
set terms and is estimated to be 2.34◦C (e.g. an altitudinal
shift of the lower permafrost limit of±360 m).

The movement-related offset within the debris model is
+0.5◦C, respectively 70 m, and is based on the mean alti-
tudinal extent of the analysed rock glaciers. The standard
error of this mean value is given by the standard deviation
of the sample (81 m) divided by the square root of its quan-
tity (N = 5541) and results in 1.1 m. However, local vari-
ability of rock glacier extent is not accounted for with this
movement-related offset.

The effect of coarse blocks is addressed in the debris
model with an offset of 2◦C. Here, we assume that the sur-
face characteristics of rock glaciers are constant and we ne-
glect the fact that rock glaciers with fine-grained material
also exist in the Alps (e.g.Matsuoka et al., 2005). As dis-
cussed in Sect.4, published values for this cooling effect
range from 1.3◦C (Juliussen and Humlum, 2008) to 7◦C
(Harris and Pedersen, 1998). Thus, we assume this tem-
perature offset to vary between−0.7◦C and+5◦C, corre-
sponding to an altitudinal variation of the order of−153 to
+770 m.

The discussed uncertainties in the offset terms are large
and influence the final permafrost distribution on the map.
However, the interpretation key allows the map user to cap-
ture some of these extreme topographical situations and to
refine the estimate of the map. Isolated permafrost patches
in densely vegetated areas and/or below tree line (cf.Gruber
and Haeberli, 2009) are not considered in APMOD, but are
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Alpine Permafrost Map: Legend, Interpretation Key and Auxiliary Information

Interpretation Key

Blue: 

Purple: 

Yellow:

Glacier 

Permafrost in nearly 

all conditions

Permafrost mostly in 

cold conditions

Permafrost only in very 

favorable conditions

Clast size, soil properties and vegetation 

A cover of coarse blocks with open voids and no infill of fine material (A) 

indicates cold conditions. Bedrock, fine-grained soil or soil with coarse 

blocks but an infill of fines (B) indicate warm conditions. A dense vegetation 

cover (C) usually indicates the absence of permafrost. 

Slope position and long-lasting snow-patches  

The position along a slope can affect ground temperatures through the 

sorting of clasts, air circulation within the slope, and snow re-distribution. 

Often, the foot of slope (E) has colder ground temperatures. It contains 

more coarse material and is affected by long-lasting avalanche snow. 

Similarly, other late-lying snow patches indicate locally cold conditions. 

The top of slope (F) often has locally rather warm conditions. Frequently, it 

contains smaller clasts as well as an infill of fine material.

Steep rock slopes

Steep rock slopes have differing degrees of heterogeneity caused by 

micro-topography and fracturing. Higher heterogeneity (G) often enables a 

thin snow cover as well as ventilation and deposition of snow in large 

fractures, indicating locally cold conditions. Steep, smooth and largely 

unfractured rock (H) is indicative of warmer conditions. This effect is more 

pronounced in sun-exposed than in shaded locations. 

A

C

B

E

F

G

H

Rock glaciers 

Active (intact) rock glaciers (D) are 

identified by signs of movement such as 

steep fronts. They are reliable visual 

indicators of permafrost within their 

creeping mass of debris but do not 

allow easy conclusions on adjacent 

areas.

D

Map Legend

This map shows a qualitative index describing how 

likely permafrost exists. It is consistent for the entire 

Alps and intended for practical use for infrastructure 

planning and maintenance.

Some important local factors such as sub-surface 

material or snow conditions are not or only approx-

imatively accounted for in the map. However, they 

can cause strong differences in ground temperature 

in otherwise equal topograhic situations. For this 

reason, the map legend is accompanied by the

interpretation key, shown on the right, that can be 

used to locally further refine the estimate shown on 

the map. As an example, one would not expect 

permafrost in fine material (B) or in homogeneous 

rock (H) where a yellow signature is shown on the 

map. In special circumstances, permafrost can exist 

outside the area of the color signature shown. The 

map shows estimated conditions; more certainty can 

locally be achieved by e.g.,  geophysics or  

boreholes.

Auxiliary Information 

An additional map shows the surface types that were 

used. This allows comprehending the applied models 

(debris and rock model) and offset terms. To grid 

cells with a slope angle ≤ 35° only the debris model is 

applied, for slope angles ≥ 55° the rock model is 

used. In between, a fuzzy membership function is 

calculated. 

1: Steep Bedrock (slope angle ≥ 55°)

0: Debris Cover (slope angle ≤ 35°) 

2: Vegetation

Fig. 10.Legend, interpretation key and auxiliary information that is provided with the Alpine Permafrost Index Map (APIM). This informa-
tion helps to assess map uncertainties, to relate map contents to their actual expression in terrain and to comprehend the applied models and
offset terms.

of minor importance for an Alpine permafrost distribution
map.

The classification of the surface types as described in
Sect. 3.1 is based on simple approaches, and we distin-
guish between rock, debris, vegetation and glacier cover.
Especially the first two surface types are often hard to dif-
ferentiate, and all kinds of mixture forms exist in reality.
The chosen approach allows classifying these surface types
Alpine-wide. For local model application, a more accurate
land surface map could be used instead.

APMOD does not account for the recent warming in air
temperatures due to climate change and represents a static
snapshot of potential permafrost distribution. This is justified
because the deviation of an updated and transient permafrost
distribution would require knowledge of subsurface ice con-
tent that can preserve permafrost conditions for decades. For
the purposes of this map (“Where do I need to consider

permafrost?”), a steady-state distribution is therefore suffi-
cient and will likely remain relevant in the coming decades.

The rock model was adjusted with longer-term mean an-
nual air temperatures for the period 1961–1990, and pre-
dicted MARST values correspond to the same period. Rock
wall temperatures react rapidly to climate change (Gruber
and Haeberli, 2007), whereas rock glaciers respond with de-
layed air temperatures due to high ice content (e.g.Haeberli
et al., 2006) and coarse blocky surface. Additionally, tran-
sient effects, as well as three-dimensional topographical ef-
fects, can be responsible for colder temperatures at larger
depth than expected based on today’s climate conditions
(Noetzli and Gruber, 2009). In the final map (APIM), glacier
outlines from the year 2003 were used. Because glaciers are
subject to fast changes, recently de-glaciated areas need be
assessed with caution (cf.Kneisel, 2004; Kneisel and K̈aäb,
2007).
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7 Conclusions

The statistical model ofBoeckli et al.(2012) was applied
to estimate the current permafrost distribution in the Euro-
pean Alps. This is the first uniform modelling approach that
includes all Alpine countries. The Alpine Permafrost Index
Map (APIM) uses a grid spacing of approximately 30 m and
an index ranging from 0 to 1. A high index value points to
permafrost in nearly all conditions, and a low index value
means permafrost exists only in locally very favourable con-
ditions. Together with the legend and interpretation key, this
product should be useful for both researchers and stakehold-
ers to estimate the permafrost distribution for a given region
in the European Alps. The main conclusions from this study
are the following:

– The transition of a statistical permafrost distribution
model to a permafrost map requires a generalization
of the model to other surface types than those used
for model calibration. Therefore, additional offset terms
were defined qualitatively based on the literature; how-
ever, they involve some degree of subjectivity. That is
why the map is based on index values and not on pure
probabilities.

– Evaluation of spatially distributed models predicting
permafrost is challenging because test data are limited
and its distribution biased towards permafrost presence.
For future model calibration and evaluation, ground
truth data need to be collected using a suitable sampling
design in order to avoid site selection bias inherent in
convenience sampling.

– Calculated permafrost index areas provide an indication
of possible permafrost extents in different subregions of
the Alps. The relative area of permafrost occurrence in
relation to the total area of the Alps is estimated to be
3% when considering an index≥ 0.5.

8 Data availability

The APIM is freely available for download at:http://doi.
pangaea.de/10.1594/PANGAEA.784450in georeferenced
png format. Additionally, the interpretation key (Fig. 10) and
the surface-cover map (cf. Fig.6), which define the used
vegetation mask as well as the distinction of debris cover
and bedrock based on slope angle, are available. Alterna-
tively, all data are available as a kmz overlay for Google
Earth and as a Web Mapping Service for use in a GIS en-
vironment (accessible at:http://www.geo.uzh.ch/microsite/
cryodata/PFmapexplanation.html).
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