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Abstract. A single large glacier can contain tens of millions
of times the mass of a small glacier. Nevertheless, very small
glaciers (with area≤ 1 km2) are so numerous that their con-
tribution to the world’s total ice volume is significant and
may be a notable source of error if excluded. With current
glacier inventories, total global volume errors on the order of
10 % are possible. However, to reduce errors to below 1 %
requires the inclusion of glaciers that are smaller than those
recorded in most inventories. At the global scale, 1 % accu-
racy requires a list of all glaciers and ice caps (GIC, exclu-
sive of the ice sheets) larger than 1 km2, and for regional es-
timates requires a complete list of all glaciers down to the
smallest possible size. For this reason, sea-level rise esti-
mates and other total mass and total volume analyses should
not omit the world’s smallest glaciers. In particular, upscal-
ing GIC inventories has been common practice in sea level
estimates, but downscaling may also be necessary to include
the smallest glaciers.

1 Introduction

The world’s largest glaciers dwarf the world’s smallest
glaciers by five or more orders of magnitude, and one large
glacier (circa 104 km2) can contain up to 10 million times
more ice mass than the smallest glacier (circa 10−1 km2).
Although such an overwhelming ratio suggests that a few of
the world’s largest glaciers contain the bulk of the world’s ice
mass (exclusive of the ice sheets), it is equally reasonable to
ask if the rest of the glaciers are so numerous that they con-
tain as much or more total ice. After all, for each single large
glacier there are tens of thousands of smaller glaciers.

For the purposes of sea-level rise estimates and other anal-
yses that depend on glacier inventories, this question of mass
distribution is more than academic and in a warming cli-
mate could have important engineering and political conse-
quences. We might ask, for example, if the estimated one-
quarter to one-third of the total sea-level rise due to melting
glaciers and ice caps (cf.,Radíc and Hock, 2011, 2010; Bahr
et al., 2009; Meier et al., 2007) will be dominated by the few
largest glaciers, or if sea level will rise faster in response to
many smaller glaciers. While the world’s glacier inventories
have become increasingly thorough and accurate (Haeberli
et al., 1989; NSIDC, 1999; Cogley, 2009), the very smallest
glaciers are still the ones that are most likely to be overlooked
(cf., Radíc and Hock, 2010, Table 3). It is entirely possible
that the smallest glaciers’ sea-level contribution could be un-
derestimated, in large part because of practical reasons which
make a catalog of the smallest glaciers expensive, time con-
suming, and error prone due to difficulties in separating small
glaciers from snow patches (Bolch et al., 2010). As an inven-
tory’s size threshold is lowered, relative errors may rise, but
with the smallest glaciers rapidly melting and possibly dis-
appearing over the next few decades (Mernild et al., 2011;
Radíc and Hock, 2011), the potentially rapid sea-level con-
tribution of these smallest glaciers should be considered, or
systematic errors due to their exclusion should be estimated.

Most calculations of sea-level rise from glaciers and ice
caps rely on an estimate of the total volume of land ice, ei-
ther on a region by region or on a global basis (e.g.,Mernild
et al., 2011; Radíc and Hock, 2011; Bahr et al., 2009). For
glaciers and ice caps (GIC), the most recent and complete
calculation found a total volume of 0.60± 0.07 m sea level
equivalent, but by necessity this estimate must be scaled up
from incomplete inventories (Radíc and Hock, 2010). An
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upscaling generally assumes that the estimated total mass is
biased most significantly by missing large glaciers (for exam-
ple,Radíc and Hock(2010) found that the largest glacier was
excluded from each of the regional inventories of Alaska,
Arctic Canada, and Greenland), but it is also possible that
improved recognition of smaller glaciers could alter the total
sea level equivalent while simultaneously shifting the mass
distribution towards smaller glaciers. In other words, a down-
scaling may also be necessary. At the very least, any future
upscaling or downscaling of incomplete inventories would
benefit from knowledge about the theoretical distribution of
glacier mass at the smallest glacier sizes.

To estimate any bias from an incomplete inventory, we
calculate the potential error in total volume associated with
any lower-bound threshold in glacier size. For example, we
can estimate the extent to which total volume may be un-
derestimated when excluding glaciers smaller than 0.05 km2

(e.g.,Bolch et al., 2010), 0.1 km2 (e.g.,Schiefer et al., 2008),
2 km2 (e.g.,Jiskoot et al., 2012), or for any other cutoff in
the many inventories that collectively comprise the World
Glacier Inventory (Haeberli et al., 1989; NSIDC, 1999; Cog-
ley, 2009). The following shows that 1 % and sometimes
even 10 % errors in the total volume necessitate inventories
with surprisingly small ice masses, in some cases pushing the
semantic boundary between glaciers and snow patches.

2 Assessing the mass distribution

2.1 Scaling relationships

Our calculation of total volume (or, equivalently, mass) uses
two power-law scaling relationships. Number–size scaling
gives the number of glaciers that have any particular area.
Volume–area scaling converts each glacier’s area to its vol-
ume. Combined, these power laws give the total volume of
glaciers that happen to have a particular area (for example,
the total volume of all glaciers of size 100 km2). Integrating
can then give the total mass of any range in glacier sizes, such
as the total mass of the glaciers from 1000 to 10 000 km2.
Scaling relationships for ice caps are considered separately
at the end of the analysis, and obviously this study is not
discussing the massive Greenland and Antarctic ice sheets
whose volumes, kinematics, dynamics, and contributions to
sea level are always calculated separately (e.g.,Pfeffer, 2011;
Rignot et al., 2011).

Let V (S) be the volume of a glacier of size or surface area
S. Data and theory support a power-law relationship of the
form

V (S) = cSγ (1)

whereγ = 1.36 is derived from data (Chen and Ohmura,
1990), and γ = 1.375 is derived from theory (Bahr et al.,
1997). The scaling constantc will disappear and become ir-
relevant.

Let N(S) be the number of glaciers of sizeS. Data and
theory (Bahr, 1997; Bahr and Meier, 2000) support a power
law of the form

N(S) = bS−β (2)

and data showsβ = 2.10± 0.09, as derived from the world
glacier inventory (Haeberli et al., 1989; NSIDC, 1999; Cog-
ley, 2009) sampled for 10 different regions (Figs. 1 and 2).
The exponentβ = 2.10 is also in good agreement with the
theoretically predicted value of 2.05 derived from percola-
tion theory (Bahr and Meier, 2000). Refinements of this scal-
ing exponent would change the final mass totals and the error
estimates but not the general conclusions. The scaling con-
stantb will disappear and become irrelevant.

A theoretical analysis shows that theN(S) power-law re-
lationship should be multiplied by an exponential tail, or in
other words, a more rapid decrease than a power law at the
largest glacier sizes (Bahr and Meier, 2000). This exponen-
tial decay occurs only when the largest glaciers in a region
are so big that they are bumping up against the size of the re-
gion being considered. In effect, the largest glaciers are lim-
ited in size by the area of the region or mountains in which
they can grow. Figure 1 suggests the existence of such a tail,
but our goal is to produce a reasonable approximation to the
total volume error, and the exponential tail is a correction to a
trend which is reasonably estimated by a power law. For this
reason, and for clarity in the mathematics, we first assume
that the tail is irrelevant and derive a closed form solution. If
anything, this assumption will overestimate the total mass of
the largest glaciers and make the following arguments and
conclusions stronger. However, for completeness, we then
derive a correction factor due to the exponential tail. The cor-
rection factor would need to be evaluated numerically, but (to
a low order) the factor is close to unity and should not change
an order-of-magnitude estimate of the total volume error.

At the smallest sizes, the data in Fig. 1 show a deviation
from the power law (Eq. 2) suggesting fewer glaciers than
predicted by the power law number–size distribution. The
following analysis includes an adjustment for this contin-
gency, but several considerations suggest that these smallest
glaciers may be underrepresented in the inventory data. Cer-
tainly the smallest glaciers are the hardest to count. In many
regions, these smallest glaciers are blurring the distinction
between snow patches and glaciers, which makes their num-
bers particularly difficult to assess (Bolch et al., 2010). Data
also show that melting snow patches have a power-law distri-
bution (Shook and Gray, 1996), making it unlikely that small
glaciers should deviate from a power law but then resume
power-law behavior for only slightly smaller snow patches.
In addition, theory suggests that the scaling exponents for
glaciers and snow patches should be the same (Bahr and
Meier, 2000). Furthermore, we applied a modified automated
“flowshed” algorithm (Schwanghart and Kuhn, 2010) on the
most recently compiled glacier mask for Western Canada
(Bolch et al., 2010). This model splits contiguous ice cover
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Fig. 1. The cumulative number–size distribution for 10 regions around the world. Only regions with greater than a 90 % complete glacier
inventory fromCogley(2009) are included. The location of each region is mapped in Fig. 2. The dashed line shows the power-law fit. The
power-law scaling exponentβ is shown for each region, as is the lower boundSdeviatebelow which a power-law is not guaranteed by the
data. Bothβ andSdeviateare calculated using the statistical techniques outlined inClauset et al.(2009). A weighted average of the regions
givesβ = 2.10± 0.09 andSdeviate= 0.79± 4.98. Weights are the inverse of the error for each value ofβ andSdeviate.

Fig. 2. Locations of the 10 glacierized regions whose glacier distri-
butions are presented in Fig. 1 and Table 1.

into separate glaciers as defined by flow to derive the sizes
and numbers of glaciers in ten different subregions of British
Columbia (Figs. 3 and 4). The model predicts a mean scaling
exponent ofβ = 2.18± 0.11 in substantial agreement with
data and theory. This agreement seems unlikely if the theo-
retically derived power law is incorrect. At the very least, a
power-law fit is a reasonable approximation to the data and

is sufficient to estimate total volume errors in the following
analysis.

However, instead of assuming an appropriate distribution
of mass at the smallest sizes, the following derivations give
two bounding cases for the estimates of GIC mass distribu-
tion. One case assumes a power-law distribution for small
glacier sizes. This gives a lower bound on the size of glaciers
necessary to assess the total GIC mass. The second case
gives a defensible upper bound under the assumption that
power-law scaling fails for glaciers smaller than approxi-
mately 1 km2. In this case, glaciers smaller than∼ 1 km2 are
ignored and considered irrelevant to the total GIC mass. The
correct value lies somewhere in-between the upper and lower
bounds.

2.2 Mass contribution of smaller glaciers (lower bound)

The following establishes a lower bound for the smallest
glaciers needed in both global and regional inventories. In
other words, this section identifies the size below which
small glaciers make no significant contribution to the total
ice volume (either global or regional) assuming that a power-
law scaling applies toN(S) across all glacier scales. (The
next section adds a correction to account for any deviations
from power-law scaling at the smallest glacier sizes.)

Let VtotalS (S) be the total volume of glaciers of size or area
S. This is not the total volume of all glaciers; it is just the total
volume of all of the glaciers that happen to have sizeS. This
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Fig. 3.The cumulative number–size distribution derived from a numerical flowshed algorithm for 10 different subregions of British Columbia.
The location of each subregion is identified in Fig. 4. The dashed line shows the power-law fit. The power-law scaling exponentβ is shown
for each subregion, as is the lower boundSdeviatebelow which a power-law is not guaranteed by the numerical data. Bothβ andSdeviate
are calculated using the statistical techniques outlined inClauset et al.(2009). A weighted average of the regions givesβ = 2.18± 0.11 and
Sdeviate= 0.97± 1.29. Weights are the inverse of the error for each value ofβ andSdeviate.

Fig. 4. Locations of the 10 subregions of British Columbia whose
glacier distributions are plotted in Fig. 3. Gray dots on the map cor-
respond to the locations of glaciers within each region.

total volume can be written as

VtotalS (S) = N(S)V (S) = bcSγ−β . (3)

Integrating gives the total mass for any range of sizes.
For example, letSsmallestbe the smallest size of glaciers that
could make a relevant contribution to the total volume of all
glaciersVtotal. If all glaciers are relevant, thenSsmallestwill be
the smallest existing glacier. LetSmax be the largest glacier.
AlthoughSmaxcould be reasonably given a value on the order
of 10 000 km2, Smax can remain arbitrary for the moment. It
follows that the total volume of all glaciers (those in the range

Ssmallestto Smax) is

Vtotal =

Smax∫
Ssmallest

bcSγ−β dS (4)

= bc

(
1

η

)
Sη

∣∣∣∣Smax

Ssmallest

(5)

= bc

(
1

η

)(
Smax

η
− Ssmallest

η
)

(6)

= bc

(
1

η

)
Smax

η (7)

whereη = γ − β + 1. The last line follows becauseSmax �

Ssmallest(by many orders of magnitude). Also note that the
derivation remains unchanged whether or not power-law
scaling ofN(S) applies to the smallest glaciers – in either
case,Smax is far greater thanSsmallest. Although the final esti-
mate of total volume depends only onSmax, all of the smaller
glaciers have still been included in the calculation as part of
the integration.

Consider the total volume of all glaciersVtotal and an
approximation of the total volumeVapprox that ignores all
glaciers below some sizeSmin. Integrating as before, the rela-
tive errorθ between the volume approximation and the actual
volume is
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θ =
Vtotal− Vapprox

Vtotal
(8)

= 1−

∫ Smax
Smin

bcSγ−β dS

Vtotal
(9)

= 1−
Smax

η
− Smin

η

Smax
η (10)

=

(
Smin

Smax

)η

. (11)

If the previously discussed exponential tail is included,
then we must integrateN(S)V (S) = bcSη−1e−kS for some
unknown constantk that would need to be established from
a fit to the number–size data. The integral is not possi-
ble in closed form. Instead, for limits of integration from
0 to S, the integral ofSη−1e−kS is commonly defined as a
special function called the “lower incomplete gamma func-
tion”, 0(η,kS). Although this function is usually notated as a
lower-case gamma, we use0 to distinguish it from the com-
mon notation for the volume–area scaling exponentγ . Fol-
lowing the same process as before,

θ =
Vtotal− Vapprox

Vtotal
(12)

= 1−

∫ Smax
Smin

bcSη−1e−kS dS

Vtotal
(13)

= 1−
0(η,kSmax) − 0(η,kSmin)

0(η,kSmax)
(14)

=
0(η,kSmin)

0(η,kSmax)
. (15)

This is an exact solution but must be estimated numerically
or from a table of values for0. However, by substituting a
Taylor series for the exponential tail, the lower incomplete
gamma function can be integrated term-by-term to give

0(η,kS) = (kS)η
∞∑

n=0

(−1)n(kS)n

n!(η + n)
. (16)

Substituting gives

θ =

(
Smin

Smax

)η


∞∑

n=0

(−1)n(kSmin)
n

n!(η+n)

∞∑
n=0

(−1)n(kSmax)
n

n!(η+n)

 . (17)

The rightmost factor is a correction due to the exponential
tail. To a low-order approximation, this term is unity. There-
fore, as a reasonable order-of-magnitude approximation to
the errorθ , we ignore this term and avoid complications from
the unknown constantk. It follows that for any specified rel-
ative error we can solve for the smallest glaciers needed in
an inventory:

Smin = Smaxθ
1/(γ−β+1). (18)

Without the exponential tail, this is exact. With the exponen-
tial tail, this simplification overestimates the volume of the
largest glaciers and makesSmin an upper bound.

The relative errorθ (Eq. 8) is not sensitive to small changes
in Smin. For example, an order of magnitude change inSmin
results in only a factor of 2 change in the relative error
when using typical values ofγ = 1.36 andβ = 2.1. On the
other hand, an order of magnitude reduction in the error
would require a 6900-fold decrease in the size of the smallest
glaciers used in an inventory. For example, with the world’s
largest glaciers on the order ofSmax = 10 000 km2, keep-
ing θ ≤ 10 % meansSmin = 1.43 km2. In other words, all
glaciers less than 1.43 km2 can be excluded from the inven-
tory because they contribute less than 10 % of the total vol-
ume. However, keepingθ ≤ 1 % meansSmin = 0.0002 km2,
effectively implying that all glaciers must be included.

The exact results are sensitive to the scaling exponents.
With γ = 1.36 and the theoretically derived value ofβ =

2.05, keepingθ ≤ 10% meansSmin = 8.36 km2. The very
small reduction inβ from 2.1 to 2.05 results in nearly an or-
der of magnitude increase in the size of the smallest glacier
that is necessary to acheive a given error. However, for most
reasonable choices of scaling exponents, we can conclude
that 10% and smaller errors in the total volume will require
surprisingly small glaciers that fall at or near the lower limits
of many inventories.

For many regions of the world, the largest glaciers may be
orders of magnitude smaller than the globally relevant order
of 10 000 km2. The largest glaciers in the Alps, for example,
are on the order of 100 km2, and the largest glaciers in the
Brooks Range (Alaska) are on the order of 10 km2. To keep
relative errors at 10 % or at any other value, the regionalSmin
must diminish in proportion with the regionalSmax. For ex-
ample, in the Alps, all glaciers larger than 1.43× 10−2 km2

must be included to keep errors at 10 % or less (usingγ =

1.36,β = 2.1). For the Brooks Range, all glaciers larger than
1.43×10−3 km2 must be included, effectively implying that
all glaciers must be inventoried to keep errors in the region’s
total volume below 10 %.

For regions dominated by ice caps, the volume–area curve
is less steep, with data supporting a scaling exponent of
γ = 1.22 (Meier and Bahr, 1996) and a theoretical value of
γ = 1.25 (Bahr et al., 1997). As with glaciers, theory predicts
β = 2.05. Using the theoretically derived exponents andSmax
on the order of 10 000 km2, all ice caps larger than 0.1 km2

must be included to keep errors at or below 10 %. Errors be-
low 1 % require inventories to include all ice caps as small as
10−6 km2. Clearly, the smallest ice caps are always signifi-
cant when calculating total ice cap volume in any region.

For global analyses or regions that contain both ice caps
and glaciers, separate scaling analyses can be applied to
each (e.g.,Bahr et al., 2009). Ideally, regions should be se-
lected so that glaciers and ice caps are not mixed. How-
ever, when that is not possible, a revised scaling exponent
γ could be estimated from a combination of glacier and ice
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Table 1. A calculation of the smallest glaciers in an inventory that would be necessary for relative errors in total regional volume that are
less than or equal to 1 %, 5 %, and 10 %. Calculations are for 10 different glacierized regions around the world (Fig. 2) with inventories
(Cogley, 2009) that are greater than 90 % complete. For regions dominated by ice caps (Svalbard and Russian Arctic), calculations use
the theoretically derived values ofγ = 1.25 andβ = 2.05. For regions dominated by glaciers, calculations useγ = 1.36 andβ = 2.1. The
maximum size glacier is estimated by order of magnitude. Results are also presented as order of magnitude estimates in km2.

Region Order of magnitude
of largest glacier in
inventory (km2)

Minimum size
Smin necessary for
1 % error in total
volume (km2)

Smin for 5 % error
(km2)

Smin for 10 % error
(km2)

Caucasus 102 10−6 10−3 10−2

Central Europe 102 10−6 10−3 10−2

Central Asia 103 10−5 10−2 10−1

South Asia (East) 103 10−5 10−2 10−1

South Asia (West) 103 10−5 10−2 10−1

New Zealand 102 10−6 10−3 10−2

North Asia 102 10−6 10−3 10−2

Russian Arctic 104 10−6 10−3 10−1

Scandinavia 102 10−6 10−3 10−2

Svalbard 103 10−7 10−4 10−2

cap volume–area data. If the number of ice caps (or glaciers)
in a region is small compared to the number of glaciers (or
ice caps), thenγ is unlikely to change significantly. On the
other hand, if the numbers of ice caps and glaciers in a region
are similar, then, because most regions have many glaciers,
the preferred solution of constructing separate distributions
may be reasonable.

Table 1 shows the size of the smallest glaciers that are
necessary for inventories of 10 different regions around the
world. For 10 % errors in total regional volume (rather than
global volume), many regions do not have sufficiently small
glaciers in their inventories. None of the inventories have suf-
ficiently small glaciers for regional volume errors at 5 % or
less.

2.3 Mass contribution of smaller glaciers (upper bound)

If the smallest glaciers deviate from power-law scaling, then
we can apply a correction to the previous estimates. This cor-
rection assumes that all glaciers smaller thanSdeviatedo not
contribute to the total volume, in which caseVtotal becomes
an integral fromSdeviate to Smax. Because every region con-
tains glaciers smaller thanSdeviate, this gives an upper bound
on the smallest glaciersSmin that need to be included when
calculating the total ice volume.

Integrating for the total volume gives

Vtotal = bc

(
1

η

)(
Smax

η
− Sdeviate

η
)
. (19)

And the relative error becomes

θ = 1−
Smax

η
− Smin

η

Smax
η
− Sdeviate

η . (20)

Solving forSmin,

Smin =
(
θSη

max+ (1− θ)Sdeviate
η
)1/η

. (21)

The second term is a correction to the original equation
that assumes power-law scaling across all glacier sizes. The
correction term becomes small and irrelevant for large rela-
tive errorsθ (Fig. 5).

Data suggest that the deviation from a power law hap-
pens at approximatelySdeviate= 1 km2 in most regions of the
world (Fig. 1). For typical values ofγ = 1.36, β = 2.1, and
Smax = 10 000 km2, Fig. 5 shows that the correction to the
error is smaller than an order of magnitude for glaciers larger
than 1.3 km2. In general, for reasonable choices of scaling
exponents, the correction term is less than an order of mag-
nitude for glaciers only slightly larger in size thanSdeviate.

3 Conclusions

Glacier and ice cap areas span six or more orders of mag-
nitude, but the smallest of these glaciers are much more nu-
merous than the largest. As a result, the vast numbers of the
smallest glaciers can have a significant total mass. When as-
sessing the relative contributions of different-sized glaciers
and ice caps to sea-level rise (or to any other analysis), a
seemingly small cutoff in glacier sizes could have a surpris-
ingly large impact. As an example, the dynamic response
time of the smallest glaciers can be a hundred times faster
than that of the largest glaciers (Jóhannesson et al., 1989).
So faster rates of sea-level rise could be expected if the total
mass of the small glaciers is deemed significant, as is sug-
gested here.

The Cryosphere, 6, 763–770, 2012 www.the-cryosphere.net/6/763/2012/
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Fig. 5. The relative error in total volume calculated as a function
of the minimum glacier size. The top curve shows the error when
power-law scaling applies toN(S) at all glacier sizes. The bottom
curve shows the error when power-law scaling does not apply to
glaciers smaller thanSdeviate= 1 km2. Note that the difference in
relative error is small (a fraction of an order of magnitude) for sizes
larger than roughly 10 km2 and is less than an order of magnitude
for almost all sizes larger thanSdeviate= 1 km2. Calculations for
this plot useγ = 1.36,β = 2.1, andSmax= 10 000 km2.

The total volume of all the world’s glaciers can be esti-
mated to within any specified tolerance as long as glacier
inventories are sufficiently complete at both the largest and
the smallest sizes. If 10 % errors are acceptable, then Fig. 5
suggests current inventories are adequate. However, for pri-
marily practical reasons many regional glacier inventories
are incomplete at the smallest glacier sizes, and these small
glaciers are notably relevant when the context calls for small
errors. For sea level estimates, upscaling of inventories has
been common. These results suggest that downscaling may
also be important.

Most regions need to include even smaller glaciers to ob-
tain an accurate estimate of the total regional volume (Ta-
ble 1). Without especially large glaciers to bias and shift the
mass distribution upwards, the Alps, for example, need in-
ventories that are complete down to the smallest objects that
could conceivably be called glaciers. Errors of less than 10 %
in the Alps (certainly relevant for regional water resource
planning) would require an inventory of all ice masses down
to 0.01 km2. At these scales, the difference between glaciers
and snow patches becomes blurred, and the inventory must
be effectively 100 % complete.

As a practical measure, the relative errorθ in total ice vol-
ume can be estimated easily from the largest and smallest
glaciers used in an analysis (Eq. 11). If power-law scaling
does not apply to the world’s smallest-sized glaciers, then
the relative error should be modified with a correction term
(Eq. 21). However, the differences at an order of magnitude

scale are generally irrelevant, and Eq. (11) should be a rea-
sonable estimate for errors under most circumstances.
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