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Abstract. Weak snow of interest to avalanche forecasting
often forms and changes as thin layers. Thermometers, the
current field technology for measuring the temperature gra-
dients across such layers – and for thus estimating the ex-
pected vapour flux and future type of crystal metamorphism
– are difficult to use at distances shorter than 1 cm. In con-
trast, a thermal imager can provide thousands of simultane-
ous temperature measurements across small distances with
better accuracy. However, a thermal imager only senses the
exposed surface, complicating its methods for access and ac-
curacy of buried temperatures. This paper presents methods
for exposing buried layers on pit walls and using a thermal
imager to measure temperatures on these walls, correct for
lens effects with snow, adjust temperature gradients, adjust
time exposed, and calculate temperature gradients over mil-
limetre distances. We find lens error on temperature gradi-
ents to be on the order of 0.03◦C between image centre and
corners. We find temperature gradient change over time to
usually decrease – as expected with atmospheric equaliza-
tion as a strong effect. Case studies including thermal images
and visual macro photographs of crystals, collected during
the 2010–2011 winter, demonstrate large temperature differ-
ences over millimetre-scale distances that are consistent with
observed kinetic metamorphism. Further study is needed to
use absolute temperatures independently of supporting gra-
dient data.

1 Introduction

After depositing on the ground, the seasonal snowcover con-
tinues to change due to differences in vapour pressure within
the ice lattice. With regard to avalanche formation, this meta-
morphism is of interest because it can indicate strengthening

or weakening of the grain structure. A temperature difference
between the surface of the snowpack and the ground gener-
ates a temperature gradient across the entire snowpack in a
slope-normal direction. It is primarily this gradient, along
with the snow structure, that drives differences in vapour
pressure resulting in crystal metamorphism.

Practically, dry snow metamorphism is grouped into two
categories: equilibrium and kinetic (Armstrong and Brun,
2008). The transition from equilibrium to kinetic metamor-
phism is generally accepted by field practitioners to occur at
1◦C of temperature difference over 10 cm of distance (Mc-
Clung and Schaerer, 2006). In the snow morphology model
SNOWPACK, a more conservative value of 5◦C per 1 m is
empirically defined to be the transition between equilibrium
and kinetic growth (Lehning et al., 2002), and this transition
value appears in other work as well (Armstrong and Brun,
2008). Equilibrium metamorphism results in the rounding
of snow crystals and strengthening of bonds. Kinetic meta-
morphism results in faceting, coarsening with average crystal
size increase, and – potentially – weakening of structure.

However,Colbeck(1991) accurately, if indirectly, pointed
out that in reality there is no such thing as true equilib-
rium, isothermal metamorphism. In the snowpack, any
crystal metamorphism will result in vapour transport, latent
heat exchange, and thus – at least microscopically – non-
equilibrium temperature differences. To resolve this, the
kinetic-equilibrium transition is deduced from macroscopic
thermometer measurements, and any microscopic change in
temperatures due to latent heat is often assumed to be ab-
sorbed and dissipated by the highly conductive ice lattice.

Recently, however, small snow samples in a uCT scanner
show only 80 % of the heat flux occurs through the ice lat-
tice (Kaempfer et al., 2005). The same work also proposed
that temperature gradients within these small samples varied
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widely from the globally applied gradient, and were not en-
tirely absorbed and equalized by the lattice. Further, natural
weak layers within the snowpack are often only a few mil-
limetres thick (Heierli et al., 2008), suggesting that tempera-
ture gradients across small distances may be of interest. And
temperature gradients – measured across distances of more
than 1 cm – below the kinetic threshold have nevertheless
yielded faceting and a coarse granular structure in the field
(Jamieson, 2006; Smith et al., 2008).

Unfortunately, the hand held point thermometers currently
used in the field are often inadequate for the task of discern-
ing temperature differences across distances of a millimetre
or measuring more than a handful of points. Modern thermal
imagers, however, can provide sensitivity between pixels of
better than 0.05◦C. Furthermore, these imagers can measure
thousands of points in a two-dimensional array across a pit
wall simultaneously and thus can limit the error introduced
by individual measurements being spaced across time. As a
thermal imager only senses the exposed surface, however, it
is necessary to examine sources of error in snow pit measure-
ments before using the imagers operationally.

This paper presents a discussion of error sources, their mit-
igation, and their correction when using a thermal imager
specifically for obtaining temperature and gradient measure-
ments on exposed pit walls. Afterwards, case studies intro-
duce possible interpretations of such measurements.

2 Previous work

Temperature differences at these small distances – less than
2 mm – have not been previously measured or analyzed in
a natural snowpack. In an artificially metamorphosed snow-
pack visualized withµCT imaging,Kaempfer et al.(2005)
modeled temperature differences across a 2.25× 2.7 mm
slice of ice lattice subjected to a temperature gradient of
40◦C m−1 (when scaled to◦C per m). The model used to
produce the resulting temperature field within the ice lattice
shows gradients across sub-mm distances up to 510◦C m−1,
even when ignoring the effects of phase change and thus la-
tent heat. The authors note:

“Analyzing the computed temperature distribution
within the ice matrix, we note that high tempera-
ture differences of up to 20 % of the overall1T

occurred on a very short distance between one ice
grain and another across a pore... This is due to
the very tortuous structure of the ice matrix and
leads to high temperature and vapor concentra-
tion gradients in the pores, which strongly influ-
ence metamorphism”(Kaempfer et al., 2005).

Miller (2002) proposed a similar crystal growth and ther-
mal structure complexity, calling it athermal short, like an
electrical short circuit.Flin and Brzoska(2008) also com-
puted a temperature field over a 3 mmµCT imaged snow

sample subject to a 16◦C m−1 global temperature gradient.
Their work did not comment on the existence of significantly
greater temperature differences at small distances; however,
the goal of that work was not to describe heat flow, but rather
to describe the equilibrium-kinetic transition using cellular
automata-type growth laws.

Greene(2007) measured temperature differences in an
artificial snowpack over time using thermocouples spaced
around 10 mm apart, and with an assessed accuracy of around
0.3◦C. The resulting temperature profiles, even around the
buried crust, were relatively smooth, and the author states:
“all of the profiles show an element of linearity, but none are
completely linear.”

The findings ofKaempfer et al.(2005) seem very dif-
ferent than those ofFlin and Brzoska(2008) and Greene
(2007). On one hand, it seems easy to disregard the findings
of Kaempfer et al.(2005) as an artifact of the model used;
however, there are also practical observations of coarseness,
faceting, and crust disaggregation occurring despite tempera-
ture gradients below the accepted 1◦C per 10 cm (Jamieson,
2006; Smith et al., 2008). The proposed reason for these ob-
servations is that stronger gradients exist at shorter distances,
hidden within the larger measurable gradient asKaempfer
et al.(2005) observed from their model.

Small-scale temperature gradients also play roles in the de-
sign and execution of recent snow metamorphism models.
Temperature gradients can be applied across a sample, glob-
ally, and the resulting temperature field and flux modelled, as
in Kaempfer et al.(2005) andFlin and Brzoska(2008). Or,
temperature gradients either drive flux and atomistic rules
(Flin and Brzoska, 2008) or physical vapour pressure dif-
ferences (Kaempfer and Plapp, 2009) which then result in
predicted grain growth or sublimation.Kaempfer and Plapp
(2009) achieve integration of latent heat exchange. But, to
make such a model computationally tractable, assumptions
about the computation step time need to be made based on
the expected speed of vapour flow, which is in turn a function
of microscopic temperature gradients. Obtaining accurate
temperature gradient measurements across real – rather than
modelled – pore spaces would be desirable to confirm and
enhance these models.

Using thermal imagers for snow study is relatively new.
Shea and Jamieson(2011) provide the first general overview,
various applications, error sources, and correction specific to
snow research. The use of a thermal imager to obtain temper-
atures across weak layers in a snow pit – the traditional use
of a field temperature profile – has not yet been examined.

3 Terminology

A temperature gradient has three qualities: magnitude, dis-
tance, and direction. Some traditional terminology used in
snow observation (McClung and Schaerer, 2006) refers to
measurements as gradients when they do not occur on a
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scalar field. To reconcile practical and mathematical gradi-
ents, here we clarify terms used in this paper.

3.1 Temperature gradient

We retain the traditional use oftemperature gradientto mean
the difference in temperature between two points divided by
the distance between them, as an absolute value. The real
physical distance between the sample points – rather than
simply a scaled ratio – remains important.

3.2 Point gradient

We use the termpoint gradientto mean the largest magnitude
of difference, in any direction, from a single pixel within a
thermal image to any of the pixel’s eight nearest neighbors.
Loosely, this corresponds to the image being a scalar tem-
perature measurement fieldf , with a given pixel at(xi,yj ),
giving the point gradient at that pixel to be||∇f (xi,yj )||,
and reported along with the physical distance between the
pixels.

3.3 Row gradient

As layers run slope-parallel within a natural snowpack, it is
desirable to know the average gradient along a snow layer.
Hence, when pixel rows in a thermal image also run slope-
parallel, arow gradientis the average of the point gradients
along a single rowy of pixels in a thermal image withn
columns:∑n

i=1||∇f (xi,y)||

n
(1)

This is of particular interest, for example, when the row
aligns with the top or bottom interface of a snow layer. The
row gradient would then provide an estimate of the average
strength of flux at layer boundaries.

3.4 Thin versus wide

We use these descriptors to compare thedistancebetween
pixels in a point gradient or row gradient, or measurement
points in a thermal gradient. For example, pixels with 1 mm
between them measure a thinner temperature difference than
thermometers spaced 5 cm apart. The distinction is necessary
because, as demonstrated inKaempfer et al.(2005) and the
results in this paper, gradients are dependent on the distance
scale.

3.5 Strong versus weak

These are relative descriptors for the absolutemagnitudeof
temperature differences across a common distance. For ex-
ample, a gradient of 1◦C difference over 10 cm can be de-
scribed as weaker than a gradient of 5◦C difference over
10 cm.

4 Methods

The method of using a thermal imager to obtain snow pit
temperatures is itself a result. We developed these methods
via field use over two seasons, and we offer them as a basis
for further refinement. The current methods are:

1. Properly select and prepare a field study site (Sect.5).

2. Clear the pit wall to a smooth vertical surface, and, as
soon as possible, obtain multiple overlapping thermal
images of the pit wall (Sect.6).

3. Obtain a snow pit layer profile (Canadian Avalanche
Association, 2007; Greene et al., 2010) with crystal
morphology as a basis to assess future crystal changes.
If needed, take an independent set of thermal images
with landmarks (Sect.6).

4. Mitigate or correct error in the voltages, temperatures,
and gradients, both while in the field and through later
analysis (Sect.7).

5. Analyze and interpret the results (Sect.8).

The following sections outline how we achieved these steps
during the 2010–2011 season.

5 Field study site

The study site was a flat and open area located in the Cana-
dian Rocky Mountains (1650 m, 51.045◦ N, −115.417◦ W).
Between 28 January and 30 March 2011, 17 visits were made
to obtain thermal infrared imagery of fresh pit walls. At 14
of those visits, visual macro crystal photographs were taken
of snow crystals in every major layer and interface, both dis-
aggregated and, when practical, in-situ.

Many attributes of this site allowed exploratory use of
a thermal camera in obtaining thermal data in study pits
(Fig. 1):

– The site was flat and without trees or bushes.

– The size of the area allowed for multiple pits in a single
day to confirm continuity of the layer structure and two-
dimensional thermal pattern across the site.

– The shallow snowpack enabled every pit wall to be dug
back farther than the snow depth to prevent edge effects
from the previously exposed pit wall.

– The access allowed pit walls to face into the shade, mit-
igating heat input after exposure.

The shaded observation wall is desirable in any snow study
pit. The other three attributes, however, were helpful in de-
veloping methods only, and so such a strict site selection
would not necessarily be needed in the future.
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Fig. 1. The study site on 3 March 2011. Two pits were actively
used, often on the same day, to confirm similarity of the layer struc-
ture across the site. Both pit walls stay in the shade due to careful
orientation. The site provided enough space to dig back farther than
the depth of the snowpack all winter. A shovel and 3 m long probe
provide scale.

6 Preparation

With a suitable site, obtaining pit wall temperatures with a
thermal camera was faster than obtaining them with a point
thermometer. This needed to be so, to reduce error as de-
scribed in Sect.7. Field equipment included: a shovel with
a flat blade edge, a thermometer for air temperature, and a
thermal camera measuring infrared radiation between 7.5 and
13 µm. For improved atmospheric error correction, we some-
times used a humidity sensor, and a square of crumpled alu-
minum foil as described inShea and Jamieson(2011) to ob-
tain reflected apparent temperature. Alternatively, humidity
was obtained from published local weather data, and cloud
cover was recorded for later estimation of reflected apparent
temperature. The camera used for all images in this paper
was a FLIR B300 with a 320×240 pixel resolution.

We found that using a thermal camera to obtain tempera-
ture gradients on the surface of a pit wall is a skill set. One
operator took all of the more than 2000 images using the
thermal camera at this study site between 28 January and
30 March, and this operator had used the camera to obtain
more than 1000 images using the same camera the previous
season. The following skills for use of the camera in the field
were identified:

1. The ability to consistently hold the camera aligned to
the surface of the pit wall at 0◦ of photographic angle.
With practice using an inclinometer on the camera, this
was achieved using a hand-held method. Elbows were
steadied either on the ground, or on the operator’s knees.

Fig. 2. Desired vertical overlap in thermal images, balancing the issues of area measured, time exposed, and

lens error. The first image ideally would occur with the area of interest centered. To more completely assess

surface changes over time at the area of interest, multiple images at position (1) can be taken.

22

Fig. 2. Desired vertical overlap in thermal images, balancing the
issues of area measured, time exposed, and lens error. The first
image ideally would occur with the area of interest centered. To
more completely assess surface changes over time at the area of
interest, multiple images at position (1) can be taken.

2. The ability to quickly dig a planar pit wall. Shovel
gouges and curved walls produce errors too large to eas-
ily correct. These gouges and irregularities were able to
be clearly identified on the viewfinder after some expe-
rience, and if present, a new pit wall was dug.

3. The ability to take thermal images quickly. A stream-
lined field technique encompassing all steps from pow-
ering the camera on, to digging adequate area for the
operator to work was developed. All data presented in
this paper were obtained within ninety seconds of pit
wall exposure.

6.1 Field technique

After the preparation above, we began digging and imag-
ing pit walls. Intuitively, and for reasons described below in
Sect.7, the exposure time of the pit wall before being imaged
should be minimized. We found it useful to expose a pit wall
to within 20 cm of the surface to subsequently be imaged.
This 20 cm buffer does not protect the snow for long – heat
from an operator working close to a pit wall can penetrate
more than 12 cm in 30 min (Shea and Jamieson, 2011) – but
without it, timely measurement of an entire pit wall was of-
ten impossible. We would then remove the buffer iteratively
to only expose an area that could be imaged in under one or
two minutes. The camera would be powered on and allowed
to equalize with the air to allow the camera to immediately
be picked up and used as soon as each area was exposed.

Also for reasons described in Sect.7, we took multiple
images of the same area over time, overlapping by more than
half the image height. Areas of particular interest, such as
those at the top edge of a depth hoar layer, or small layers
immediately above and below crusts, were included in the
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very first, fastest possible image. When possible, they were
also centred in that first image, as shown in Fig.2, to mini-
mize lens effects as described in Sect.7.2.

We developed various types of landmarks for later com-
positing multiple images into one larger image, or to mark
the actual boundaries of a distinct layer. Often, the thermal
structure of the snow itself provided sufficient landmarks.
When these were absent, a ruler was placed at the edge of the
images to provide a point of reference – often the paint ticks
on the ruler could be read in the images due to their different
thermal emissivity. With thin layers of different hardnesses,
images for data were taken as soon as possible, and then at
several points a finger, warmed pencil, or other tool was in-
serted into the softer layer and carefully run through the snow
until it hit the harder interface, providing a landmark for the
layer edge.

7 Error corrections

Some error, such as the operator heating described inShea
and Jamieson(2011), was best mitigated on-site rather than
attempting corrections later. For example, in this paper, the
time needed to take all of the images after pit wall exposure
was minimized, and the operator would, when possible, lie
on the snow with the camera between the operator’s face and
the snow pit wall to minimize the direct exposure of the pit
wall to the operator.

Other errors, such as photographic angle, can be corrected
for, but were more easily avoided by using a 0◦ photographic
angle for all images. The last category of error is that which
could not be mitigated or avoided entirely, and this error in-
cludes atmospheric effects, lens effects with respect to snow,
and time effects.

7.1 Atmospheric effects

Correction of atmospheric effects, discussed inShea and
Jamieson(2011), should be performed using the manufac-
turer’s specifications because corrections occur on the raw
voltages. Microbolometers are the sensors within thermal
imagers, and they measure absorbed radiation within a given
spectrum by changing resistance. The translation between
a microbolometer sensor voltage and observed temperature,
even with perfect emissivity, must be empirically developed.
The translation is of course a function of the field variables
(atmosphere temperature, reflected temperature, humidity,
distance, and emissivity). But, it is also a function of the
microbolometer temperature, as well as the physical nuances
of the microbolometer itself. These physical engineering de-
tails – such as the attributes of the sensor hookups – would
be inefficient or even impossible to derive physically, and so
the relation as a whole is developed empirically. This cal-
ibration is performed at the thermal imager factory with a

near-blackbody flat field and the microbolometer at known
temperatures, and accounts for lens warp on a flat field.

As with any resistive temperature measuring device,
within a microbolometer the connection to the individual
pixel sensors also changes resistance based on the sensor
temperature. In a microbolometer, the stable resistance over
temperature must also be weighed against heat conductiv-
ity – to preserve as much heat as possible within the sen-
sor itself – and manufacturing costs and limitations. These
connections are often built from materials which give rela-
tively stable measurements over a wide range of tempera-
tures, varying their resistance and effect via heat conduction
by around 2 %. Hence, when the ambient temperature of the
microbolometer itself is not known, one can only have con-
fidence in theabsolutetemperatures measured by a thermal
imager to within 2 %. In practice, if the thermal imager is
allowed to equalize with the ambient temperature, the tem-
perature of the microbolometer can be known and accounted
for as per the manufacturer’s developed relation.

Also like any resistive temperature measuring device,
when the pixel sensors are at a similar temperature to one
another, measuring temperature difference between them is
limited only by the voltage (or current) sensitivity of the cir-
cuits within the imager. For the FLIR B300, the sensitiv-
ity is enough to detect temperature-equivalent differences of
0.05◦C or better. This is known as Noise Equivalent Temper-
ature Difference (NETD). It applies between pixels within a
single image, and between pixels in different images when
the microbolometer is at a similar temperature. Hence, ther-
mal imagers are subject to the approximately 2 % absolute
temperature accuracy limitation due to the physical charac-
teristics of resistive devices, but more expensive thermal im-
agers can provide a better NETD by improving the voltage
sensitivity of the measurement circuits. The high between-
pixel comparison accuracy allows gradients within and near
layers of interest to be precisely examined, which is the pri-
mary application of interest to snow. Uses for these relative
comparisons are shown in Sect.8.

To correct for atmospheric effects, the voltages themselves
are changed to account for field values and then the new,
corrected voltages are translated via the factory-developed
empirical relation to temperatures. For the FLIR B300 used
in this paper, for example, the correction upon the voltages
would be:

Vobj =
1

ετ
Vtot−

1−ε

ε
Vrefl−

1−τ

ετ
Vatm (2)

WhereVobj is the measured voltage portion from the ob-
ject (the snow),Vtot is the total measured voltage at the mi-
crobolometer,Vrefl is the expected voltage portion seen at-
camera from a blackbody with the reflected apparent temper-
ature, andVatm is the expected voltage seen at-camera from
a blackbody with the atmospheric temperature.

The field values are:ε, which is the emissivity of the ob-
ject averaged over the wavelengths of the sensor – a material
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property – andτ , which is the transmittance of the interven-
ing atmosphere. The camera operates in wavelengths of an
atmospheric water vapor window, whereτ ≈ 1.0, so the third
term in Eq. (2) can be omitted.

By Kirchhoff’s law, 1− ε is the reflectivity of the snow
surface. The reflected apparent temperature value within
the portion is best measured by pointing the camera at a
piece of crumpled aluminum foil, whose infrared reflectivity
is very high, about 0.97. Estimating by empirical methods
(Sugita and Brutsaert, 1993) might be unreliable, because
those methods were usually developed to estimate incoming
atmospheric radiation over the entire infrared spectrum.

For the short distances used in this paper between ther-
mal camera and pit wall (50 to 60 cm), we use one measured
value of reflected apparent temperature, one value of humid-
ity, and drop the third term in Eq. (2). For emissivity of snow,
the primary determinants are age, significant surface non-
homogeneity such as tall clumping, and wetness (Shea and
Jamieson, 2011). Thus with non-fresh dry snow prepared
to a relatively flat surface with a shovel, we usedε = 0.98
(Dozier and Warren, 1982) across the pit wall.

7.2 Secondary lens effects

Even with the imager pointing directly toward the pit wall –
a 0◦ photographic angle – the lens itself is partially spherical
with a 25◦ field of view. Thus, effective photographic an-
gles of up to 12.5◦ occur in all images. Although for a flat
field these lens effects are corrected for already, when imag-
ing a complex snow surface, a lens changes both apparent
temperatures and apparent gradients across pixels on a com-
plex snow surface. Themethodof developing correction is
emphasized, as each camera type lens may vary.

The reason for these secondary lens effects on gradients
may be because a pit wall surface is not absolutely flat, and
the roughness is slightly selective to crystal size – and there-
fore temperature differences. Smaller crystals shrink over
time not only because of temperature gradient differences,
but also because of curvature differences (Saito, 1996, p. 10).
Thus, they sublimate faster in the snowpack and so cool more
than their larger neighbors.

Depending on bond size, a sweep of a shovel blade may
select some crystal sizes to remain at the very surface, and
other crystal sizes to be be inset or tucked slightly behind the
very surface of an exposed pit wall. Little protruding crys-
tals may be chopped off with a shovel blade, exposing larger
crystals, or larger crystals may be levered out, depending on
the snowpack structure. When viewed straight on, as when
an area of interest is framed in the centre of an image, the nat-
ural variation of crystals and their temperatures can be seen
even when slightly inset and outset from the average surface
plane. But away from the image centre, the slight lens an-
gle may hide the inset crystal types and thus also artificially
smooth the apparent gradient.

To develop this secondary correction, overlapping areas
similar to Fig. 2 were identified in seven of the 17 days.
The criteria for these seven days was very restrictive, as each
overlapped area of interest needed to have an easily identi-
fiable, natural landmark at all corners of the area. Further-
more, the overlapping image series needed to include either
the first or second image taken after initial pit wall exposure.
Each overlapping area contained approximately one-sixth to
one-quarter of the pixels in a given individual image. The
combination of the seven overlapping series covered all pix-
els on the lens.

After these seven overlapping areas were identified, volt-
ages – and thus absolute temperatures – were corrected for
atmospheric effects. Then, point gradients were calculated
and normalized over each area. Finally, the distance of each
area pixel was calculated from the centre of the original im-
age. All distances were positive, so all four corners of the im-
age were at a distance of 200 pixels. Finally, a linear model
was built via ordinary least squares regression to relate the
amount of change in point gradient per pixel distance from
the image centre.

Based on the regression, the FLIR B300 shows a
1.5×10−4 ◦C decrease in normalized, atmospheric-corrected
point gradient per pixel away from the centre of the image
(p < 10−16). This amounts to a 0.03◦C decrease in point
gradient at the extreme corners due to lens curvature and
snow structure. As the camera has a between-pixel sensi-
tivity noise of 0.05◦C (at worst), this is an acceptable – and
correctable – amount of error.

Next, we assessed lens effect on absolute temperature. Af-
ter the preparation steps outlined above, a linear model be-
tween pixel distance and normalized absolute temperature
found −2.57× 10−4 ◦C of difference per pixel width away
from the centre (p < 10−16). This implies a−0.051◦C dif-
ference between centre and extreme corners, a similar value
to the equipment sensitivity.

This can be compared to the photographic angle effects
observed previously. The lens has a 12.5◦ angle at the cor-
ners, or, using the relation above, 4× 10−3 ◦C difference
in temperature per degree angle of lens. This translates to
0.3◦C difference projected over 75◦, which is relatively sim-
ilar to the 0.5◦C difference calculated using photographic
angle differences between 0◦ and 75◦ in Shea and Jamieson
(2011).

7.3 Exposure time effects

At the very instant of exposure, the natural temperature struc-
ture is still present on the snow pit wall. In reality, some
time always elapses before the first thermal image can be
taken. Temperatures of the newly exposed pit wall may
quickly be influenced by atmospheric effects. We wanted
to assess whether the observed gradients were not artificially
sharpening over time due to, for example, heat being con-
ducted unevenly after exposure from behind the pit wall.
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Thirty-five pairs of overlap areas were identified. These
pairs were from the same seven overlap areas used for lens
correction earlier, to ensure that the areas were the most ac-
curately corrected for effects other than time.

Of these thirty-five pairs, thirty-three had significantly dif-
ferent point gradient medians over time as measured by the
Kolmogorov-Smirnov test. Of those thirty-three with sig-
nificant differences, nine had increases in apparent gradient,
and twenty-four had decreases. However, only one of those
nine was an increase greater than the equipment sensitivity
(an increase of 0.066◦C, 0.016◦C greater than the sensitiv-
ity). Seven of the twenty-four decreases were larger than the
equipment sensitivity, even up to half of the initial gradient.
On average, after being corrected for secondary lens effects
as above, between-pixel temperature differences decreased
15 % between an image taken as soon as possible after the
pit wall being cleared and another within one minute later.

This change in median between-pixel temperature dif-
ference over time was independent of change in abso-
lute temperature over time. Figure3 shows lens-corrected
and atmospheric-corrected temperatures which jump around
quickly by as much as 0.4◦C with no discernible pattern,
but a steadily smoothing row gradient graph over time. This
shows that although the snow surface may vary in tempera-
ture after exposure to the air, therelativetemperatures of the
snow generally follow a predictable pattern of homogeniza-
tion.

The paired data imply that thin, crystal-scale point gradi-
ents usually decrease rather than increase in the ninety sec-
onds after pit wall exposure. More than 90 % of the time, we
observed that the gradients on an exposed pit wall surface
changed in a statistically significant manner within the first
ninety seconds of exposure to the air. But only 23 % of the
time was that change larger than 0.05◦C, which is the sensi-
tivity of the thermal imager. And less than three percent of
the time did that change involve sharpening of the gradients
rather than smoothing or no change over time.

This provides evidence that atmospheric equalization af-
fected the surface temperature structure more strongly than,
for example, heat from behind the snowpack coming forward
unevenly. If the inverse were true, thermal gradients around
layers with strong lateral conduction would increase after pit
wall exposure to air, rather than decreasing. Indeed, as all
images were obtained with some delay after pit wall expo-
sure, these data also imply that even the strongest gradients
in the first thermal images are weaker those present when
first exposed, and therefore also diminished compared to the
natural temperature structure.

To identify time-sharpening gradients in the future, the
overlap from Fig.2 would provide successive thermal im-
ages of one area. Increasing gradients can be easily identi-
fied either statistically or visually, and then either the most
conservative gradient chosen or the data discarded.

Furthermore, the single instance of artificial gradient
sharpening that was greater than equipment sensitivity oc-

curred in a pair of images where the earlier image had the
subject area at the very edge of the image (which smooths the
apparent gradients, as discussed above), and the later image
had the subject area at the very centre of the image. Although
the gradients were corrected using the linear model as above,
the model may not have provided adequate correction in this
particular case. Centering the area of interest from the start
and repeating the image with the area centred would provide
an estimate of gradient sharpening least affected by the lens.

The expected and typical observed trend toward smooth-
ing rather than sharpening of gradients over time makes
physical sense despite the high bulk heat conductivity of
snow. Lateral conduction capacity in mature, metamor-
phosed snow can reach such low levels that some models ne-
glect lateral heat flux within the snowpack entirely (Greene,
2007).

8 Case studies

After field techniques and error correction were established,
data from the field studies were examined. We present case
studies of three selected examples from the data set below.
These case studies offer possible interpretations for the data
collected using a thermal imager, as well as suggesting that
the point gradients observed represent not only real temper-
ature differences but also temperature differences of impor-
tance to snow metamorphism.

8.1 Scale dependence of temperature gradients

On 29 January and 1 February 2011, we obtained thermal
images and visual macro photographs of the facets and depth
hoar interface below a buried crust. We compare the mea-
sured point gradients to the observed crystal growth.

8.1.1 29 January 2011

Multiple images were taken of the area of interest as de-
scribed in Sect.7.3, and the gradients were observed to de-
crease over time. The image with the least elapsed time after
exposure was used. That thermal image was corrected for
atmospheric effects as described in Sect.7.1. Point gradi-
ents were calculated from these corrected temperatures, as
described in Sect.3. Both the temperatures and gradients
were corrected for lens effects (Sect.7.2) and are displayed
in Fig. 4. A selection of row gradients are also shown in
Fig. 4.

The large point gradients in Fig.4, which exceed 2◦C dif-
ference over a 1.8 mm pixel width, are essentially hidden to
the traditional field temperature measurement method. The
average temperature along the top of the thermal image in
Fig. 4 is −7.41◦C, and the average temperature along the
bottom is−6.74◦C. Therefore, on average, placing a point
thermometer at the top, and a point thermometer at the bot-
tom, would reveal a temperature difference of only 0.67◦C
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Fig. 3. (a)Temperature fluctuations over time, and(b) gradient fluctuations over time, from the same area. Both graphs have lines coloured
in rainbow order of the time the photo was taken. Red first, then orange, then green, then blue. The time between the red line image and the
blue line image is approximately one minute, whereas the red and orange images are approximately ten seconds apart at most.

Fig. 4. Temperatures and point gradients at the leading edge of the depth hoar on 29 January 2011. The grids on the crystal screen have
3 mm spacing. Crystal types are fromFierz et al.(2009).

over 14 cm. This is less than the accepted 10◦C m−1 as-
sumed boundary for kinetic metamorphism. It is also less
than the more conservative modeled boundary for kinetic
metamorphism at 5◦C m−1 in Lehning et al.(2002). With
the thermal imager, however, a row gradient of 0.98◦C over

1.8 mm can be measured at the lower edge, which, scaled to
the metre, is 540◦C m−1.
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8.1.2 1 February 2011

These point and row gradients can be compared to the change
in physical crystal size, as well as to their relative depth from
the horizontally even crust. The crust provided the most ac-
curate landmark as new snow had fallen and the ground was
somewhat uneven. Crystal changes and their depth changes
can be seen in Fig.5. Despite the lack of large temperature
difference over the 14 cm height of the image, it is clear that
facet growth and therefore kinetic metamorphism occurred
after the large point gradients were observed on 29 January,
particularly in the depth hoar layer where the large point and
row gradients were observed.

8.1.3 Interpretation

These thin point temperature gradients could be caused by:

– Tortuosity of the snow structure, as proposed by
Kaempfer et al.(2005).

– Remnants of undissipated latent heat flux on the crys-
tals from previous metamorphism (which, upon affect-
ing the temperature, will affect future metamorphism).

These point gradients can be further interpreted as the
cause of the observed growth by estimating how much
ice mass may be moved by them, and whether that mass
concurs with the observed changes. Using a gross esti-
mation of 1:50 for crystal length per unit thickness (Lib-
brecht, 2005) of an ice crystal, we can estimate that the
average large crystal in the depth hoar on 29 January is
about 3×3×0.06 mm= 0.54 mm3, and on 1 February it is
4×4×0.08 mm= 1.28 mm3.

With an ice density of 9.2× 10−4 g mm−3, the change be-
tween the estimated crystal on 29 January to the estimated
crystal on 1 February is 0.74 mm3, or 6.8× 10−4 g. Use of
Fick’s Law (Stull, 1995, p. 133) conserves and moves mass
over the vapour phase and describes the diffusion flux by
vapour density difference as a function of temperature:

F = −D
δρ

δz
(3)

Here, z is the physical distance between pixel centres,
D is the diffusion coefficient for water vapour (2.22×

10−5 m2 s−1), F is the flux, andρ is the density of the water
vapour in the air in g m−3. Saturation vapour pressurees in
J m−3 at a given air temperatureT may be found by starting
with the Clausius-Clapeyron approximation equation (Stull,
1995, p. 84):

es= 611Pa· exp
{Ld

Rv

( 1

273K
−

1

T

)}
(4)

Here, Ld is the latent heat of deposition of water
(2.83× 106 J kg−1) andRv (461 J K−1 kg−1) is the specific

Fig. 5. Crystal changes subsequent to the gradients observed on
29 January 2011. The tops of the facet and depth hoar layers also
grew closer to the crust, from 9 and 13 cm below the crust, respec-
tively, to 7.5 and 12.5 cm below the crust. The grids on the crys-
tal screen have 3 mm spacing. Crystal types are fromFierz et al.
(2009).

water vapour gas constant. Then, the ideal gas law gives the
densityρ needed for Eq. (3):

es= ρRvT (5)

Thus we can approximate the diffusive flux,F , by obtaining
the difference in expected vapour density,δρ, from one point
gradient and the absolute temperature at that point. The flux
is across the pore space, from ice, through air, to ice.

On 29 January, we selected typical values from the bottom
row of the image having−6.74◦C corrected temperature and
−0.98◦C corrected row gradient over 1.8 mm. This creates
a flux vector between−6.74◦C (266.42 K) and−7.72◦C
(264.4 K) over 1.8×10−3 m. From Eqs. (3) through (5) and
converting to g m−3 in Eq. (5), saturation vapour density over
ice at 266.42 K is approximately 2.82 g m−3, and at 264.4 K
it is 2.60 g m−3. This will create flux in the pore space of
F = 2.69×10−3 g m−2 s−1.

Over 70 h, (2.5× 105 s), through a two-dimensional area
the size of the crystal (3×3 mm wide, or 9×10−6 m2), this
flux will move 6.1× 10−3 g of water, about ten times that
needed to grow the smaller crystal to the larger one. But
this is just the water that moves, not that which attaches
to the new ice surface. The proportion of transported wa-
ter vapour which actually attaches is very roughly estimated
to be between one tenth to one one thousandth of the trans-
ported vapour (Kaempfer and Plapp, 2009), which is consis-
tent with the range of observed growth between 29 January
and 1 February in the depth hoar layer. Further, only an ini-
tial temperature gradient value was used; hence, at best only
a comparable range can be expected.

These observed growth rates also show that latent heat
may not easily be ignored. The amount of latent heat that
this deposition would add to the original crystal, which was
at an average of−7◦C on 29 January (Fig.4), is 2260 J g−1,
or 1.54 J over the intervening 70 h. Assuming 80 % of this
heat flux travels and is dispersed through the conduction of
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Fig. 6. Temperatures (left images) and point gradients (right im-
ages) over five hours on the morning of 3 March 2011. Air temper-
atures and cloud cover are listed on the far right. The hour of mea-
surement and crust location (vertical placement and 1 cm height)
are noted on the far left.

the ice matrix (Kaempfer et al., 2005), this leaves 20 %, or
0.31 J which will stay, warm the crystal, and drive further
water vapour transport upwards through the pore space.

This 0.31 J is a large increment of energy for a small crys-
tal. Ice only takes 2.11 J g−1 to raise its temperature by 1◦C,
or 1×10−3 J per degree for the crystal mass. If the temper-
atures on crystals during metamorphism did not fluctuate to
achieve steady state and satisfy the global heat flux gradi-
ent across the snowpack and at the same time minimize the
gradients across individual pore spaces, the point gradients
in Fig. 4 would not show a maximum of 2.84◦C between
pixels. Rather, the difference would be much greater due to
the undissipated latent heat alone at these observed crystal
growth rates.

8.2 Temporally changing temperature gradients

On 3 March 2011, we obtained thermal images every hour
at the study site. Here, we focus on the images obtained
during a period of sky cooling and clearing in the morning,
during which relatively strong point temperature gradients
appeared around a buried crust and then disappeared again
within hours.

8.2.1 3 March 2011

Thermal images of the buried crust (27.5 cm depth from sur-
face, 1 cm layer vertical height) were taken every hour during
the day of 3 March 2011. Each time, a fresh pit wall was dug
farther back than the snow depth. Multiple images of each
area showed sequential gradient smoothing, and the very first
image in each series is used here for analysis. These images
were corrected for atmospheric effects and then the portion of
the image containing the crust was extracted. Point gradients
were calculated within these sub-areas and both temperatures
and gradients were corrected for lens effects. The results of
this series between 06:00 and 11:00 LT, may be seen in Fig.6.

8.2.2 Interpretation

The reason for these transient, pore-space-scale temperature
gradients could be latent heat release due to new ice depo-
sition. This deposition may have resulted from increased
upward heat – and therefore vapour – flux during external
cooling of the snowcover surface from 06:00 to 09:00 LT.

The attribute most supporting the latent heat explanation
is the warming of the crust during the cooling of the atmo-
sphere. During this cooling, the point gradients throughout
the whole area are increasing, implying active vapour trans-
port. This also indicates that vapour is transferring heat in
larger amounts than the conductive ice lattice can handle. As
this episode is brief enough to not significantly affect the ice
mass and thus tortuosity within the area, the point gradients
can be dissipated – via conduction – when the vapour flow
ebbs as the outside cloud cover returns.

This temporally short instance of gradients appearing on
themicro scale due to increased flux on themacroscale im-
plies that the formation of gradients – which in turn drive
metamorphism – are not only a function of the current dif-
ference of temperature from ground to snow surface, but
also how conductive the ice lattice has become during past
metamorphism to handle the heat flux. Flux above and be-
yond what the ice lattice can conduct may push more flux
through the pores, resulting in latent heat release via depo-
sition, changing local temperature differences, and thus pos-
sibly affecting the type of crystal growth that results or even
type of metamorphism.

Although some studies such asSmith et al.(2008) and
Greene(2007) obtain many measurements over short time
periods – yet did not find evidence of strong temperature
differences across crusts despite coarsening of the granular
structure around the crust – practitioners usually only record
point temperatures in the field once per day and then only
at 5 to 10 cm distances. It may be difficult to discover these
times of locally strong point gradients, as well as – more im-
portantly – discovering at what level of snowpack-wide heat
flux their conduction capacities are approached, resulting in
significant vapour transport through the pores.
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8.3 Sub-surface heating

On 25 March 2011, we obtained thermal images of solar
heating below, but not at, the snow surface, also known col-
loquially as sub-surface heating, or the solid state green-
house effect (Brandt and Warren, 1993). This resulted in
near-surface faceting of the radiation recrystallization type
(LaChapelle and Armstrong, 1977), shown by crystal macro
photographs on 30 March 2011, and described below.

8.3.1 25 March 2011

The first thermal image obtained as soon as the pit wall was
exposed was used for analysis. These temperatures were cor-
rected for atmospheric effects, and then point gradients were
calculated and both were corrected for secondary lens effects.
The temperatures and gradients appear in Fig.7.

The thermal image in Fig.7 was taken much closer to the
pit wall than previous images in this paper; each pixel rep-
resents 0.8 mm. The row gradient above the warmed area is
0.20◦C, and the row gradient below is 0.122◦C. These trans-
late to 250◦C m−1 and 150◦C m−1 respectively, when scaled
to ◦C m−1. The maximum point gradient, which is above the
warmed area, is 0.47◦C, or an equivalent 580◦C m−1.

8.3.2 30 March 2011

Unfortunately, we could not return to the site to document
change in crystal morphology until five days later. On
30 March, the interfaces both above and below the warmed
layer had developed faceted crystals as shown in Fig.7. Also
on 30 March, the warmed area itself had formed grains of
melt-freeze crust (MFcr) between 3 and 7 mm (Fierz et al.,
2009).

The faceting observed on 30 March above and below this
sub-surface warmed layer was expected from the strong point
temperature gradients measured on 25 March. The size and
maturity of the facets also corresponded to the previous rela-
tive strengths of the point and row gradients above and below.
The facets above the warmed layer – corresponding to the
stronger point and row gradients – were larger and sharper
than those under the layer. These upper facets also displayed
evidence of near-surface faceting protrusions which were not
present on the facets below the warmed layer.

8.3.3 Interpretation

Many explanations already exist for the faceting above and
below this warmer and harder layer.Colbeck(1991) pro-
posed that sharp vapour gradients would appear above and
below a denser layer and grow facets via kinetic metamor-
phism. Strong temperature gradients at the interface of a
warm, near-freezing layer have been measured using thermo-
couples (Fukuzawa and Akitaya, 1993; Jamieson and Fierz,
2004) and the associated faceting modelled in bulk (Jamieson
and Fierz, 2004). Near-surface temperature gradients on

Fig. 7. Temperatures and point gradients during near-surface warm-
ing. The temperatures and point gradients are from 25 March; the
crystal macro photographs are from 30 March on a 3 mm grid. In
both upper and lower images, a span bar on the left denotes the same
physical area.

the order of 250◦C m−1, even with the warmed layer be-
low freezing, have also been measured along with associated
faceting due to radiation recrystallization (Birkeland et al.,
1998).

However, here the thermal imager provides a new perspec-
tive of two-dimensional continuity. As weak layers bene-
fit from lateral homogeneity to propagate fractures (Heierli
et al., 2008), in the future the continuity or discontinuity of
these point gradients could provide additional information
for the analysis of weak layer metamorphism and stability.

9 Summary and conclusions

Thermal images of a pit wall showed point temperature gra-
dients in excess of 500◦C m−1 in a snowpack structure which
would present only a 0.67◦C difference between two ther-
mometers spaced 14 cm apart in the same area. Such ex-
treme, thin gradients hidden within a weaker, wider tempera-
ture difference fits well with the modelling ofKaempfer et al.
(2005). Such gradients also provide an explanation for ob-
served crystal changes not explained by temperature differ-
ences over 5 to 10 cm (Jamieson, 2006; Smith et al., 2008).
Although there is large uncertainty in the calculation due, in
particular, to the attachment rate, the initial point gradients
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were consistent with the vapour transport needed for the crys-
tal growth observed over the three days afterwards.

During sky clearing and cooling, point gradients in excess
of 1◦C between adjacent pixels 1–2 mm wide were found
to develop within hours around a crust buried 27 cm below
the surface. These gradients subsequently disappeared dur-
ing an increase in cloud cover. These thin, transient gradi-
ents have not been previously documented, although they of-
fer a possible explanation for the field observations of near-
crust faceting not explained by traditional temperature pro-
files measured at a point in time (Jamieson, 2006).

In the case of the near-surface warming presented, the row
gradient values have been observed at similar magnitudes
using thermocouples (Birkeland et al., 1998; Fukuzawa and
Akitaya, 1993), but the magnitude of gradients between in-
dividual pixels have not been previously observed. Much re-
mains to be done via future work in establishing what values
of point gradients have what effect on eventual morphology.
This, along with the first case study, are both instances when
gradients measured by a thermal imager were indicative of
subsequently observed metamorphism.

Building on the mitigations and concerns fromShea and
Jamieson(2011), images needed to be corrected for atmo-
spheric effects. A series of images of the same area were
taken as soon as possible after each pit wall exposure to as-
sess specific changes in gradients over time, and pit wall gra-
dients typically reduced within the first ninety seconds. Fu-
ture work needs to assess the usefulness of absolute temper-
atures independently of between-pixel gradients.

The thermal camera and the methods described in this pa-
per provided data with a quantitative accuracy and spatial
resolution currently not achievable by any other means. This
type of data may, in the future, help link modelling of meta-
morphism and thin temperature gradients to the same occur-
rences in the natural snowcover.
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