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Abstract. This study aims at quantifying the thermal re-
sponse of mountain permafrost in southern Norway to
changes in climate since 1860 and until 2100. A tran-
sient one-dimensional heat flow model was used to simulate
ground temperatures and associated active layer thicknesses
for nine borehole locations, which are located at different
elevations and in substrates with different thermal proper-
ties. The model was forced by reconstructed air temperatures
starting from 1860, which approximately coincides with the
end of the Little Ice Age in the region. The impact of cli-
mate warming on mountain permafrost to 2100 is assessed
by using downscaled air temperatures from a multi-model
ensemble for the A1B scenario. Borehole records over three
consecutive years of ground temperatures, air temperatures
and snow cover data served for model calibration and vali-
dation. With an increase of air temperature of∼1.5◦C over
1860–2010 and an additional warming of∼2.8◦C until 2100,
we simulate the evolution of ground temperatures for each
borehole location. In 1860 the lower limit of permafrost was
estimated to be ca. 200 m lower than observed today. Accord-
ing to the model, since the approximate end of the Little Ice
Age, the active-layer thickness has increased by 0.5–5 m and
>10 m for the sites Juvvasshøe and Tron, respectively. The
most pronounced increases in active layer thickness were
modelled for the last two decades since 1990 with increase
rates of +2 cm yr−1 to +87 cm yr−1 (20–430 %). According
to the A1B climate scenario, degradation of mountain per-
mafrost is suggested to occur throughout the 21st century at
most of the sites below ca. 1800 m a.s.l. At the highest loca-
tions at 1900 m a.s.l., permafrost degradation is likely to oc-
cur with a probability of 55–75 % by 2100. This implies that
mountain permafrost in southern Norway is likely to be con-
fined to the highest peaks in the western part of the country.

1 Background and objectives

Permafrost in general and mountain permafrost in particu-
lar experiences increasing interest due to its sensitivity to
climate variation and importance for geomorphologic and
geotechnical processes (Harris et al., 2009), such as slope sta-
bility and natural hazards (Gude and Barsch, 2005; Huggel et
al., 2010; Gruber et al., 2004a; Fischer et al., 2006; Haeberli,
1992). There is a need to address the response of ground tem-
peratures (GT) to climate forcing, especially the modulation
of the response of GTs to the effect of snow cover and differ-
ent types of surficial material and bedrock.

This study aims at the quantification of subsurface warm-
ing and changes in active layer thickness (ALT) over a
ca. 250 yr period from the approximate end of the Little Ice
Age (LIA) in the mid 19th century to 2100 at three high-
mountain sites in Southern Norway. Significant warming oc-
curred during that period and is expected to continue. In rela-
tion to these changes, we intend to identify the possible zona-
tions of former, present and future permafrost. Finally, we
aim to characterise these responses for different environmen-
tal settings in terms of bedrock properties, sediment-cover
and snow. We suggest that these assessments are fundamen-
tal prerequisites for spatially distributed permafrost mod-
elling in Scandinavia, and for understanding geomorpholog-
ical process patterns and ultimately landscape development
(Berthling and Etzelm̈uller, 2011).

One-dimensional heat flow models have been applied in
various permafrost studies to assess the response of per-
mafrost to climate change, such as for arctic permafrost
(Burn and Zhang, 2009; Etzelm̈uller et al., 2011; Osterkamp
and Romanovsky, 1999; Romanovsky et al., 2007; Sazonova
et al., 2004; Zhang et al., 2006, 2008) and mountain per-
mafrost in the European Alps (Engelhardt et al., 2010;
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Fig. 1.Location of the study sites and boreholes in Norway(a). As a rough estimate of possible permafrost distribution all areas with MAAT
< −3◦C during the last normal period 1961–1990 are shown in blue (Etzelmüller et al., 2003). Local site overview of(b) Juvvasshøe,
(c) Jetta and(d) Tron, each indicating the locations of boreholes (BH), where GST measurements (MTD) andTAIR , GST and snow depth
measurements are performed.

Gruber and Hoelzle, 2008; Gruber et al., 2004b; Hoelzle et
al., 2001; Luetschg et al., 2008; Noetzli and Gruber, 2009;
Noetzli et al., 2007; Scherler et al., 2010; Stocker-Mittaz et
al., 2002).

In this study, we apply a 1-D heat flow model (Etzelmüller
et al., 2011; Farbrot et al., 2007) to simulate GTs and ALT
for the time period of 1860 until 2100 in the mountains of
Southern Norway. In addition to the existing PACE borehole
(Isaksen et al., 2001) in 2008 12 shallow boreholes have been
established recording GT, GST andTAIR at three different
mountain areas in Southern Norway. Forcing the calibrated
model using reconstructed and projectedTAIR series, we as-
sess how sensitive GT and ALT react to warming at the in-
vestigated sites, including an assessment of model limitations
and related uncertainties of our approach.

2 Setting, instrumentation and climate at the study sites

We use borehole measurements from three locations in
Southern Norway in this study (Fig. 1a): Juvvasshøe
(61◦40′ N, 08◦22′ E, 1894 m a.s.l.), Jetta (61◦53′ N, 9◦17′ E,
1560 m a.s.l.) and Tron (62◦10′ N, 10◦41′ E, 1640 m a.s.l.).
At these sites, ground temperature records are available at
13 borehole locations covering the period September 2008
to July 2011. At Juvvasshøe, the PACE borehole ground
temperature data is available from 1999 (Isaksen et al., 2001,
2007). Data from all boreholes were used in this chapter to
give an introduction to the climate and geomorphological set-
tings at the study sites. However, only a selection of nine
boreholes (Table 1) was used for the modelling study.
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2.1 The borehole sites and instrumentation

At Juvvasshøe (1894 m) (Fig. 1b) first ground temperature
measurements started by Ødegård et al. (1992) and the later
drilling of the 129 m deep PACE borehole (Harris et al.,
2001; Isaksen et al., 2001). The site is characterised by exten-
sive block fields at higher elevations and finer till material at
lower elevations (Ødeg̊ard et al., 1988). Six boreholes were
drilled in addition to the existing PACE boreholes, resulting
in an altitudinal transect from 1894 m a.s.l. (PACE) down to
1307 m a.s.l. (Juv-BH6) (Fig. 1b). The boreholes have differ-
ent stratigraphies: PACE, Juv-BH1 and Juv-BH3 are located
in block fields; Juv-BH4 was drilled in bedrock and Juv-BH6
in a sand- to gravel-rich ground moraine.

At Jetta (Fig. 1c) block fields are present down to ele-
vations of 1500 m and 1100 m a.s.l. on the north and south
exposition, respectively, with thicknesses ranging from 3 to
10 m (Bø, 1998). Three boreholes were drilled 10 m into
bedrock at 1560 m a.s.l. (Jet-BH1), 1450 m a.s.l. (Jet-BH2)
and 1218 m a.s.l. (Jet-BH3), respectively.

Tron (Fig. 1d) is located further east in a more continen-
tal climate setting. Two boreholes were drilled 10 m into
fine-grained morainic material (Tro-BH1, Tro-BH2), while
the uppermost borehole (Tro-BH1, 1640 m) was drilled 30 m
into a block field.

At all boreholes, GST,TAIR and snow depth (SD) are
recorded. Following the approach by Lewkowicz (2008)
Maxim© iButton temperature loggers (±0.5◦C accuracy) at
fixed heights above the ground surface (10, 20, 30, 40, 50,
60, 80, 100, 120 cm) were used to extract SD. At PACE and
Tron automatic weather stations record several meteorologi-
cal variables to characterise the surface energy balance.

2.2 Climate and ground thermal conditions at the
study sites

The sites are situated along a continentality gradient from a
more maritime influenced climate at Juvvasshøe to a more
continental climate setting at Tron (Farbrot et al., 2011). The
entire observation period from September 2008 to July 2011
was divided into three parts (S1: September 2008 to August
2009; S2: September 2009 to August 2010; S3: September
2010 to July 2011) to analyse the inter-annual variation (Ta-
ble 1). As S3 does not cover a complete seasonal cycle, it is
not used for comparison orn-factor calculations.

At Juvvasshøe MAATs during S1 ranged from−3.4◦C to
−0.6◦C and during S2 from−4.5◦C to −2.3◦C between
1894 m a.s.l. and 1307 m a.s.l. At higher elevations snow
cover is highly variable and generally thin (<20 cm) due to
strong redistribution by wind (Fig. 2a). A thick snow cover
is found at lower elevations (70–140 cm) (Table 1, Fig. 2b).
The lower limit of permafrost along the instrumented slope
is at ca. 1450 m a.s.l. (Farbrot et al., 2011). Permafrost thick-
ness at the PACE borehole was estimated to be approxi-
mately 380 m (Isaksen et al., 2001). During the study period,

observed ALT varied between 1.6 m (Juv-BH1) (Fig. 2a)
and 8.6 m (Juv-BH4). The mean annual ground temperature
at 10 m depth (MAGT10) ranges from−2.5◦C to −0.3◦C
within permafrost and reaches up to +1.7◦C (Juv-BH6) in
non-permafrost areas (Table 1).

At Jetta, MAATs between−2.2◦C to −0.2◦C were
recorded during S1 and−3.7◦C to −1.6 ◦C during S2 be-
tween 1560 m a.s.l. to 1218 m a.s.l. (Table 1). A long-lasting,
thick snow cover (>140 cm) is recorded at the uppermost
borehole (Jet-BH1) (Fig. 2c), while Jet-BH3 had no signif-
icant snow cover due to strong wind drift (Fig. 2d). There-
fore, despite the lower elevation, the GST recorded at Jet-
BH3 is even lower than at Jet-BH1 during S2. The MAGT10
increases from−0.8◦C at Jet-BH1 to ca. 1.7◦C at Jet-BH3
during the observation period (Table 1). An ALT of ca. 6.9 to
9 m was recorded at Jet-BH1 (Table 3, Fig. 2c) while sea-
sonal frost penetrates down to 6 to 9 m depth at Jet-BH3
(Fig. 2d).

At Tron, MAAT during S1 ranged from 3.6◦C to
−0.9◦C and during S2 from−4.5◦C to −2.3◦C between
1640 m a.s.l. to 1589 m a.s.l. (Table 1). Tro-BH1 and Tro-
BH2 show thick and long-lasting snow cover during both sea-
sons (>90 cm) (Fig. 2e, f). Permafrost was found at the up-
permost borehole with GTs only slightly below 0◦C down to
a depth of 30 m (Fig. 2e). Despite lower MAAT and MAGST
in S2, the ALT at Tron-BH1 slightly increased from 10.7 m
to 11.1 m (Fig. 2e). Along the north slope of Tron, compara-
tively low MAGST of −0.4◦C to−0.7◦C were recorded by
miniature temperature loggers down to 1450 m a.s.l., indicat-
ing the possible presence of permafrost (Farbrot et al., 2011).
Seasonal frost dominates at the lower borehole (Tro-BH2)
with freezing depths of ca. 1.5 m to 4 m (Fig. 2f). Similarly
an increase of freezing depths was observed during S2 and
S3 (Fig. 2f).

2.3 Seasonal variations

The air temperature records for different sites and seasons
display the influence of continentality as well as strong
inter-annual variations. To better analyse these differences,
we calculated anomalies of mean monthly air tempera-
tures (MMAT) for all three sites for 2008–2011 with re-
spect to the climate normal 1961–1990 (Fig. 3). Despite the
lower elevation of Tronfjell,TAIR is similar or lower than at
Juvvasshøe and Jetta (Fig. 3a). Using altitudinal lapse rates
derived from observations (Farbrot et al., 2011), MAAT at
1640 m a.s.l. is−2.3,−2.2 and−3.8◦C at Juvvasshøe, Jetta
and Tron, respectively. The MAAT of S1 was by 1.0◦C to
1.7◦C higher than the last normal period 1961–1990. The
MAAT of S2, however, was−0.5◦C lower at Juvvasshøe and
0.3◦C to 0.4◦C higher at the other sites. The largest devia-
tion to the normal is found during winter of S2 where temper-
atures during December to February are up to 4.5◦C lower
than normal (Fig. 3b). In general, S2 was on average 1.4◦C
to 1.1◦C colder than S1.
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Fig. 2. Thermal regime of permafrost and non-permafrost borehole sites at Juvvasshøe(a, b), Jetta(c, d) and Tron(e, f) comprising GT,
GST,TAIR and snow depth (SD). The upper panel in each figure showsTAIR (red line), GST (blue line) and SD (grey area). The lower panel
in each figure represents a depth-time diagram of GT.

The borehole temperatures show different susceptibili-
ties to inter-annual variability depending on the strength of
coupling between GST andTAIR (Fig. 4). Boreholes hav-
ing a close atmosphere-ground coupling show much lower
GSTs and GTs in S2. The GSTs of S2 at Juv-BH3 and the
bedrock site Juv-BH4 were by 0.6◦C and 2.1◦C lower, re-
spectively, than during S1 (Table 1). While Jet-BH1 shows
a rather constant MAGST during both seasons due to exten-
sive snow cover (Table 1), strong variations at Jet-BH3 with
+0.5◦C during S1 and−1.0◦C during S2 (Table 1) demon-
strate closer coupling between atmosphere and ground sur-
face (Fig. 4).

3 Methods

3.1 1-D numerical heat flow model

For this study, we used a one-dimensional transient heat
flow model, which was previously applied in similar stud-

ies (Farbrot et al., 2007; Etzelm̈uller et al., 2011). Assuming
heat conduction as the only process of energy transfer the
model is solving the heat conduction equation (Williams and
Smith, 1989)

ρ ceff
∂T

∂t
=

∂

∂z

(
k
∂T

∂z

)
(1)

describing the evolution of the ground temperatureT over
time t and depthz, where specific heat capacityceff (J
kg−1 K−1), thermal conductivityk (W K−1 m−1) and den-
sity ρ (kg m−3) are the main thermo-physical properties of
the ground. All borehole stratigraphies were implemented
in the model at a spatial resolution of1z= 0.1 m by as-
signing ground thermal properties according to the observed
stratigraphy (Table 2). The heat conduction Eq. (1) is then
solved using finite differences along the borehole profile to
a depth of 150 m. The volumetric water content (VWC) is
considered in the model as a constant. The effect of latent
heat due to freezing and thawing of the ground is accounted
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Table 1.Thermal conditions at individual boreholes included in the modelling study, showing mean annual air temperature (MAAT), mean
annual ground surface temperature (MAGST) and ground temperature at 10 m depth (MGT10). NF - and nT -factors for the two seasons
2008/2009 (S1) and 2009/2010 (S2) and the average (AVG) used in the modelling are shown. For 2010/2011 (S3) only nF -factors could be
calculated due to missing data for the summer months.

Borehole Elevation [m a.s.l.] MAAT MAGST MGT10 nF nT

S1 S2 S1 S2 S1 S2 S1 S2 S3 AVG S1 S2 AVG

JUVVASSHØE

PACE 1894 −3.4 −4.6 −2.8 −2.9 −2.5 – 0.93 – – 0.902 1.17 – 1.102

BH1 1851 −3.3 −4.7 −2.4 −2.6 −1.6 −1.7 0.88 0.64 0.85 0.76 1.18 0.99 1.09
BH3 1561 −1.7 −3.1 −0.6 −1.2 −0.3 −0.5 0.96 0.73 0.86 0.85 1.52 1.32 1.42
BH4 1559 −1.7 −3.1 −1.1 −2.6 − −0.7 1.03 1.00 0.99 1.02 1.38 1.24 1.31
BH6 1307 −0.6 −2.2 1.9 0.8 1.7 1.5 0.23 0.34 0.38 0.29 1.01 0.96 0.99

JETTA

BH1 1560 −2.2 −3.7 −0.4 −0.2 −0.8 −0.8 − 0.37 0.69 0.372 − 0.98 1.082

BH3 1218 −0.2 −1.6 0.5 −1.0 1.71 1.61 0.96 0.99 0.96 0.98 1.22 1.21 1.22

TRON

BH1 1640 −3.6 −4.5 0.8 −0.2 0.0 0.0 0.14 0.28 − 0.21 1.12 1.04 1.08
BH2 1589 −3.0 −3.9 1.1 0.3 0.9 0.8 0.16 0.26 0.40 0.21 1.19 1.07 1.13

1 9.5 m depth
2 Estimated during calibration process due to missing data

Table 2. Ground properties for different substrates, surface cover and bedrock type, used in the model. Variations within these generalised
surface and subsurface classes at different sites can still be found, thus, the ranges of parameter values are given. Here,k is thermal conduc-
tivity, c is specific heat capacity, VWC is the volumetric water content andρ is the density.

k [W K−1 m−1] c [J kg−1 K−1] VWC [%] ρ [kg m−3]

Block field 0.8–1.4 800 5–20 1200–1600
Vegetated surface layer 0.8 800 14–15 1000–1300
Coarse grained material 1.8–2.3 800 4 1400–2000
Fine moraine material 1.0–1.8 800 4–8 1500–1800
Bedrock 2.7 900 1 2600

for by using a temperature-dependent effective heat capac-
ity ceff, which is strongly increased in a temperature interval
of ±0.1◦C around the freezing temperature of the pore water
(Etzelm̈uller et al., 2011). Any effects related to the advection
of heat due to flow of ground water or of air in coarse-grained
block fields are not considered in the model formulation.

3.2 Historic and future temperature data

Surface air temperature series are needed for forcing the heat
flow model for historic or future time periods. For the historic
period dating back to 1860, we used data series provided by
the Norwegian Meteorological Institute (met.no). Hanssen-
Bauer (2005) and Hanssen-Bauer and Nordli (1998) identi-
fied six temperature regions for Norway, each of which char-
acterised by similar long-term variability of air temperature,
by analysing available long-term temperature records (start-
ing in the 1860s). For each region monthly standardised tem-
perature series STm are derived by averaging the standard-
ised temperature series STm,i of each individual stationi in

the regionm:

STm = (1/n) ×

n∑
i=1

STm,i (2)

The individual standardised series are presented as anoma-
lies in terms of standard deviations relative to the 1961–1990
average (Hanssen-Bauer, 2005):

STm,i = (Tm,i − µT m,i)/σT m,i (3)

whereTm,i is the observed temperature series at stationi

in region m, µTm,i the standard normal and for the entire
mainland Norway mean daily air temperatures (MDAT) are
available as 1-km-resolution maps (MDATgrid) for the pe-
riod 1 September 1957 until present (provided by the Nor-
wegian Meteorological Institute (met.no), available athttp:
//senorge.no, from hereon referred to asseNorgedataset).
These grids are interpolated (kriging) from recorded tem-
peratures at synoptic weather stations (Mohr, 2009). Daily
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Table 3. Model performance in terms of ground surface temperature (GST), ground temperature (GT) and active layer thickness (ALT) at
boreholes included in the modelling study. Model performance for GST and GT is expressed in terms of Nash-Sutcliffe model efficiency.
Modelled and observed ALT is presented in absolute values. For GT, both the calibration (C) and the validation (V) periods are listed. For
the GST the model was run with the averagedn-factors and ME calculated for each season individually.

GST GT ALTmeas[m] ALT mod [m]

S1 S2 S3 C V S1/S2/S3 S1/S2/S3

JUVVASSHØE

PACE 0.89 0.85 – 0.88 0.84 2.2/2.3/– 2.1 /2.1 /–
BH1 0.89 0.86 0.89 0.84 0.82 1.4/1.5/1.6 1.4/1.3/1.2
BH3 0.88 0.86 0.92 0.90 0.89 8.5/6.8/5.6 8.2/6.4/5.4
BH4 – 0.92 0.96 0.99∗ 0.93∗ –/8.6/6.6 –/8.4/6.7
BH6 0.91 0.88 0.89 0.92 0.90 – –

JETTA

BH1 0.87 0.85 0.80 0.91 0.90 8.0/7.3/6.9 8.1/7.9/6.7
BH3 0.96 0.95 0.91 0.95 0.93 – –

TRON

BH1 0.71 0.81 – 0.92 0.89 10.7/11.1/– 11.7/10.7/–
BH2 0.90 0.92 0.80 0.85 0.82 – –

∗Calibration: S2; Validation: S3

Fig. 3. (a)Mean monthly air temperatures for the PACE borehole at
Juvvasshøe, Tron-BH1 and Jet-BH1 during the last normal period
1961–1990.(b) Monthly air temperature deviations from the normal
1961–1990 at the PACE borehole for S1 (black) and S2 (grey).

air temperatures from 1957 to 2008 were generated for the
boreholes PACE, Jet-BH1 and Tro-BH1 using linear regres-
sions between measured temperatures during 2008 to 2011
and those extracted fromseNorgefor the corresponding lo-

cation. This procedure worked well for PACE withr2
= 0.8

and a RMSE of 3.1◦C. For Jet-LB1 and Tro-BH1, however,
the relation between observed air temperature and the corre-
spondingseNorgevalue is nonlinear, displaying a sharp bend
at low temperatures. This characteristic is associated with the
frequent occurrence of temperature inversions during winter
(Farbrot et al., 2011), which are not captured by theseNorge
dataset. To cope with this problem, two separate linear re-
gressions were performed for each site, one above and one
below a threshold temperature (−10◦C and−5◦C for Tro-
BH1 and Jet-BH1, respectively).

For the normal period 1961–1990 mean monthly val-
ues (MATi,1961−1990) and monthly standard deviations
(σ 1961−1990) were calculated from these daily air tempera-
tures. STm was used to construct a time series of monthly
air temperatures at the stationi (MAT i) from the early 1860s
until today at the stationi by (Hanssen-Bauer, 2005):

MAT i = MAT1961−1990+ STm × σ1961−1990 (4)

The observed temperature lapse rates during 2008–2010 of
0.5, 0.6 and 0.8◦C 100 m−1 at Juvvasshøe, Jetta and Tron,
respectively (Farbrot et al., 2011), were used to transfer the
so-constructed MATi time series locally to the other borehole
locations. The historic air temperature series used as input
data for the modelling, therefore, consists of monthly values
until 2008 and measured daily values for 2008–2011.

Concerning the future air temperature series for the cli-
mate change model runs, the rather moderate A1B emission
scenario was chosen. The A1B scenario assumes balanced
use of all energy sources with an increase in renewable

The Cryosphere, 6, 553–571, 2012 www.the-cryosphere.net/6/553/2012/
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energy sources, therefore, assuming a decrease of CO2 emis-
sions by mid 21st century (IPCC, 2007). The likely range
of the global mean temperature change from 1990 to 2100 of
the A1B scenario is between +1.7◦C and +4.4◦C, with a best
estimate of +2.8◦C (IPCC, 2007). Temperatures from an en-
semble of>30 different GCMs were empirically-statistically
downscaled to the weather stationFokstugu(Benestad, 2005,
2011), which is located between the Jetta and Tron sites, and
used to drive the ground heat flow model. The measured daily
air temperatures of S1 and S2 at each borehole were corre-
lated to Fokstugu yieldingr2-values of>0.9. This allowed
the construction of air temperature scenarios for each indi-
vidual borehole from 2010 until 2100 by correcting for a
constant bias, specific for each site.

The following air temperature data series are, therefore,
available as input data for the historic and future permafrost
modelling studies: a time series of monthly means from 1860
to 2008, measured daily means from 2008 until 2011 and
monthly means from 2012 until 2100.

3.3 Model initialization and boundary conditions

The finite-difference scheme for solving Eq. (1) requires
boundary conditions at the upper and lower ends of
the domain. Here, we used a geothermal heat flow of
Qgeo= 33 mW m−2 (Isaksen et al., 2001) as lower boundary
condition and GST as upper boundary condition.

The atmosphere-ground coupling is an important factor
for prescribing appropriate upper boundary conditions for
the heat flow model. The relation betweenTAIR and GST
varies strongly from borehole to borehole, depending on
snow and surface cover (Fig. 4). Historical and future time
series of GST were generated from the reconstructedTAIR
and downscaled future temperatures, respectively, usingn-
factors.n-factors are considered as transfer functions relating
TAIR to GST during freezing (nF) and thawing (nT) condi-
tions (Smith and Riseborough, 2002; Lunardini, 1978). The
n-factors were derived from measured daily GST andTAIR
at each borehole by calculating the ratios of annual sums of
freezing (FDD) and thawing degree days (TDD) of GST to
those ofTAIR :

nF =
FDDS

FDDA
(5)

nT =
TDDS

TDDA
(6)

where indices S and A refer to the temperature at the ground
surface and the air, respectively (Riseborough, 2007). FDD
and TDD were calculated for the whole year and not based on
freezing and thawing seasons at the ground surface, using av-
erage daily air temperatures. Sites having a thick snow cover
are characterised by a GST> TAIR during large parts of the
winter and, therefore,nF < 1.nT > 1 indicates a higher GST

thanTAIR during summer, which can be the case at bedrock
sites in the absence of vegetation or on south-facing slopes.

The reconstruction of historic permafrost conditions em-
ploys monthly air temperatures, whereasn-factors were de-
termined from diurnal data. We investigated the possible ef-
fect of this inconsistency in temporal resolution on then-
factor values by recalculatingn-factors based on monthly
data. We found that the values deviate by less than 9 % and,
therefore, we use the samen-factors throughout our study,
regardless of whether they are applied to monthly or daily
temperatures. For the long-term modelling, mean values of
nF andnT of S1 and S2 were used (Table 1), assuming rep-
resentativeness of our observation period.nF-values range
from 0.2 and 0.4 at boreholes with a thick snow cover (Tro-
BH1, Tro-BH2, Jet-BH1, Jet-BH2 and Juv-BH6) and from
0.8 to 1.0 where snow cover was moderate (Table 1).nT-
values>1.2 were obtained for bedrock boreholes without
vegetation cover.

The model was initialised in two different ways, one for
the calibration and validation procedure and the other one
for the historical permafrost modelling. Simulations of S1
and S2 were initialised from observed profiles of GT which
were extrapolated to the full depth assuming a linear gra-
dient. Long-term simulations were started from steady-state
corresponding to the mean air temperature of the decade
1860–1869. To account for seasonal variations a second de-
gree Fourier curve function,

T = a0 +

2∑
i=1

aicos(i w t)+ bisin (i w t) (7)

is fitted to the observed dailyTAIR of S1 (fit parametersai ,
bi , ω). The higher degree function was chosen to appropri-
ately represent the asymmetric seasonal cycle introduced by
the long and cold winter season. Using (a1,a2, b1, b2, ω)
from the fit anda0 = MAT1860−1869, we generate a time se-
ries of air temperatures, which the model is forced with until
no more changes in GTs occur.

3.4 Model calibration

In absence of detailed data on the thermal properties of the
subsurface (in terms ofc, k, ρ and VWC), we empirically
determined the values by adjusting until satisfying agree-
ment between model results and available observations over
the calibration period. We selected S1 as calibration period,
while S2 and S3 were kept as independent control for sub-
sequent model validation (see following section). For cali-
bration, the model was forced by the measured ground sur-
face temperature as upper boundary condition. A manual,
stepwise optimization procedure was applied to avoid erro-
neous parameter calibration which may result from compen-
sating effects. Our approach to deal with this problem was
to pre-select narrow ranges of plausible values for the pa-
rameters from literature (Williams and Smith, 1989). Within
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Fig. 4. Relationships between GST vs.TAIR during the observation period 2008-2010 at the modelled boreholes. Black crosses: measured;
red crosses: modelled. The snow-rich sites are clearly visible at the sharp kink atTAIR ∼ 0◦C. The best correlations are found at sites with
thin or no snow cover, (PACE, Juv-BH1, Juv-BH3 to BH6). At sites with a long-lasting, thick snow cover (e.g., Tro-BH1, Jet-BH1), the
n-factor-based GST model can still reproduce the GST pattern.

these ranges, we accepted only small changes that did not
require large changes in related parameters to achieve im-
proved performance. As such, for example, a wrong choice
for heat capacity may cause an exaggerated phase shift of GT
with respect to GST which, in turn, may partly be compen-
sated for by enhanced heat conduction. Previous sensitivity
testing revealed that within the given bounds, modelled GT
were most sensitive to changes in heat conductivity and wa-
ter content, while heat capacity and density are robustly con-
strained by literature values. Therefore, after assignment of
plausible starting values to the parameters, calibration was
performed by systematically changingk and VWC over the
given ranges aiming for improving the agreement between
modelled and observed GTs at different depth levels. Subse-
quently, minor adjustments were made toceff andρ to fine-
tune the model performance. The agreement between model

and observation was quantified at each individual depth in
terms of the Nash-Sutcliffe model efficiency coefficient (ME)
(Nash and Sutcliffe, 1970). For bedrock, values for thermal
conductivity and density were measured at Juv-BH4 and at
all sites at Jetta by the Norwegian Geological Survey (NGU)
and these observations served as initial guesses for the cal-
ibration. A time series of measured soil moisture (O. Hum-
lum, personal communication, 2011) in the vicinity of some
sites (Juv-BH1, Tro-BH1) served as an estimate for the wa-
ter content in the near-surface sediments. Adopted values for
the different materials are shown in Table 2, while depth-
averaged values of the ME for each borehole are presented
in Table 3.

In total, only slight changes to the starting values had to
be applied to achieve satisfactory agreement between mod-
elled and observed GT. We defined satisfaction as ME> 0.7
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Fig. 5.Modelled vs. measured GST for the period 2008–2011 at modelled boreholes. In general, agreement between modelled and observed
values is good with a Nash-Sutcliffe model efficiency coefficient ME> 0.80 (except for Tro-BH1). At bedrock sites and where the influence
of snow cover was limited, an even better agreement was achieved (Juv-BH4, Jet-BH3) with ME> 0.90.

and/or when further changes of parameter values did not
yield better model performance. Nevertheless, we empha-
size that the obtained set of parameter values for each site
represent one possible set that yields satisfactory agreement
between model and observations. However, as symptomatic
for calibrating numerical models, different sets may exist
(Beven and Freer, 2001) and calibrated values may be erro-
neous. Therefore, transferability of parameter values to other
regions is restricted and site-specific calibration is necessary.

3.5 Model validation

For our validation procedure we followed Rykiel’s (1996)
suggestion that the meaning of validation is that a “model is
acceptable for its intended use because it meets specified per-
formance requirements” in terms of operational validation.
For our study the correspondence between measured and ob-
served GT is expressed by the depth-averaged values of the

Nash-Sutcliffe model efficiency coefficient (ME). Again, we
require ME> 0.7.

To validate the reliability of the GST model, it was run
for each season individually using the averagen-factors from
S1 and S2 (Table 1). For most boreholes a good correspon-
dence between modelled and measured GSTs was achieved
with ME > 0.8 (Table 3, Fig. 5). Since S3 was not included
in the averagen-factor calculation, it represents an addi-
tional independent validation period. Despite some differ-
ences in the snow conditions, the model reproduced GSTs
of S3 equally well (Table 3). The highest values of ME> 0.9
were achieved at bedrock sites with negligible winter snow
cover (Juv-BH4, Jet-BH3). The measured GTs of the valida-
tion period (S2–S3) were well reproduced by the calibrated
model yielding depth-averaged ME-values ranging from 0.81
to 0.93 (Fig. 6, Table 3). The ME values vary with depth be-
tween 0.6 at 10 m and>0.9 close to the ground surface.

To better estimate the model performance on a long-term
scale, the model was run from 1860 until 2009 using the
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reconstructedTAIR series and results compared to the mea-
sured GTs of S1. In the case of the PACE borehole mod-
elled and measured GTs of the entire series 1999–2009 were
compared down to a depth of 100 m (Fig. 7). The mea-
sured MAGTs were reproduced with a RMSE of 0.6–0.7◦C
(ME > 0.8) in the uppermost part (0 to 1 m depth) and 0.1–
0.3◦C (ME> 0.6) at a depth between 5 and 10 m (Fig. 7).

4 Results

4.1 Historical and future air temperature trends

The historical air temperature series show temperature
increases of 1.4◦C to 2.1◦C (+0.9◦C (100 yr−1) and
+1.4◦C (100 yr−1)) between 1860–1870 and 2008–2009 at
Juvvasshøe and Tron, respectively. During the last decade
(2000–2010), only positive deviations ofTAIR to the climate
normal 1961–1990 were observed at all sites (Fig. 8). In
the period 1860s until 2000–2009 the strongest warming oc-
curred during spring with +2.1◦C at both sites. The more
continental site Tron, however, shows strong increases of air
temperature both in winter as well as in spring with +1.8 and
+1.9◦C, respectively.

The median of the downscaled future temperatures indi-
cates a further warming of +2.8◦C of the decadal means
2001–2010 until 2091–2100. The 10th percentile shows the
same warming trend, the 90th percentile, however, shows an
increase of +3.3◦C. The deviation of the median to the cli-
mate normal 1961–1990 amounts to +3.8◦C and +4.2◦C at
Juvvasshøe (Fig. 8b) and Tron (Fig. 8c), respectively.

4.2 Historic permafrost development

4.2.1 Mountain permafrost after the Little Ice Age

From the initial situation in 1860, rough estimates on the
lower altitudinal limit of mountain permafrost after the LIA
can be made. The model results suggest the presence of per-
mafrost at Juvvasshøe at ca. 1300 m a.s.l. (Juv-BH6). The
modelled ALT range from 0.5 m at 1900 m a.s.l. (Juv-BH1)
to ca. 3 m at 1300 m a.s.l (Juv-BH6). The greatest ALT
(close to 4 m) was modelled for the bedrock site (Juv-BH4).
At Tron, permafrost thicknesses of up to 90 m and ALT of
ca. 1.3 m to 6 m were modelled. According to the model re-
sults, the altitudinal zone of the lower limit of permafrost at
this site was below ca. 1300 m a.s.l.

4.2.2 Ground temperatures

According to the model results for the period from 1860 to
2009, GTs were increasing at all depths. At all boreholes,
most significant increases in GT occurred in the last two
decades (since 1990). The model results show an increase
in GT at 10 m depth since the 1860s by about 0.9◦C to
1.5◦C at Juvvasshøe/Jetta and 0.1◦C to 0.7◦C at Tron. GTs

at 100 m depth increased in the range of 0.4◦C to 1.0◦C at
Juvvasshøe and Jetta and 0.1◦C to 0.4◦C at Tron. Modelled
warming was strongest for the bedrock borehole (Juv-BH4)
with +1.5◦C and +0.5◦C at 10 m and 100 m depth, respec-
tively.

4.2.3 Active layer thickness

Depending on location, elevation and stratigraphy, different
ALT behaviour is indicated by the model results. A character-
istic pattern is observed at all boreholes, with a comparatively
slow ALT increase until ca. 1990 and accelerated increase in
ALT until 2009.

Trends of ALT increase were, therefore, dderived for the
two periods 1860–1864 until 1986–1990 and 1986–1990 un-
til 2009. The non-parametric Mann-Kendall test was used to
test these trends for significance (1 % level). At Juvvasshøe
and Jetta all trends of ALT increase during both periods have
been proven significant, while at Tron only the trend for the
later period is significant.

At Juvvasshøe the lowermost borehole (Juv-BH6) shows
a very rapid ALT increase and permafrost degradation prior
to the end of the 19th century. The increase in ALT until
1990 was only +0.1 m (13 %,∼0.1 cm yr−1) at Juv-BH1 and
+0.2 m (15 %,∼0.1 cm yr−1) at PACE (Fig. 9a). The lower
boreholes (Juv-BH3 and Juv-BH4) show a stronger increase
of ALT with +0.9 m resulting in a rate of∼0.6 cm yr−1 (27 %
at Juv-BH3, 24 % at Juv-BH4). The model results indicate
a pronounced ALT increase at all boreholes until 2009 in
the range of +0.4 to +4.1 m (50–90 %, 2–22 cm yr−1). The
PACE borehole shows higher mean inter-annual variation of
ALT than Juv-BH1 with +40 cm yr−1 and +20 cm yr−1, re-
spectively. Although Juv-BH3 was drilled in coarse material
and Juv-BH4 in bedrock they show a similar ALT evolution,
the latter, however, having continuously larger ALT (average
+0.4 m) and a much higher mean inter-annual variation of
70 cm yr−1 compared to 30 cm yr−1.

As all boreholes are drilled in bedrock at Jetta, the ALT
is more sensitive to climate variations and a more rapid in-
crease during the last 150 yr was modelled. Until 1990, the
ALT increased by +1.1 m (27 %,∼1 cm yr−1) at Jet-BH1 and
+2.2 m (40 %,∼2 cm yr−1) at Jet-BH3, respectively. During
the period 1990 until 2009, the strongest increase of ALT of
+2.7 m (50 %, +14 cm yr−1) was modelled at Jet-BH1, while
permafrost degraded completely at Jet-BH3 (Fig. 9b).

At Tron the strongest increases in ALT were modelled
with +1.1 m (110 %, +0.8 cm yr−1) until 1990 (Fig. 9c).
Since 1990, the model indicates a rapid warming of per-
mafrost with an ALT reaching a depth of 10–11 m as mea-
sured today, resulting in an ALT increase of nearly +9 m
(430 %, +87 cm yr−1). This development agrees well with
observations indicating the possible beginning of a talik de-
velopment (see Fig. 2e) (Farbrot et al., 2011).
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Fig. 6. Left panels: Measured (solid lines) and modelled (dashed lines) ground temperatures (GT) at 1 m (red), 5 m (black) and 10 m (blue)
depth during calibration (shaded area) and validation period. At Juv-BH4, data from S1 is not available and S2 served as calibration and S3
as validation period. Right panels: Scatter plots showing measured against modelled GTs of validation period for all depths, including the
depth-averaged Nash-Sutcliffe model efficiency coefficients (ME).
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Fig. 7. Comparison of modelled to measured GTs during S1 after
150 model years. The model was run from steady state conditions
for 1860 until 2008 using the reconstructedTAIR series. Both, the
seasonal dynamics during 1999–2008 at PACE(a) as well as the
MAGTs (b) were reproduced with good accuracy (RMSE<0.7◦C)
to a depth of 100 m (at PACE).

Fig. 8. (a)Historic air temperature series at the uppermost borehole
at Juvvasshøe (black) and Tron (blue). The bold line represents the
7-yr Gaussian-filtered series. For 2010 onwards, the figure shows
the median (bold black), 90 percentile (red) and 10 percentile (blue)
of the downscaledTAIR ensemble for Juv-BH1. The lower panels
show the deviations of MAAT from the 1961–1990 climate normal
at Juvvasshøe(b) and Tron(c).

4.3 Future permafrost development

4.3.1 Ground temperatures

According to modelled GT until 2100, warming will con-
tinue beyond that found for 2000–2009. The model suggests
that GTs at Juv-BH1 will increase by +1.9◦C and +1.1◦C
at 30 m and 100 m depth until 2100, respectively. Juv-BH4
shows the same warming at 100 m depth, but a more pro-
nounced increase in GT at 30 m with +2.6◦C.

4.3.2 Active layer thickness

The model results are indicative for permafrost degradation
also above 1800 m a.s.l. until 2100. Permafrost at lower ele-
vations (Juv-BH3 and Juv-BH4) degrades completely before
2050 (Fig. 9a). At the bedrock site at Jetta the rapid AL thick-
ening rates at Jet-BH1 will continue and the development of
a talik until the end of the 2020s is predicted by the model
(Fig. 9b).

While the air temperature increase in the climate change
scenario shows a linear development and even a decrease in
the warming rate (see Fig. 8a), the ALT displays a nonlin-
ear response at most sites (Fig. 9). The ALT of Juv-BH1 in-
creases linearly by another 70 cm from 2010 until mid-2070s.
Although the climate change scenario includes a decrease in
the warming rate at this point, a rapid degradation of per-
mafrost subsequently takes place until the end of this cen-
tury, with a linear increase of ALT by>40 cm yr−1. A simi-
lar development can be observed at the PACE borehole with
higher thickening rates and a permafrost degradation at the
mid-2060s.

Running the model with the 90th and 10th percentiles of
the downscaled temperature ensemble yields an estimation
of the possible range of developments. The 90th percentile
causes a fast degradation of permafrost at all boreholes by
latest mid of this century (Fig. 9a). Considering the moder-
ate warming projections (10th percentile), permafrost at Juv-
BH1 and PACE is warming at a slow rate without degradation
occurring.

4.3.3 Probable future of permafrost at the PACE and
Juv-BH1 boreholes

Concerning the projected air temperate, there are uncertain-
ties related to the different formulations of the GCMs them-
selves, as well as to the empirical-statistical downscaling pro-
cedure (Benestad, 2011). Although only one emission sce-
nario is considered here (A1B), the uncertainties lead to con-
siderable spread of projected temperature. In order to quan-
tify the effects of this uncertainty on modelled ALT and GT,
the development of GT and ALT until 2100 were simulated
for all percentiles of the projectedTAIR-ensemble in steps of
5 %. From these results, we identify the percentiles which are
associated disappearance of the active layer in the years 2050
and 2100, respectively. This analysis is used to estimate the
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Fig. 9.Reconstructed and projected active layer thickness (ALT) from 1860 to 2100 at Juvvasshøe(a), Jetta(b) and Tron(c). Projected ALT
was modelled using the ensemble-medianTAIR (bold dashed lines). ForJuv-BH1 and PACE, also shown are ALT according to the 90 and
10 percentiles (shading) of theTAIR ensemble.(a). The bold lines represent a 7-yr Gaussian-filtered series, measured ALT are marked by
crosses. The model indicates the permafrost degradation at Tron by the year 2010. Therefore, no projection was applied for Tr-BH1.

probabilities for transition of permafrost to talik at Juv-BH1
and PACE in the years 2050 and 2100 (Fig. 10).

For the PACE borehole, a talik evolution until 2100 was
modelled already using the 25th percentile resulting in a high
probability of 70–75 % (Fig. 9). According to the classifica-
tion proposed by the IPCC (IPCC, 2007), this situation is,

therefore,likely to occur for the given emission scenario.
However, at Juv-BH1 a talik will have developed in 2100
with a probability of 50–55 %, and is classifiedas likely to
occur as not. The probabilities for talik evolution until 2050
is 35–40 % for PACE and 20–25 % for Juv-BH1, respec-
tively and, therefore,unlikely (Fig. 10). According to these
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Fig. 10. Probability of permafrost degradation (no refreezing of
the active layer) until 2050 (black) and 2100 (white) at Juv-BH1
(squares) and PACE (circles). The assessment is derived from model
results for all percentiles of theTAIR ensemble (in steps of 5 %) and
the probability is defined as the percentile at which seasonal re-
freezing of the active layer does not occur anymore. Vertical lines
mark the probability of this event occurring by 2050 (dashed) and
2100 (dotted), respectively.

model results, above 1800 m a.s.l, where stable and con-
tinuous mountain permafrost is found today, discontinuous
mountain permafrost is to be expected by the end of the 21st
century.

5 Discussion

5.1 Model uncertainties due to snow cover, soil water
content variability and model approach

A major source of uncertainty is related to the parameterisa-
tion of using constantn-factors. It is uncertain how well the
snow conditions of the historic and future model period are
represented by the averagen-factor from S1 and S2. A 10-
yr record (1999–2008) of GST andTAIR is available at the
PACE borehole (Isaksen et al., 2011), which enables an esti-
mate for the decadal variation ofn-factors and put the period
2008–2010 into context. A meannF-factor of 0.91 (0.89–
0.98) andnT-factor of 1.12 (1.02–1.26) was derived from
the records. The meannF- and nT-factors for 2008–2010
(Table 1), therefore, are within the variation of the period
1999–2009. Based on these minimum and maximum values
an uncertainty analysis was conducted to give a quantitative
estimate on the error that can be expected fromn-factors.
For that purpose, the model was run for the PACE bore-
hole for 1999–2010 separately, both with the minimum and
maximumn-factors. This implies running the model with
the coldest (nF = 0.98;nT = 1.02) and warmest (nF = 0.89;

nT = 1.26) possible GST conditions. The differences in GTs
expressed in the absolute error between the two model runs
were calculated for each depth individually. A change in ALT
of <50 cm and changes in MAGT of 0.7◦C to 0.4◦C at the
surface and 10 m depth, respectively, were introduced. The
depth-averaged ME varies by less than 0.15 between the ex-
treme value model runs. The PACE borehole represents a
site with relatively constantnF-factors due to the negligi-
ble snow cover. At sites with higher snow cover and, thus,
smallernF-factors (particularly Tro-BH2, Jet-BH1 and Tro-
BH6), our measurements suggest a higher interannual vari-
ability of thenF-factors (Table 1), most likely caused by dif-
ferent wind redistribution of snow. However, the good agree-
ment of modelled long-term subsurface temperatures with
measured GT gives us confidence that then-factors assumed
in the model runs are a good representation of long-term av-
eragen-factors.

Some deviations of modelled from observed GTs are ob-
served during periods of thawing and freezing, presumably
caused by our assumption of constant VWC. At sites where
VWC>15 %, the model underestimates the duration of the
zero-curtain effect (see Fig. 5). Further, our model neglects
advective heat transport and changes of ice-content in the
ground are not recognised in the model. Our modelling does
not account for these processes and, therefore, rather repre-
sents a minimum estimate for the increase of GT. A third
process not included in the model is 3D-effects due to lateral
variation of either topography or snow cover.

The aim of this study was to assess the long-term trends
of permafrost temperature and its altitudinal distribution. We
assume conduction and latent heat effects as main factors,
which is in agreement with studies showing that conduction
and latent heat effects attribute for most of the heat flow pro-
cesses (Kane et al., 2001; Weismüller et al., 2011). Both soil
water/ice content and snow conditions on the long-term are
afflicted with uncertainties. For this study, we suggest that the
averagen-factor value we used provides a useful approxima-
tion to address the snow influence on GST. The constancy
of soil water content may be responsible for slight devia-
tions during periods of zero-curtain. Nevertheless, observed
GT, ALT and GT amplitudes were reproduced reasonably
well according to the ME measure used in this study. Long-
term data are not available, which e.g., could aid possible
trends ofn-factors or soil water content, so we do not know
if and how trends and inter-annual variations would inter-
fere with each other and affect our result. Moreover, at our
sites and generally in most high-mountain settings in Scan-
dinavia, coarse-grained near-surface material or bedrock is
dominating. Thus, the soil water content is relatively low and
the effect of water flow on GT is considered minor. Further-
more, the boreholes have been drilled in flat topography, in
doing so, 3D-effects are largely avoided. Processes of lateral
heat transfer along a slope and air convection within the pore
space of block fields seem not important.
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Even with the stated simplifications, modelled GTs agree
well with observations and the present borehole temperature
distributions are reproduced when simulating the evolution
since 1870. These results suggest, therefore, that our simple
approach is capable of capturing the dominating processes
within the time scale considered.

5.2 Uncertainties of reconstructed and projected air
temperature series

The method by Hanssen-Bauer and Nordli (1998) has proven
useful in reconstructing reliable air temperature time series
(Farbrot and Hanssen-Bauer, 2009). However, it introduces
uncertainty due to the spatial and temporal interpolation of
air temperatures.

Before daily values become available in 1957, the model is
run with monthly data. To test the possible error introduced
by the discontinuity in temporal resolution, the period 2008–
2010 was simulated with monthly means. The model result
does not show any deviation to those obtained when using
the daily resolution input data.

Uncertainties related to the interpolation in mountain to-
pography arise from unknown lapse rates during inversions
(Tveito and Førland, 1999), which are observed frequently,
especially during calm winter days. The temperature fields
used in this study for the long-term record are based on con-
stant lapse rates, which may produce too cold SAT in high
elevations (e.g., Tveito and Førland, 1999). However, gener-
ally a good fit has been achieved when comparing measured
and interpolated air temperature, indicating the mean tem-
perature trends being well represented (Tveito and Førland,
1999).

In our study, we employ ensemble estimates of futureTAIR
evolution to illustrate and assess the uncertainty of the fu-
ture GT evolution. Ensemble analysis has proven powerful
in assessing uncertainties of projectedTAIR evolution. How-
ever, there are several ways to define an ensemble, each of
which refers to a different cause of uncertainty. In detail,
the ensemble may consist of GCM realisations for a multi-
tude of emission scenarios, thereby uncovering the range of
expected outcomes for the discrete emission scenarios de-
fined by IPCC (2007). Furthermore, aTAIR ensemble may
also consist of many realisations for one single emission sce-
nario, but from a multitude of GCMs. The combination of
both would also be possible, though we regard that possibil-
ity as little instructive. Here, we have focused on illustrating
the uncertainty related to the choice of GCM for a given sce-
nario rather than on the uncertainty related to future emis-
sions. Namely, we have chosen the A1B scenario for which
empirically-statistically downscaled time series ofTAIR are
available for a multi-model ensemble (Benestad, 2011).

5.3 Influence of ground properties on thermal regime

GTs respond differently to warming, depending on the sur-
face material, ground properties and soil water content. The
inter-annual change of ALT was calculated and averaged
for the period 1860–2009 for all boreholes at Juvvasshøe.
Borehole Juv-BH4, which does not have significant snow
cover and is located in bedrock, shows the highest varia-
tion of 0.7 m yr−1. Much lower inter-annual ALT variations
of 0.2 m yr−1–0.3 m yr−1 were modelled for boreholes cov-
ered by block fields. This reflects how the block fields act
as a buffer dampening the effect of the air temperature fluc-
tuations on GT (Harris and Pedersen, 1998; Juliussen and
Humlum, 2008). At Juv-BH4, however, no such buffer layer
exists causing a more direct response of the ALT to changes
in TAIR .

Despite their proximity, the boreholes PACE and Juv-BH1
show different thermal regimes and ALT developments in
past and future due to differences in volumetric water con-
tent. A large part of the energy transferred into the ground
at Juv-BH1 is consumed for melting ground ice. This ex-
plains the reduced inter-annual variability of ALT and the
less pronounced increase in ALT in the past and future. Fur-
thermore, the nonlinear response in ALT is attributed to the
melting of ice within the ground. After melting of ground ice,
more energy is available to efficiently warm the ground. Sim-
ilar effects have been observed in North-America (Smith et
al., 2010) and Russia (Romanovsky et al., 2010), where the
nonlinear response of GT and ALT to warming are clearly
attributable to water content. Similar results have been found
comparing the impact of the extreme summer of 2003 on the
ALT of bedrock and block field sites in the Swiss Alps (Von-
der Mühll et al., 2007).

Several other studies have attempted to quantify the im-
pact of climate change on permafrost conditions, distribution
and ALT. Stendel and Christensen (2002) predicted a general
increase of ALT of up to 30–40 % until the end of the 21st
century in the Northern Hemisphere. Zhang et al. (2008) esti-
mated the ALT increase in Canada to 14–30 % by 2050 com-
pared to a permafrost baseline in the 1990s. For Svalbard,
similar changes for the ALT evolution during the 21st century
were modelled (Etzelm̈uller et al., 2011). In our study, the
ALT increased by 65 % to 180 % at the boreholes where per-
mafrost still is expected by 2050. Even the results using the
10th percentile of the climate change models indicate an ALT
increase of 44 % at the PACE borehole. This implies a high
sensitivity of warm mountain permafrost to climate change,
comparable to coastal areas, e.g., on Svalbard (Etzelmüller
et al., 2011). Furthermore, many of the assessments men-
tioned above were made for Arctic lowlands, where large ar-
eas with fine-grained and organic-rich sediments are present.
Organic components in the near-surface layer are known to
effectively damp the GT response to warming (Williams and
Smith, 1989). In mountain areas, significant accumulation of
organic material is rare and restricted to special topographic
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and geomorphic settings. However, block fields may have an
effect similar to that of organic material in Arctic lowlands,
i.e., retarding the GT-response to climate signals and cooling
the ground, as discussed above.

In summary our modelling study shows a high sensitivity
of mountain permafrost and high probabilities of degradation
at elevation levels below ca. 1800 m a.s.l. in Southern Nor-
way. Simulated GTs at bedrock sites are generally more sen-
sitive to climate change than those at sites within block fields
or finer-grained sediment cover.

5.4 Altitudinal changes of mountain permafrost during
the modelling period

This study indicates a major change of the ground thermal
regime since the end of the LIA. At that time, sporadic to
discontinuous permafrost conditions seem to have been more
widespread at elevations of around 1300 m a.s.l., where we
only find permafrost as isolated patches at present (Sollid
et al., 2003). This translates to the lower permafrost zone
being approximately 200 m lower during the LIA than at
present. At Juvvasshøe, this zone between 1300 m a.s.l. up
to 1500 m a.s.l. is dominated by block lobes, which may
be inactive today, but are shaped by an earlier high-active
periglacial environment. Further climate warming would
move this zone up-slope. The model results of this study in-
dicate that the lower limit of the discontinuous permafrost
zone may rise up to above 1800 m a.s.l., thus, ca. 250 m
higher than today. With such a scenario, major changes in
periglacial processes are expected.

As our results are derived from 1-D modelling at the point
scale, these implications on the spatial distribution of moun-
tain permafrost have to be treated with care. The large spa-
tial heterogeneity of parameters that strongly influence per-
mafrost distribution such as snow cover, surface cover and
ground parameters were not considered in these estimations,
as recently documented by Gubler et al. (2011) for sites in
Switzerland and Etzelm̈uller et al. (2007) in Iceland. There-
fore, a simple point-to-area extrapolation is problematic.
However, we have three main reasons to consider this set-
up as sufficient to give estimations on the altitudinal changes
of mountain permafrost since the LIA in these very particu-
lar mountain areas: (1) The 13 boreholes cover a large alti-
tudinal range from 1900 m a.s.l. to ca. 1200 m a.s.l., ranging
from continuous permafrost to no permafrost, (2) Farbrot et
al. (2011) clearly documented consistent altitudinal trends in
GT on an annual average, and (3) even if a borehole location
is not representative for the local variability of surface char-
acteristics, the GT signal in greater depth will be integrated
over a larger surface area.

6 Conclusions and perspectives

A one-dimensional heat flow model was successfully applied
to quantify the changes in the thermal regime from 1860 un-
til the end of this century at three mountain sites in southern
Norway. The model was calibrated to the individual borehole
settings of the study sites and, therefore, is not directly trans-
ferable to other regions. However, the settings of the study
sites in terms of climate, geomorphology and surface cover
are representative for a number of different alpine mountain
areas in southern Norway.

The model was forced with reconstructed air temperature
series over 1860–2009 and successfully reproduced the ver-
tical ground temperature profiles as measured in 2009 with
a good accuracy (ME∼ 0.8). This confirms the appropriate-
ness of the model to accurately model the permafrost thermal
regime over long time scales.

The following conclusions can be drawn from this study:

– From 1860 until ca. 1990 a comparatively small in-
crease in active layer thickness was modelled where
permafrost exists, with values ranging from 0.1 cm yr−1

to +2 cm yr−1 (20–68 %). Since ca. 1990 ALT-change
rates of +2 cm yr−1 to +87 cm yr−1 (20–430 %) were
modelled. The model results indicate permafrost
degradation at boreholes below ca. 1450–1500 m at
Juvvasshøe and Jetta and below ca. 1600 at Tron.

– Model results suggest that GT at 10 m depth increased
by +0.9◦C to +1.5◦C over 1860–2009. The largest part
of this warming occurred after 1990.

– Our study successfully simulated the nonlinear response
of ground temperature and active layer thickness to
increasing air temperatures, due to the thermal iner-
tia of ice-containing ground material. In our sites, this
response is related mainly to block fields and coarse
ground moraine sites containing ice.

– The modelling study implies that the altitudinal zone
covering the lower limit of permafrost at the approxi-
mate end of the Little Ice Age was about 200 m lower
than today in the field area.

– According to the A1B climate scenario, degradation
of mountain permafrost is suggested to occur through-
out the 21st century at most of the sites below
ca. 1800 m a.s.l. By the end of this century, the highest
locations (Juv-BH1, PACE) will experience pronounced
ALT-increases of up to 10 m or the development of
taliks. This implies an upward shift of the lower per-
mafrost zone to around 1800 to 1900 m a.s.l. by the end
of the 21st century, again depending on sediment char-
acteristics and snow cover development.
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The modelled past and possible future changes in GT and
ALT have geomorphologic and geotechnical implications,
since the ground thermal regime is a major controlling factor
for geomorphologic processes and landscape development
(Berthling and Etzelm̈uller, 2011). As alpine rock faces are
widespread in the study area between 1900 and 2400 m a.s.l,
our study suggests major impacts on the geotechnical prop-
erties and stability of rock walls. This relationship is well-
documented in literature (Davies et al., 2001; Gruber et al.,
2004a) and has to be evaluated in future research. Especially
the modelled long period of stable permafrost and a sub-
sequent sudden and quick degradation results in challenges
for engineering, natural hazard prediction and mitigation. Fi-
nally, our study provides important insights in the range of
thermo-physical parameters in a wide range of bedrock and
surficial material relevant for mountain areas in Southern
Norway. These provide important constraints for spatial nu-
merical permafrost modelling.
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fields on the mountains Elgåhogna and Sølen, central-eastern
Norway, Permafrost Periglac., 19, 1–18,doi:10.1002/ppp.607,
2008.

Kane, D., Hinkel, K. M., Goering, D., Hinzman, L., and Out-
calt, S.: Non-conductive heat transfer associated with frozen
soils, Global Planet. Change, 29, 275–292,doi:10.1016/S0921-
8181(01)00095-9, 2001.

Lewkowicz, A. G.: Evaluation of Miniature Temperature-loggers
to Monitor Snowpack Evolution at Mountain Permafrost
Sites, Northwestern Canada, Permafrost Periglac., 19, 323–331,
doi:10.1002/ppp.625, 2008.

Luetschg, M., Lehning, M., and Haeberli, W.: A sensitivity study
of factors influencing warm/thin permafrost in the Swiss Alps,
J. Glaciol., 54, 696–704,doi:10.3189/002214308786570881,
2008.

Lunardini, V. J.: Theory of N-factors, Third International Confer-
ence on Permafrost, Edmonton, Canada, 1, National Research
Council of Canada, Ottawa, 40–46, 1978.

Mohr, M.: Comparison of Versions 1.1 and 1.0 of Gridded Tem-
perature and Precipitation Data for Norway, Norwegian Meteo-
rological Institute, met.no Note No. 19/2009, 44 pp.,http://met.
no/filestore/note19-09.pdf, 2009.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I – A discussion of principles, J. Hydrol., 10,
282–290,doi:10.1016/0022-1694(70)90255-6, 1970.

Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine per-
mafrost, The Cryosphere, 3, 85–99,doi:10.5194/tc-3-85-2009,
2009.

Noetzli, J., Gruber, S., Kohl, T., Salzmann, N., and Haeberli, W.:
Three-dimensional distribution and evolution of permafrost tem-
peratures in idealized high-mountain topography, J. Geophys.
Res.-Earth, 112, F02S13,doi:10.1029/2006JF000545, 2007.

Osterkamp, T. E. and Romanovsky, V. E.: Evidence for warm-
ing and thawing of discontinuous permafrost in Alaska,

The Cryosphere, 6, 553–571, 2012 www.the-cryosphere.net/6/553/2012/

http://dx.doi.org/10.1029/2004gl020051
http://dx.doi.org/10.1002/ppp.501
http://dx.doi.org/10.5194/tc-5-431-2011
http://dx.doi.org/10.1016/j.geomorph.2004.03.013
http://dx.doi.org/10.1002/ppp.3430030208
http://dx.doi.org/10.1002/ppp.377
http://dx.doi.org/10.1016/j.earscirev.2008.12.002
http://dx.doi.org/10.1002/(sici)1099-1530(199804/06)9:2$<$107::aid-ppp277$>$3.0.co;2-g
http://dx.doi.org/10.1002/(sici)1099-1530(199804/06)9:2$<$107::aid-ppp277$>$3.0.co;2-g
http://dx.doi.org/10.1002/ppp.385
http://dx.doi.org/10.1098/rsta.2010.0078
http://dx.doi.org/10.3189/172756400781820291
http://dx.doi.org/10.1002/ppp-380
http://dx.doi.org/10.1080/002919502760056459
http://dx.doi.org/10.1029/2007gl031002
http://dx.doi.org/10.1002/ppp.728
http://dx.doi.org/10.1002/ppp.607
http://dx.doi.org/10.1016/S0921-8181(01)00095-9
http://dx.doi.org/10.1016/S0921-8181(01)00095-9
http://dx.doi.org/10.1002/ppp.625
http://dx.doi.org/10.3189/002214308786570881
http://met.no/filestore/note19-09.pdf
http://met.no/filestore/note19-09.pdf
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.5194/tc-3-85-2009
http://dx.doi.org/10.1029/2006JF000545


T. Hipp et al.: Modelling borehole temperatures in Southern Norway 571

Permafrost Periglac., 10, 17–37,doi:10.1002/(sici)1099-
1530(199901/03)10:1<17::aid-ppp303>3.0.co;2-4, 1999.

Ødeg̊ard, R. S., Liestøl, O., and Sollid, J. L.: Periglacial forms re-
lated to terrain parameters in Jotunheimen, Southern Norway,
5th International Conference on Permafrost, Trondheim, Nor-
way, 59–61, 1988.

Ødeg̊ard, R. S., Sollid, J. L., and Liestøl, O.: Ground
temperature measurements in mountain permafrost, Jotun-
heimen, southern Norway, Permafrost Periglac., 3, 231–234,
doi:10.1002/ppp.3430030310, 1992.

Ødeg̊ard, R. S., Hoelzle, M., Vedel Johansen, K., and Sollid, J. L.:
Permafrost mapping and prospecting in Southern Norway, Norsk
Geogr. Tidsskr., 50, 41–53,doi:10.1080/00291959608552351,
1996.

Ødeg̊ard, R. S., Isaksen, K., Mastervik, M., Billdal, L., Engler, M.,
and Sollid, J. L.: Comparison of BTS and Landsat TM data from
Jotunheimen, southern Norway, Norsk Geogr. Tidsskr., 53, 226–
233,doi:10.1080/002919599420811, 1999.

Riseborough, D.: The effect of transient conditions on an equilib-
rium permafrost-climate model, Permafrost Periglac., 18, 21–32,
doi:10.1002/ppp.579, 2007.

Romanovsky, V. E., Sazonova, T. S., Balobaev, V. T., Shender, N.
I., and Sergueev, D. O.: Past and recent changes in air and per-
mafrost temperatures in eastern Siberia, Global Planet. Change,
56, 399–413,doi:10.1016/j.gloplacha.2006.07.022, 2007.

Romanovsky, V. E., Drozdov, D. S., Oberman, N. G., Malkova,
G. V., Kholodov, A. L., Marchenko, S. S., Moskalenko, N. G.,
Sergeev, D. O., Ukraintseva, N. G., Abramov, A. A., Gilichinsky,
D. A., and Vasiliev, A. A.: Thermal state of permafrost in Russia,
Permafrost Periglac., 21, 136–155,doi:10.1002/ppp.683, 2010.

Rykiel, E. J.: Testing ecological models: the meaning of validation,
Ecol. Model., 90, 229–244,doi:10.1016/0304-3800(95)00152-2,
1996.

Sazonova, T. S., Romanovsky, V. E., Walsh, J. E., and Sergueev, D.
O.: Permafrost dynamics in the 20th and 21st centuries along the
East Siberian transect, J. Geophys. Res.-Atmos., 109, D01108,
doi:10.1029/2003JD003680, 2004.

Scherler, M., Hauck, C., Hoelzle, M., Stähli, M., and V̈olksch,
I.: Meltwater infiltration into the frozen active layer at an
alpine permafrost site, Permafrost Periglac., 21, 325–334,
doi:10.1002/ppp.694, 2010.

Smith, M. W. and Riseborough, D. W.: Climate and the limits
of permafrost: a zonal analysis, Permafrost Periglac., 13, 1–15,
doi:10.1002/ppp.410, 2002.

Smith, S. L., Romanovsky, V. E., Lewkowicz, A. G., Burn, C. R.,
Allard, M., Clow, G. D., Yoshikawa, K., and Throop, J.: Ther-
mal state of permafrost in North America: a contribution to
the international polar year, Permafrost Periglac., 21, 117–135,
doi:10.1002/ppp.690, 2010.

Sollid, J. L., Isaksen, K., Eiken, T., and Ødegård, R. S.: The transi-
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