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Abstract. Due to the abundance of observational datasets
collected since the onset of its retreat (c. 1983), Columbia
Glacier, Alaska, provides an exciting modeling target. We
perform Monte Carlo simulations of the form and flow of
Columbia Glacier, using a 1-D (depth-integrated) flowline
model, over a wide range of parameter values and forcings.
An ensemble filter is imposed following spin-up to ensure
that only simulations that accurately reproduce observed pre-
retreat glacier geometry are retained; all other simulations are
discarded. The selected ensemble of simulations reasonably
reproduces numerous highly transient post-retreat observed
datasets. The selected ensemble mean projection suggests
that Columbia Glacier will achieve a new dynamic equilib-
rium (i.e. “stable”) ice geometry c. 2020, at which time ice-
berg calving rate will have returned to approximately pre-
retreat values. Comparison of the observed 1957 and 2007
glacier geometries with the projected 2100 glacier geome-
try suggests that Columbia Glacier had already discharged
∼ 82 % of its projected 1957–2100 sea level rise contribution
by 2007. This case study therefore highlights the difficulties
associated with the future extrapolation of observed glacier
mass loss rates that are dominated by iceberg calving.

1 Introduction

The transfer of land-based ice into the ocean is now the lead-
ing cause of sea level rise (cf. Bindoff et al., 2007), provid-
ing almost twice the sea level rise contribution as the ther-

mal expansion of sea water (∼ 55 and 30 % of total sea level
rise respectively; Cazenave and Llovel, 2010). During the
1991–2002 period, small glaciers and ice caps external to
the ice sheets contributed 0.77± 0.26 mm a−1 of sea level
rise. Alaskan glaciers have the most negative total mass bal-
ance of glaciated regions outside the ice sheets (Kaser et
al., 2006). A comparison of digital elevation models sug-
gests that Alaskan glaciers contributed 0.12± 0.02 mm a−1

to sea level rise over the 1962–2006 period (Berthier et
al., 2010). Laser altimetry observations indicate an Alaskan
glacier sea level rise contribution of 0.27± 0.10 mm a−1 be-
tween 1992 and 2002 (Arendt et al., 2002). This latter con-
tribution rate, however, is considered an overestimate, due to
the extrapolation of glacier centerline altimetry data across
glacier width. Dynamic thinning reaches a maximum along
a glacier centerline, and reaches a minimum at the lateral
margins of a glacier (Berthier et al., 2010). The Alaskan
glacier contribution to sea level rise has also been exam-
ined in several gravimetry studies. Chen et al. (2006) in-
ferred a contribution of 0.28± 0.06 mm a−1 over the 2002–
2005 period. Luthcke et al. (2008) subsequently inferred a
contribution of 0.23±0.01 mm a over the 2003–2007 period.
Most recently, Jacob et al. (2012) inferred a contribution of
0.13± 0.02 mm a−1 over the 2003–2010 period. Together,
these observations suggest that the Alaskan contribution is
equivalent to∼ 8 % of the total observed sea level rise over
the 1993–2007 period (Cazenave and Llovel, 2010).

Of all Alaskan Glaciers, Columbia Glacier is presently
the single largest contributor to sea level rise. Over
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the 1995–2001 period, Columbia Glacier contributed
∼ 7.1 km3 a−1 of water to sea level rise, equivalent to
∼ 0.6 % of total observed sea level rise over the 2003–2007
period (Arendt et al., 2002; Cazenave and Llovel, 2010).
Prior to the c. 1983 onset of its rapid and ongoing retreat,
Columbia Glacier had an area of∼ 1070 km2 and a length
of ∼ 66 km (Meier et al., 1985; Krimmel, 2001). The pre-
retreat terminus position, first documented in 1794, is be-
lieved to have been stable since the fifteenth century (Ras-
mussen et al., 2011). Since 1983, Columbia Glacier has re-
treated∼ 18 km and lost∼ 100 km2 of ice-covered area from
its terminus (Fig. 1). This rapid retreat has been well docu-
mented, which makes Columbia Glacier an exciting model-
ing target (Movie 1, full movie is available in the Supplement
associated with this article). Observational datasets suitable
for model validation include: (i) the pre-retreat ice surface
elevation profile (Meier et al., 1985), (ii) the pre-retreat ice
surface velocity profile (Meier et al., 1985), (iii) the contem-
porary surface mass balance rate profile and mean equilib-
rium line altitude (Mayo, 1984; Tangborn, 1997; Rasmussen
et al., 2011; O’Neel, 2012), (iv) a time-series of terminus po-
sition (Krimmel, 2001), and (v) a time-series of surface ice
velocity atζ = 50 km (Krimmel, 2001), whereζ is the curvi-
linear coordinate system describing downstream distance on
Columbia Glacier’s main flowline (complete variable nota-
tion provided in the Appendix). While not strictly an ob-
served quantity, time-series of iceberg calving rate have also
been inferred for Columbia Glacier (Krimmel, 2001; Ras-
mussen et al., 2011).

We examine the past and future behavior of Columbia
Glacier using a 1-D (depth-integrated) flowline model that
incorporates longitudinal coupling stresses and uses statisti-
cal parameterizations for two important, but poorly under-
stood, processes: basal sliding and iceberg calving. We exe-
cute Monte Carlo simulations over a wide parameter space,
to identify the cumulative uncertainty associated with both
parameter and forcing uncertainties, and to provide robust
ensemble mean histories and projections of variables of in-
terest. We use an ensemble filtering technique to eliminate
unrealistic simulations, whereby specific simulations are dis-
carded if they do not: (i) satisfactorily reproduce observa-
tions of ice thickness (a state variable) at the conclusion of
a transient spin-up, or (ii) initiate retreat within 100 yr of
the onset of a transient forcing. Monte Carlo selection ap-
proaches have been used extensively in the context of oceanic
(e.g. Van Leeuwen and Evensen, 1996) and atmospheric
(e.g. Anderson and Anderson, 1999) modeling. In glaciol-
ogy, Monte Carlo simulations have been used to explore un-
certainty in basal sliding velocity and surface mass balance
rate parameters (Chandler et al., 2006; Machguth et al., 2008;
Gardner et al., 2011).

Deterministic modeling of tidewater glaciers is predicated
on the implicit assumption that tidewater glaciers are in-
trinsically predictable and follow defined trajectories to sta-
ble attractor states, whereby small changes in initial condi-

tions and/or parameters result in small changes in trajecto-
ries. Given the possibility of true chaotic behavior of tidewa-
ter glaciers, however, whereby small changes in initial con-
ditions and/or parameters result in large changes in trajec-
tories, the behavior observed at a given tidewater glacier is
just one of a large number of possible trajectories (M. Lüthi,
personal communication). By executing a large number of
simulations over a wide parameter space, and then selecting
simulations that reproduce observed behavior, an ensemble
filtering technique provides the framework to quantify and
assess non-deterministic behavior. Monte Carlo simulation
also offers a powerful approach for quantifying uncertainties
in observed variables resulting from uncertainties in initial
conditions, parameterizations and forcing. When combined
with ensemble filtering, whereby simulations are screened
based on their agreement with observations, the technique
can constrain the values of initial conditions, parameteriza-
tions and forcing. Although the Monte Carlo ensemble filter-
ing is computationally intensive, it avoids the limitations of
simpler uncertainty propagation approaches that often em-
ploy linearization. For the highly nonlinear problem of ice
flow, which is subject to many interacting sources of uncer-
tainty, traditional linear calculations of uncertainty propaga-
tion are unlikely to be accurate.

The stochastic probing we perform as part of the model
parameter space identifies the plausible bounds of poorly
constrained parameters, such as maximum accumulation rate
at high elevations, while also producing thousands of sim-
ulations that plausibly explain the observed trajectory of
Columbia Glacier. We find that the available diverse observa-
tional datasets are reasonably well reproduced by the ensem-
ble mean of the selected simulations. When projected into
the future, the selected ensemble mean simulation indicates
that Columbia Glacier will achieve a new dynamic equilib-
rium geometry (i.e. “stable” position), and hence no longer
significantly contribute to sea level rise, by c. 2020. Thus,
this case study suggests that caution must be exercised in the
future extrapolation of contemporary mass loss rates that are
dominated by the highly transient variations of iceberg calv-
ing rate.

2 Methods

2.1 Ice flow model

We apply a previously published (Colgan et al., 2012) depth-
integrated (1-D) flowline model with a first order approxima-
tion for longitudinal coupling stresses to the main centerline
of Columbia Glacier. The model domain of the center flow-
line of Columbia Glacier extends from the main flow divide
at ∼ 2750 m elevation at km 0 (61.369◦ N and 147.153◦ W)
down to sea level at km 70 (60.974◦ N and 147.093◦ W;
Fig. 1). The model solves for the transient rate of change in
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Fig. 1. Landsat 7 image of Columbia Glacier acquired 23 August
2010 overlaid with the curvilinear coordinate system (ζ in km)
employed by Meier et al. (1985) to describe the “main” flowline
(M) and tributaries “west” (W), “main-west” (MW) and “east” (E).
Annual terminus position over the 1984 to 2010 period is also
shown (updated from Krimmel, 2001). Inset: Location of Columbia
Glacier in Alaska.

ice thickness (∂H / ∂t) according to mass conservation:

∂H

∂t
= b −

1

w

∂Q

∂x
(1)

whereb is annual surface mass balance rate,w is the glacier
width and∂Q / ∂x is the along-flowline divergence of ice dis-
charge. Following Marshall et al. (2005), depth-integrated ice
discharge (Q) is taken as:

Q = Fw

(
ubH +

2A

(n + 2)

(
ρg

∣∣∣∣∂zs

∂x

∣∣∣∣)(n−1)

τH n+1

)
(2)

whereF is a spatially variable and dimensionless correc-
tion factor (discussed below),ub is the basal sliding veloc-
ity, A is the flow law parameter (we assume that Columbia
Glacier is at the pressure-melting-point throughout and take
A as 140 MPa3 a−1; O’Neel et al., 2005),n is the flow
law exponent (taken as 3),ρ is the glacier density (taken
as 900 kg m−3), g is gravitational acceleration (taken as
9.81 m s−2), ∂zs / ∂x is the ice surface slope andτ is driving
stress, taken as the sum of both gravitational and longitudi-
nal coupling stresses. In an approximation of the momentum
balance, depth-averaged longitudinal coupling stress (τ ′

xx) is
included as a perturbation to the gravitational driving stress
(Van der Veen, 1987; Marshall et al., 2005):
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Depth-averaged longitudinal coupling stress is calculated ac-
cording to Eq. (21) of Van der Veen (1987). This formula-
tion derives longitudinal coupling stress by solving a cubic
equation describing equilibrium forces independently at each
node, based on ice geometry and prescribed basal sliding ve-
locity. Following the suggestion of Van der Veen (1987), we
assume that the longitudinal gradients of the depth-averaged
longitudinal deviatoric stress are small, so that the “D” term
in his Eq. (11) may be neglected, producing a simpler form
of his Eq. (21), which becomes our Eq. (4):
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As noted by Van der Veen (1987), this formulation is similar
to the Alley and Whillans (1984) approximation for depth-
averaged longitudinal coupling stress.

Flowline models for alpine glaciers often invoke a pa-
rameterization to account for lateral effects on ice flow due
to finite or variable glacier width (i.e. Paterson, 1994). Im-
plementing a traditional “shape factor” parameterization of
τ , however, only accounts for the influence of cross-valley
shape onQ due to internal deformation, and neglects the
influence of cross-valley shape onQ due to basal sliding,
by implicitly assuming that basal sliding is acting on an
infinitely wide glacier (i.e. Paterson, 1994). In most alpine
glaciers, a shape factor parameterization ofτ is valid, as in-
ternal deformation rather than basal sliding comprises the
majority ofQ. At Columbia Glacier, however,Q due to basal
sliding is significantly greater thanQ due to internal defor-
mation throughout the ablation zone (Kamb et al., 1994; Pf-
effer, 2007). Therefore, the influence of cross-valley shape
on Q due to basal sliding cannot be ignored. In the spirit
of a shape factor, we prescribe a spatially variable correc-
tion factor (F), to account for the influence of cross-valley
shape on bothQ due to internal deformation and basal slid-
ing. Eq. (2) describes ice flow within a wide rectangular
cross-valley multiplied by the geometric correction factor
F , and thus may be interpreted as accounting for the influ-
ence of cross-valley shape onQ due to both internal defor-
mation and basal sliding. Incorporatingw into this equation
provides a rigorous expression for mass flux. We prescribe
tuned, spatially variable values ofF that are informed by lo-
cal glacier geometry (glacier half-width divided by ice thick-
ness;w / (2H); Fig. 2). When calculatingw / (2H), we use
the pre-retreat centerline ice thickness (H) inferred by McN-
abb et al. (2012) and glacier width (w) interpolated from the
distance measured between lateral shear margins along the

www.the-cryosphere.net/6/1395/2012/ The Cryosphere, 6, 1395–1409, 2012



1398 W. Colgan et al.: Monte Carlo ice flow modeling

main flowline of Columbia Glacier in the 1 : 100 000 Plate 5
map of Meier et al. (1985).

Making the now common assumption that the contribution
of internal deformation to surface ice velocity is negligible
in the ablation zone of Columbia Glacier (i.e. downstream of
∼ 40 km; Kamb et al., 1994; Pfeffer, 2007) allows us to im-
plement a statistical parameterization of basal sliding veloc-
ity. This empirical, and hence site specific, parameterization
is predicated on the observation that ice surface velocity pro-
files observed over the 1981 to 2001 period (Pfeffer, 2007)
can be approximated with a simple exponential curve of the
form:

ub = k e(x/α) (5)

where k is a dimensional coefficient of 1 m a−1, x is the
distance downstream from km 0 andα is a scaling length
(Fig. 3). This basal sliding prescription is not a sliding rule,
whereby basal sliding velocity is parameterized to vary with
glacier geometry or hydrology, but rather a curve fit of ob-
served sliding velocity as a function of flowline distance (x);
similar to a curve fit of surface ablation as a function of el-
evation (z; Eq. 6). Observations indicate thatα ranged be-
tween∼ 8.9 km in 1981 and∼ 5.8 km in 2001, depending on
terminus position. We prescribeα as a function of terminus
position (xterm), which allowsα to decrease as the terminus
retreats upstream. The above basal sliding prescription the-
oretically allows basal sliding to occur anywhere along the
flowline. The range ofα values we impose, however, prac-
tically restrict significant basal sliding to only the ablation
zone of the flowline, consistent with observations.

We assume thatα reaches a minimum of 5.25± 0.25 km
when the terminus position retreats to km 50, the approxi-
mate upstream limit of the inferred bedrock over-deepening
of the main flowline of Columbia Glacier (McNabb et
al., 2012). The assumption that km 50 is a stable terminus
position is couched in the notion that a stability criterion,
comprised of the ratio between ice thickness (H) and wa-
ter depth (Hw), can distinguish stable and unstable terminus
positions of tidewater glaciers. Empirical evidence suggests
that tidewater terminus geometry may be regarded as stable
whenH / Hw ≥ 1.5, and unstable whenH / Hw < 1.5 (Pfef-
fer, 2007). We use inferred bedrock elevation and observed
2007 ice surface elevation (McNabb et al., 2012) to calcu-
late theH / Hw profile along the main flowline of Columbia
Glacier. These observations suggest thatH / Hw < 1.5 down-
stream of km 50, where water depth is large compared to ice
thickness, butH / Hw ≥ 1.5 upstream of km 50, where wa-
ter depth is small compared to ice thickness (Fig. 4). Thus,
we make the important assumption that the basal sliding
profile will cease to evolve once the terminus retreats up-
stream of km 50. In each Monte Carlo simulation we ran-
domly perturbα by a value uniformly distributed between
−0.25 and +0.25 km. Asα resides in an exponent, this pa-
rameter range yields a wide variety of basal sliding profiles
for a given terminus position. For example, perturbing the

Fig. 2. Observed pre-retreat ratio of glacier half-width to ice thick-
ness (w / (2H)) along the centerline of Columbia Glacier, with the
corresponding spatially variable correction factor (F) applied to the
ice flow model in this study.

1992 velocity profile approximation byα = 6.8±0.25 km re-
sults in an ensemble velocity range of±1.0 km a−1 at km 55,
and±2.5 km a−1 at km 60 (Fig. 3).

Similar to Nick et al. (2007), we parameterize annual sur-
face mass balance rate (b) as a linear function of ice surface
elevation (zs) according to:

b =

{
γ (zs − zela) if b < bmax
bmax if b ≥ bmax

(6)

where γ is the observed annual surface mass balance
rate gradient (1b / 1zs; taken as 0.0085 / a; Rasmussen et
al., 2011),zela is the equilibrium line altitude, andbmax is
the maximum surface mass balance rate (i.e. accumulation or
snowfall rate). Randomly prescribingzela from a uniform dis-
tribution between 850 and 1050 m andbmax from a uniform
distribution between 3.0 and 6.0 m a−1 yields a range of sur-
face mass balance rate profiles that encompass the empirical
range (Mayo, 1984; Tangborn, 1997; Rasmussen et al., 2011;
O’Neel, 2012; Fig. 5). During spin-up,zela is prescribed as
200 m lower than the contemporary range (i.e. from a uni-
form distribution between 650 and 850 m) to simulate the
cooler climate with which pre-retreat Columbia Glacier was
most likely in equilibrium (Nick et al., 2007).

2.2 Climatic variability and forcing

In order to simulate natural climatic variability, we introduce
a stochastic element by allowing equilibrium line altitude
to randomly vary each decade (i.e.zela± δzela). The magni-
tude of the decadal perturbation (δzela) is randomly selected
from a distribution derived from reanalysis data (Compo et
al., 2011). We assume that annualzela variability (1zela / 1t)

may be approximated by dividing annual air temperature
variability, the difference in mean melt season air temper-
ature from year to year (1T / 1t), by local environmental
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lapse rate (1T / 1z) at equilibrium line altitude:

1zela

1t
=

(
1T

1t

)(
1T

1z

)−1

. (7)

This assumes that equilibrium line altitude is correlated with
a given isotherm during the melt season (e.g. Andrews and
Miller, 1972). In order to determine appropriate values of
1T / 1t and1T / 1z, we extract 137-yr time-series of 900
and 950 mb melt season (1 April to 30 September) air tem-
perature at Columbia Glacier from Twentieth Century Re-
analysis V2 Data (Compo et al., 2011; Fig. 6). The 900 mb
pressure level corresponds to∼ 990 m elevation, the approx-
imate equilibrium line altitude of Columbia Glacier over the
reanalysis period. Reanalysis data suggests that during the
1871 to 2008 period, the mean local environmental lapse
rate (1T / 1z) was 6.7 K km−1, and the annual variability in
mean melt season air temperature (1T / 1t) exhibited an ap-
proximately normal distribution centered on 0 K a−1 (Fig. 6
inset). Dividing this1T / 1t distribution by the mean lo-
cal environmental lapse rate yields a distribution of annual
zela variability (1zela / 1t ; Eq. 7). We convert this annual
1zela / 1t distribution into a decadal1zela / 1t distribution
by applying a 10-yr running mean to 10 000 yr of synthetic
zela variability generated using the annual1zela / 1t distri-
bution (Fig. 7). This synthetic data suggests that decadalzela
perturbations (δzela) can be described by a normal distribu-
tion with a mean of 0 m and a standard deviation of 30 m.

During transient spin-up, equilibrium line altitude is per-
turbed each decade around a fixed meanzela. During the
subsequent transient forcing period, however, the meanzela
is also forced upwards based on the long-term air tem-
perature trend (1T / 1t). The long-term trend in1T / 1t

is taken as the linear trend in the 900 mb air tempera-
ture. In each Monte Carlo simulation, long-term1T / 1t

is randomly prescribed from a uniform distribution between
0.0057 and 0.0262 K a−1. This range corresponds to the min-
imum and maximum trends (i.e. trend± standard slope er-
ror) in air temperature over the 1871 to 2008 period (dashed
lines Fig. 6). Dividing this rate of air temperature increase
(1T / 1t) by local environmental lapse rate (1T / 1z) yields
the rate ofzela increase (1zela / 1t) imposed during the tran-
sient forcing period Eq. (7). This future climate forcing con-
servatively assumes no acceleration in the contemporary rate
of increase in air temperature.

2.3 Model implementation and boundary conditions

We apply the 1-D depth-integrated flowline model described
in Sect. 2.1 (Colgan et al., 2012) to the main centerline of the
Columbia Glacier. The differential equations describing tran-
sient ice thickness (∂H / ∂t) were discretized in space using
first-order finite volume methods (1x = 250 m). The semi-
discrete set of ordinary differential equations was then solved
using ode15s, the stiff differential equation solver in MAT-
LAB R2008b with a time-step (1t) of 1 yr. The numerical

Fig. 3. Observed ice surface velocity (us) profiles at Columbia
Glacier over the 1981 to 2001 period (solid lines; Pfeffer, 2007)
and their corresponding parameterizations (dashed lines; Eq. 5) us-
ing differing values of exponential length scale (α). Grey shading
denotesα ± 0.25 km around the 1992 profile. Inset: The empirical
relation between exponential sliding length scale (α) and terminus
position (xterm) used in this study.

code does not appear to demonstrate any sensitivity to pre-
scribed time-step over a tested range of 1/12≤ 1t ≤ 2. We
selected1t = 1 to facilitate the direct comparison of model
output with the available observed annual datasets, without
performing temporal interpolation of the model output. The
model was optimized to run on eight parallel processors us-
ing the parallel computing toolbox in MATLAB R2008b. The
mean processor time per Monte Carlo simulation was∼ 48 s
(Fig. 8). This allowed 20 000 simulations to be completed in
∼ 33 wall-clock hours using a 750 W Dell PowerEdge 2950
server with eight 2.83 GHz processors and a total of 32 GB
of RAM.

The model ice geometry is initialized with observed pre-
retreat ice surface elevation (Meier et al., 1985) and inferred
bedrock elevation (McNabb et al., 2012). Prescribed surface
mass balance rate is a source/sink term in the ice flow model.
Basal sliding velocity is also prescribed externally in the ice
flow model. The surface (top) boundary condition of the ice
flow model, the assumption thatτ → 0 at the free surface
of the glacier, is implicit in the first-order formulation of the
Navier-Stokes equations described by Eq. (3). The upstream
(left) boundary condition is a second-type (prescribed flux)
Neumann boundary condition to simulate an ice flow divide
(i.e.Q = 0 atx = 0 km).

The downstream (right) boundary condition at the glacier
terminus is a first-type (prescribed head) Dirichlet boundary
condition, as the ice discharge at the terminus node (Qterm)

is not known. This empirical, and hence site-specific, down-
stream boundary condition is based on the observation that
mean terminus ice cliff height has varied between 80 and
100 m since 1981 (Pfeffer, 2007). In each simulation, the pre-
scribed ice cliff height is randomly selected from a uniform
distribution between 80 and 100 m, to assess model sensi-
tivity. At the conclusion of a time step, terminus position
is explicitly updated as the node downstream of which ice
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1400 W. Colgan et al.: Monte Carlo ice flow modeling

Fig. 4. The ratio between observed ice thickness (H) and wa-
ter depth (Hw) along the main flowline of Columbia Glacier in
2007 (McNabb et al., 2012). Tidewater terminus geometry may
be regarded as stable whenH / Hw ≥ 1.5 and unstable when
H / Hw < 1.5 (Pfeffer, 2007).

surface elevation is less than the prescribed ice cliff height;
all ice downstream of this node is prescribed to calve. While
this calving parameterization honors the observed terminus
ice cliff height of Columbia Glacier, we acknowledge that
it is not physically based, in comparison to parameterizing
calving rate as a function of longitudinal strain-rate (Nick et
al., 2010). We note that an overarching goal of the Monte
Carlo ensemble filter approach is to explore the response of
a diverse population of Columbia Glaciers to a range of tran-
sient forcings, rather than to replicate or isolate an individual
process. Thus, similar to the basal sliding and surface mass
balance rate parameterizations we prescribe, a site-specific
empirical calving parameterization facilitates our exploration
of stable and unstable states of Columbia Glacier.

Total iceberg calving rate (D) is taken as the sum of both
transient ice discharge through the terminus node (Qterm) and
the prescribed change in terminus position due to imposed
iceberg calving:

D = Qterm+
1x

1t

∑
(HiwiH(xi − xcrit)) (8)

where subscripti denotes node index, andH is a Heaviside
function of the form:

H(xi − xcrit) =

{
1 for xi ≥ xcrit
0 for xi < xcrit

}
(9)

where xcrit is the location where ice surface elevation is
equivalent to the prescribed ice cliff height.

While the inclusion of correction factor (F) and glacier
width (w) in the calculation of ice discharge Eq. (2) ac-
count for flow divergence and convergence stemming from
changes in glacier width, by implicitly modifying∂Q / ∂x

Fig. 5.Observed relation between surface mass balance rate (b) and
elevation (z) at Columbia Glacier (solid lines; Mayo, 1984; Tang-
born, 1997; Rasmussen et al., 2011; O’Neel, 2012), and the param-
eterized range used in this study (dashed lines; Eq. 6).

with ∂F / ∂x and∂w / ∂x terms, this parameterization does
not account for the influence of tributaries. The main flow-
line of Columbia Glacier receives discharge from three ma-
jor tributaries: “west” at∼ km 51, “east” at∼ km 38 and
“main-west” at∼ km 29, respectively (Fig. 1). We explic-
itly account for tributary effects by increasing ice inflow at
the junction of each tributary by an amount proportional to
the main flowline ice discharge. This additional ice inflow
is smoothly distributed over several adjacent nodes using a
Gaussian curve (1 km standard deviation). We increase ice
inflow by temporally invariant tunable factors of 80, 25 and
40 % at km 29, 38 and 51, respectively. While these factors
are imposed at tributary junctions, they represent the addi-
tional ice inflow not only from the tributary, but also the
numerous smaller glaciers and cirque basins between trib-
utaries. For example, a comparison of the pre-retreat center-
line velocities of the similar-sized main and main-west trib-
utaries (600 and 300 m a−1, respectively; Meier et al., 1985)
suggests main-west likely contributed an additional 50 % ice
inflow to the main flowline at km 29. There are, however,∼ 6
smaller glaciers/cirque basins between km 0 and 29, which
we estimate to contribute the remaining 30 % additional ice
discharge at km 29.

2.4 Monte Carlo ensemble filtering

We executed a large number of model simulations (20 000)
in order to provide a robust ensemble mean projection of
specific variables of interest, and also assess the cumulative
effect of both parameter and forcing uncertainties. We ran-
domly varied four key model parameters over a wide param-
eter space, two of which influence surface mass balance rate
(bmax andzela), and two of which influence ice flow (α and
ice cliff height). We also randomly varied the main forcing
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parameter, the rate of increase in 900 mb air temperature
(1T / 1t). Each simulation begins with a 500-yr fully tran-
sient spin-up. At the conclusion of this 500-yr spin-up, the
first ensemble selection filter was imposed: only simulations
that reproduced observed pre-retreat (i) mean ice surface el-
evation between km 40 and 60 to within±100 m (Meier et
al., 1985) and (ii) terminus position (xterm) to within ±2 km
(Meier et al., 1985) were selected to carry forward into a 250-
yr transient forcing period. Simulations that did not satisfac-
torily reproduce features (i) and (ii) were discarded. The wide
parameter space of the selected ensemble of simulations pro-
duced a population of modelled Columbia Glaciers of vary-
ing sensitivities (where “sensitivity” is broadly defined as
mean ice reservoir overturn time in the spirit of Johannes-
son et al., 1989). Relatively high basal sliding and surface
accumulation simulations yielded glaciers with lower mean
ice reservoir overturn time than relatively low basal sliding
and surface accumulation simulations.

During the subsequent 250-yr transient forcing period, this
selected population of glaciers was forced by a wide range of
rates of increase in equilibrium line altitude. A second en-
semble selection filter was imposed to discard simulations in
which retreat did not initiate within 100 yr of forcing onset.
As retreat initiated at different times between simulations,
the floating model time of the twice selected simulations (i.e.
those which accurately reproduced pre-retreat glacier geom-
etry and initiated retreat within 100 yr of forcing onset), was
transposed to real time by a least-squares fit between mod-
elled and 24-yr observed terminus position histories. Subject-
ing the selected population of glaciers, with varying climatic
sensitivities, to a wide range of climatic forcings produced
a robust ensemble mean history and projection for a number
of observable variables including: equilibrium line altitude,
terminus position, velocity at km 50 and iceberg calving rate.
The spread across the selected ensemble provides a robust
measure of the cumulative uncertainty resulting from both
parameter and forcing uncertainties.

3 Results

An inherent trade-off exists between the number of simula-
tions selected and the size of the parameter space; a larger
parameter space decreases the probability that a given sim-
ulation will achieve selection criteria but increases the ro-
bustness of the ensemble mean. Of the 20 000 Monte Carlo
simulations initialized, 3022 (∼ 15 %) passed the first selec-
tion filter at the end of the 500-yr transient spin-up and were
carried forward into the 250-yr transient forcing period. The
remaining 16 978 simulations (∼ 85 %), which failed to re-
produce observed pre-retreat ice geometry at the end of spin-
up, were not carried forward into the transient forcing period.
Of the 3022 simulations carried forward, 353 were discarded
by the second selection filter, as they did not exhibit a re-
treat within 100 yr of the onset of forcing. Thus, 2669 simula-

Fig. 6.Mean melt season (1 April to 30 September) 900 mb air tem-
perature (T ) over the 1871 to 2008 period at Columbia Glacier ex-
tracted from the Twentieth Century Reanalysis V2 data provided by
NOAA/OAR/ESRL PSD (Compo et al., 2011). Inset: Correspond-
ing histogram and non-parametric distribution of annual variability
in 900 mb air temperature (1T / 1t).

tions (∼ 13 %) passed both ensemble selection filters. The se-
lected ensemble exhibited a slight preference for terminus ice
cliff height < 92 m, in comparison to ice cliff height> 93 m
(Fig. 9). We regard this sensitivity as low, however, as the
mean terminus ice cliff height of the selected 2669 simula-
tions is only 2 m less than the mean ice cliff height initially
prescribed to all 20 000 simulations.

The selected simulations contain the full range of initial
equilibrium line altitude values (650 to 850 m) and maxi-
mum surface mass balance rate values (3.0 to 6.0 m a−1) over
a wide range of basal sliding velocities (Fig. 10). The popu-
lation of selected simulations appears to exhibit a preference
for high sensitivity simulations (i.e. relatively high maximum
surface mass balance rate (or accumulation rate) and basal
sliding values and relatively low equilibrium line altitude) in
comparison to low sensitivity simulations (i.e. relatively low
maximum surface mass balance rate (or accumulation rate)
and basal sliding values and high equilibrium line altitude).
We note that only 5 % of the selected simulations exhib-
ited a maximum surface mass balance rate< 4.5 m a−1. We
interpret this as the minimum high elevation accumulation
rate required for sufficient mass input to maintain Columbia
Glacier’s pre-retreat geometry.

Both the ice surface elevation and velocity profiles of the
selected simulations at the conclusion of transient spin-up,
taken to be representative of the pre-retreat profiles, com-
pare well with 1977/78 observed ice surface elevation and
velocity profiles interpolated at every second kilometer along
the main flowline of Columbia Glacier (Meier et al., 1985;
Fig. 11). While the ensemble mean modelled velocity profile
generally captures the shape of the observed velocity pro-
file, some discrepancies exist. Firstly, the modelled profile
fails to capture the localized velocity influence of an icefall at
∼ km 23. The failure of the model to adequately represent the
complex physics at an icefall, where significant crevassing
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Fig. 7. Synthetic annual (1t = 1 a) variability in equilibrium line
altitude (1zela) over 10 000 yr, generated using the1T / 1t distri-
bution shown in Fig. 6 and a lapse rate (1T / 1z) of 6.7 K km−1.
The corresponding decadal and centurial variability are also shown
(1t = 10 and 100 a, respectively). Inset: Histogram and normal dis-
tribution (mean = 0 m; standard deviation = 30 m) of decadalzela
perturbations (δzela).

occurs, likely stems from the momentum balance approxi-
mation employed; the assumption of continuum mechanics
is not valid where ice becomes discontinuous. Secondly, the
modelled profile underestimates surface ice velocity in the
vicinity of km 35. This is likely due to an underestimation
of local convergence. This suggests that the measured dis-
tance between lateral shear zones may not be a good proxy
for glacier channel width in the vicinity of km 35. Finally,
the modelled ice velocity at km 66 (the terminus) slightly
underestimates the velocity assessed by Meier et al. (1985).
We note that the 1977/78 velocity observations downstream
of ∼ km 62 are not in situ, but rather extrapolated from up-
stream photogrammetric values (Meier et al., 1985).

In addition to achieving good agreement with observed
pre-retreat ice surface elevation and velocity profiles, the
modelled ensemble mean time-series of equilibrium line al-
titude, terminus position, ice velocity at km 50 and calv-
ing rate also agree well with previously published observed
and inferred records (Mayo, 1984; Tangborn, 1997; Krim-
mel, 2001; Rasmussen et al., 2011; O’Neel, 2012; Fig. 13).
We note that these previously published equilibrium line alti-
tudes represent period means, and are therefore constant over
their respective time intervals, while our modelled equilib-
rium line altitude is transient. The combination of (i) a 200 m
depression of equilibrium line altitude to simulate “cooler”
climate during spin-up, and (ii) an air temperature forcing of
between 0.0057 and 0.0262 K a−1 (combined with a mean lo-
cal environmental lapse rate of 6.7 K km−1), produces an en-
semble mean equilibrium line altitude that agrees well with
observed contemporary equilibrium line altitude. If climate
forcing persists at its current rate, the mean equilibrium line
altitude at Columbia Glacier will be∼ 1200 m by the year
2100.

Fig. 8. Histogram of processor time per simulation of the 20 000
Monte Carlo simulations. The dashed line denotes the ensemble
mean (48 s). The bimodal distribution is due to the greater compu-
tational requirements of simulations selected to carry forward into
transient forcing following spin-up (B) in comparison to those that
were not selected (i.e. discarded following spin-up;A).

The ensemble mean suggests that Columbia Glacier will
achieve a new stable terminus position at∼ km 42 (near the
grounding line) c. 2020, and maintain this terminus position
until at least 2100 (Fig. 13). While modeled ice geometry is
sensitive to the prescribed basal sliding velocity profile, we
note that we prescribe a wide range of basal sliding velocity
profiles to the ensemble of simulations and find the selected
profiles to closely match observed profiles over the observa-
tional period. We acknowledge, however, that the future ice
geometry we project is highly dependent on the assumption
that the prescribed stability criterion (H / Hw) is time inde-
pendent. At present, empirical evidence suggests that the sta-
bility criterion we have selected is representative of several
well-studied glaciers over a wide range of time periods (Pf-
effer, 2007). The modelled time-series of transient terminus
position may suggest a slightly faster retreat than observed.
We regard any discrepancy in retreat rate as within uncer-
tainty across the ensemble, defined by the envelope of Monte
Carlo simulations, and discuss possible causes of a slight
mismatch in Sect. 4. Differences between the 1977/78 and
2100 ice surface elevation and velocity profiles are generally
restricted to the region downstream of the km 35 convergence
with the main-west tributary (cf. Fig. 11b, d). The absence of
significant changes to ice geometry and velocity upstream of
the km 23 icefall, both prior to and after retreat, is notewor-
thy (Fig. 12). The apparent stability in both ice geometry and
velocity upstream of the icefall are direct consequences of
the assumption of a time independent tidewater stability cri-
terion. With a bedrock elevation of 1240 m above sea level at
the km 23 ice fall, however, we speculate that rapid changes
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in basal sliding velocity associated with tidewater instability
are unlikely to occur above the ice fall.

The ensemble mean time-series of surface ice velocity
at km 50 generally reproduces the magnitude of velocity
changes observed at km 50 (Krimmel, 2001; Fig. 13). The
ensemble of simulations indicate that the surface ice velocity
at km 50 increases by a factor of between 2.5 and 5.0, relative
to pre-retreat (i.e. 1977/78) velocities, between the onset of
retreat and the time when the terminus retreats upstream of
km 50. The finer features of the km 50 velocity record, how-
ever, such as the precise timing of acceleration and temporal
velocity inflections, are not well reproduced. We note that
surface ice velocity essentially reflects basal sliding velocity
in the ablation zone of Columbia Glacier (Kamb et al., 1994;
Pfeffer, 2007), and despite employing a rather simple basal
sliding parameterization, this model framework achieves a
good agreement between observed and modelled ice velocity
at km 50.

The ensemble mean iceberg calving rate time-series sug-
gests that iceberg calving will “turn off” (i.e. return to dy-
namic equilibrium values) c. 2020, when a new stable ter-
minus position is achieved, just as quickly as iceberg calv-
ing “turned on” at the initiation of retreat c. 1983 (Fig. 13).
Thus, the total response time of Columbia Glacier to the re-
treat initiated by contemporary climate forcing is expected to
be∼ 40 yr. There is good agreement between ensemble mean
modelled and inferred iceberg calving rate until c. 1995. Af-
ter c. 1995, modelled calving rate begins to decrease, slowly
until c. 2005 and then more quickly until c. 2020, while
inferred calving remains elevated until at least 2007 (Ras-
mussen et al., 2011). This discrepancy likely stems from
compounding errors during the calculation of iceberg dis-
charge. The decrease in modelled iceberg calving rate coin-
cides with a c. 2002 minima in bothF andw (Fig. 14). Any
errors inF andw are compounded when calculating iceberg
calving rate Eqs. (2) and (8).

The calving term also compounds uncertainty in the two
statistical parameterizations used to represent basal sliding
velocity and change in terminus position due to iceberg calv-
ing. While these statistical parameterizations achieve good
first-order agreement with ice geometry and velocity obser-
vations, they are undeniably less robust than first-principles
physically based parameterizations. Finally, part of the dis-
crepancy between modelled and inferred calving rate is
due to the fact that the inferred rate pertains to the entire
Columbia Glacier complex, both the west and main branches,
while the modelled calving rate only applies to the main
branch once the terminus retreats upstream of the km 51 con-
fluence. This distinction, however, should only result in dis-
crepancy after c. 2005, when the terminus position retreats
upstream of km 51.

Fig. 9.Prescribed terminus ice cliff height in the selected ensemble
of simulations. Dashed line denotes the ensemble mean (88 m).

4 Discussion

4.1 Model limitations

While five diverse observed datasets – (i) pre-retreat ice sur-
face elevation profile, (ii) pre-retreat ice surface velocity pro-
file, (iii) contemporary surface mass balance rate profile and
mean equilibrium line altitude, (iv) time-series of terminus
position, (v) time-series of surface ice velocity at km 50 fol-
lowing the onset of retreat – are reasonably well reproduced
by the model, the 1-D flowline model does not accurately
reproduce iceberg calving rate after c. 1995.

We note that our modelled time-series are derived from
a mass conserving numerical framework, unlike the diverse
observed and inferred time-series. Consequently, modelled
iceberg calving rate and ice velocity are interdependent. Ac-
knowledging this interdependence, we opt to match the time-
series of observed ice velocity at km 50 at the expense of the
time-series of inferred iceberg calving rate.

While the ensemble of simulations selected based on ice
geometry does not appear to be sensitive to the prescribed
ice cliff height, ice cliff height and calving flux are clearly
related. For example, ice discharge would be 20 % greater
through a 100 m ice cliff at flotation, than an 80 m ice cliff
at flotation. While our modelling framework prescribes a
variety of ice cliff heights across the simulations, ice cliff
height is constant in a given simulation. Photographic anal-
ysis, however, suggests that terminus ice cliff height has
not been constant during the retreat of Columbia Glacier
(E. Welty, personal communication). The failure to acknowl-
edge that ice cliff height reached a maximum in the Kadin-
Great Nunatak (K-GN) gap at km 53 is expected to result in a
proportional underestimation of calving flux during this pe-
riod.
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Fig. 10.Equilibrium line altitude (zela), maximum surface mass bal-
ance rate (bmax; or accumulation rate) and mean basal sliding ve-
locity between km 50 and 60 (ub) in the selected ensemble of 2669
simulations. Dashed line denotes the fifth percentile of accumula-
tion rate of the selected ensemble of simulations.

The 1-D flowline model also suffers from inherent lim-
itations in the treatment of: (i) lateral effects (i.e. conver-
gence/divergence due to complex bed topography/tributaries)
and (ii) glacier density. Complex lateral effects stemming
from bed topography are a significant issue in the vicinity of
the K-GN bedrock constriction at km 53. The lateral effects
stemming from bedrock topography at the constriction are
complicated by the lateral effects of converging ice flow from
the west tributary immediately upstream (km 50 to 53). The
K-GN bedrock constriction is represented in the model by a
minimum glacier width of 3 km prescribed at km 53, based
on the distance between lateral shear margins in the 1977/78
ice surface velocity map (Meier et al., 1985; Fig. 14). The
aerial photography record has revealed the emerging bedrock
topography of the K-GN gap exposed by thinning ice. The
total pre-retreat glacier width of 5 km at km 53 has now de-
clined by 60 %, to just 2 km between the bedrock shores of
the now ice-free K-GN gap (Fig. 1). Changes in glacier width
over the retreat period are not as pronounced elsewhere along
the flowline. While employing a transient correction factor,
i.e.F(w(t),H(t)) rather than a constant correction factor, i.e.
F(w,H) may offer some potential to refine the treatment of
a bedrock constriction in a flowline model, it would not im-
prove the treatment of tributary convergence. A 2-D (plan
view) model offers a better potential to improve the treatment
of the bedrock constriction than further parameterization of
a 1-D (flowline) model. Generally, however, even with 1-D
limitations of lateral effects, the ice geometry and timing of
retreat is reasonably well reproduced as the glacier retreats
through the bedrock constriction.

Similar to previous Columbia Glacier modeling investi-
gations (O’Neel et al., 2005; Nick et al., 2007) we assume
that glacier density is constant in space and time (taken as
900 kg m−3). At Columbia Glacier, however, observations

suggest that heavy crevassing can result in extremely low
bulk glacier densities in the ablation zone (e.g.< 700 kg m−3

in the top 85 m of ice at km 63.7; Meier et al., 1994). Fur-
thermore, these observations, as well as anecdotal evidence,
suggest that the ablation zone of Columbia Glacier has be-
come progressively more crevassed since the retreat began
c. 1983 (Meier et al., 1994). Continuity calculations sug-
gest that glacier density decreases by∼ 20 % as ice flows
downstream from the bedrock constriction at km 53 to the
glacier terminus, achieving depth-averaged bulk glacier den-
sities as low as 750 kg m−3 (Venteris, 1997). Thus, in real-
ity, glacier density at Columbia Glacier is neither constant
in time nor space. This has important consequences for an
ice flow model predicated on mass conversation with invari-
ant density. For example, an increase in bulk glacier density
over time would result in an increase in ice volume over
time, which would decrease the apparent modelled rate of
terminus retreat (i.e. the upstream migration of the terminus
due to calving would be offset by the volumetric expansion
of remaining ice). Temporally variable glacier density, stem-
ming from changes in crevasse spacing or extent, is expected
to influence both surface mass balance rate and ice dynam-
ics (Colgan et al., 2011). Spatially and temporally transient
glacier density, however, is not incorporated in even the most
sophisticated ice flow models, including Elmer (Gagliardini
and Zwinger, 2008), Community Ice Sheet Model (CISM;
Lipscomb et al., 2009) and Parallel Ice Sheet Model (PISM;
Bueler and Brown, 2009). It is not immediately apparent how
to derive an appropriate equation of state, or even statistical
parameterization, that would allow rate of change of glacier
density to be incorporated into the mass continuity equation.

Time-lapse photography of Columbia Glacier’s flow just
upstream of the K-GN gap at km 53 provides a compelling
visualization of the complex flow we are modelling with
a 1-D flowline model (Movie 1). The time-lapse photog-
raphy, compiled from Extreme Ice Survey photographs ob-
tained over the 12 May 2007 to 18 April 2012 period, espe-
cially highlights the prevalence of crevasses in the Columbia
Glacier ablation zone. Given the evident complexity of ice
flow just upstream of the K-GN gap, it is encouraging that
the 1-D flowline model framework reasonably reproduces the
observed terminus retreat rate through the reach documented
by Movie 1, as well as the ice velocity observed at km 50, just
upstream from the camera position. The time-lapse photog-
raphy also illustrates the complexity of the discrete iceberg
calving events being parameterized. We find that time lapse
photography provides not only unique insight to the entirety
of complex glaciological processes, but also qualitative val-
idation of model parameterizations employed to capture the
form and flow of Columbia Glacier during its highly transient
retreat.
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Fig. 11.Modelled (grey lines with ensemble mean in black) and observed (points; Meier et al., 1985) ice surface elevation (zs) and ice surface
velocity (us) along the Columbia Glacier main flowline (x) in 1977/78 (pre-retreat;A andB) and in 2100 (post-retreat;C andD).

4.2 Projecting sea level rise

Forecasting the cryospheric contribution to sea level rise
over the next century is a task of paramount importance for
the glaciology community. At present, climatically-forced
projections of the small glacier and ice cap contribution
to global sea level rise have been restricted to the sur-
face mass balance component (Raper and Braithwaite, 2006;
Radiæ and Hock, 2011), ignoring the potential contribu-
tion due to ice dynamics (primarily due to the paucity of
data required to initialize and validate ice flow models,
and secondarily due to the computational expense associ-
ated with solving the transient equations for ice flow for
a large population of glaciers). Rule-based projections of
land ice mass change, including, but not limited to, statisti-
cal extrapolations, have been applied to both ice sheets (e.g.
Velicogna, 2009; Rignot et al., 2011) and small glaciers and
ice caps (e.g. Meier et al., 2007; Pfeffer et al., 2008). These
projections extrapolate future sea level rise contributions
from trends contained in the observed record, and include
both climatically-controlled surface mass balance changes
and dynamic-controlled changes in calving rate. Our present
study of Columbia Glacier serves as a reminder that cau-
tion should be exercised when performing such projections
(e.g. Price et al., 2011). While the absolute magnitude of our
modelled iceberg calving rate does not agree precisely with
observations after c. 1995, the good agreement between ob-
served and modelled ice geometry and velocity lends high
confidence to the general timing and shape of iceberg calv-
ing rate projection. Thus, it is very likely that the iceberg
calving rate of Columbia Glacier will indeed “turn off” (i.e.
return to a stable dynamic equilibrium value) c. 2020 just
as quickly as it “turned on” c. 1983 (Figs. 12 and 13). This

exemplifies how a statistical extrapolation of pre-2000 trends
into the post-2000 period could lead to erroneous projections.
As iceberg calving rate is not a “state” variable (i.e. a vari-
able capable of predicting the future behavior of a system),
extrapolating past mass loss rates that are primarily based on
iceberg calving is not robust, as rapid changes in ice dynam-
ics can result in decade-scale transitions between stable and
unstable states.

We estimate the remaining response of Columbia Glacier
to the rapid retreat initiated c. 1983 by comparing the total
sea level rise contributions of the model domain in the 2007–
2100 and 1957–2100 periods. We can calculate the total an-
ticipated sea level rise contribution from the model domain
(i.e. the main flowline of Columbia Glacier) between 2007
and 2100 by quantifying the difference in ice volume (δV )

between the inferred 2007 ice thickness (H2007; McNabb et
al., 2012) and the ensemble mean modelled 2100 ice thick-
ness (H2100), according to

δV =

∫
w(x)(H2100(x) − H2007(x)) · dx . (10)

This formulation projects a total sea level rise contribution
of 16.0 km3 from the main flowline model domain over the
2007 to 2100 period. This estimate excludes all ice-covered
areas outside the main flowline model domain (i.e. adjacent
small glaciers, cirques and tributaries). An analogous cal-
culation with the inferred 1957 ice thickness (McNabb et
al., 2012) indicates a total comparable sea level rise contribu-
tion of 89.7 km3 over the 1957 to 2100 period. Differencing
these values suggests that, by 2007, Columbia Glacier had
already discharged∼ 82 % of the total sea level rise contri-
bution anticipated by 2100 (i.e. 73.7 of 89.7 km3). As the
pseudo area of the 1-D flowline model (i.e.∫w(x)·dx) is

www.the-cryosphere.net/6/1395/2012/ The Cryosphere, 6, 1395–1409, 2012



1406 W. Colgan et al.: Monte Carlo ice flow modeling

Fig. 12. Modelled time-space evolution of ensemble mean rate of
change of ice thickness (∂H / ∂t) and surface ice velocity (us) along
the Columbia Glacier main flowline (x) between 1970 and 2100.
Colorbars saturate at−100 m a−1 and 2000 m a−1, respectively.
The black line denotes the ensemble mean terminus position over
the period.

only a fraction of the total ice-covered area of the Columbia
Glacier complex (∼ 260 of∼ 910 km2; McNabb et al., 2012),
these numbers are gross underestimates of the absolute val-
ues of the sea level contribution of the entire ice complex
(which was 160 km3 over the 1957–2007 period; McNabb et
al., 2012). They do, however, illustrate that the majority of
the response of Columbia Glacier to the terminus perturba-
tion initiated c. 1983 has been completed. While this exercise
is similar to the concept of “committed sea level rise” (Price
et al., 2011), it differs slightly by maintaining a climate forc-
ing throughout the entire transient simulation.

5 Summary remarks

We apply a 1-D (depth-integrated) flowline model to
Columbia Glacier that incorporates longitudinal coupling
stresses and statistical parameterizations for basal sliding and

Fig. 13. Modelled (grey lines with ensemble mean in black) and
observed or inferred (points; Mayo, 1984; Tangborn, 1997; Krim-
mel, 2001; Rasmussen et al., 2011; O’Neel, 2012) time-series of
equilibrium line altitude (zela; A), terminus position (xterm; B), ice
surface velocity at km 50 (u50

s ; C) and inferred calving flux (D; D)
at Columbia Glacier over the 1850 to 2100 period.

iceberg calving. A computationally efficient implementation
allows Monte Carlo simulations to be executed over a wide
parameter space to produce robust histories and projections
of variables of interest, as well as assess the cumulative ef-
fect of both parameter and forcing uncertainty. Ensemble se-
lection filters are imposed at: (i) the conclusion of spin-up, to
ensure an accurate reproduction of pre-retreat glacier geome-
try, and (ii) 100 yr into the forcing period, to ensure terminus
retreat has initiated. The resultant twice selected ensemble of
simulations reproduces several observed datasets within the
uncertainty envelope defined by the ensemble range. Inferred
iceberg calving rate is not well reproduced in the vicinity of
the K-GN bedrock constriction at km 53. A 2-D (plan-view)
model is required to resolve the complexities of ice flow in
this region. It is not clear, however, how the issue of signif-
icant glacier density transience, if indeed occurring, may be
resolved with a modeling approach predicated on a contin-
uum mechanics momentum balance (i.e. the assumption that
ice does not become discontinuous at any time or place).

The ensemble mean projection suggests that Columbia
Glacier will achieve a new stable ice geometry c. 2020, by
which time iceberg calving rate will have decreased to a
dynamic equilibrium value much lower than that observed
during the highly transient 1990s and 2000s. Comparison
of the pre-retreat (1957) and 2007 glacier geometries with
the projected 2100 glacier geometry suggests that, by 2007,
Columbia Glacier had already discharged∼ 82 % of the total
sea level rise contribution expected by 2100. As the model
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Fig. 14. Ensemble mean time-series of terminus glacier width
(wterm) and correction factor (Fterm).

suggests a short response time (∼ 40 yr) between the initial
perturbation of the tidewater terminus (c. 1983) and the at-
tainment of a new dynamic equilibrium geometry (c. 2020),
this case study highlights the difficulties associated with ex-
trapolating glacier mass loss estimates that are dominated by
iceberg calving into the future.

As Columbia Glacier is the single biggest contributor to
sea level rise from Alaska, knowledge of its individual re-
sponse to highly transient contemporary climate change is
useful for predicting the response of the Alaskan tidewa-
ter glacier population. Based on the sheer magnitude of
pre-retreat Columbia Glacier, in terms of ice-covered area
(∼ 1070 km2), ice thickness (up to 975 m) and bedrock over-
deepening (up to 525 m), it has been suggested that Columbia
Glacier may be considered analogous to a marine-based ice
sheet (Molnia, 2008). Thus, understanding and predicting
the response of Columbia Glacier to contemporary climate
change likely also has value in anticipating the response of
the ice sheets.

Appendix A

Variable notation: units and constant values shown in
parentheses

Variable Definition (units)

α basal sliding scaling length (km)
γ ablation gradient (0.0085 a−1)
ρ glacier density (900 kg m−3)

τ driving stress (Pa)
τ ′

xx depth-averaged longitudinal stress (Pa)
ζ centerline curvilinear coordinate system (km)
H calving criterion Heaviside function
A flow law parameter (140 MPa−3 a−1)

Variable Definition (units)

D iceberg calving rate (m3 a−1)
F correction factor
H ice thickness (m)
H2007 year 2007 ice thickness (m)
H2100 year 2100 ice thickness (m)
Q ice discharge (m3 a−1)
Qterm terminus ice discharge (m3 a−1)
T air temperature (K)
V ice volume (m3)

b annual surface mass balance rate (m a−1)
bmax maximum annual surface mass balance

rate (m a−1)
g gravitational acceleration (9.81 m s−2)

k dimensional coefficient (1 m a−1)
n flow law exponent (3)
t time (a)
ub basal sliding velocity (m a−1)
us ice surface velocity (m a−1)
w glacier width (m)
x flowline position downstream (m)
xterm terminus flowline position (m)
z elevation (m)
zela equilibrium line altitude (m)
zs ice surface elevation (m)

Supplementary material related to this article is
available online at:http://www.the-cryosphere.net/6/
1395/2012/tc-6-1395-2012-supplement.zip.
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Contribution of Alaskan glaciers to sea-level rise derived from
satellite imagery, Nat. Geosci., 3, 92–95,doi:10.1038/ngeo737,
2010.

Bindoff, N., Willebrand, J., Artale, V., Cazenave, A., Gregory,
J., Gulev, S., Hanawa, K., Le Quéŕe, C., Levitus, S., Nojiri,
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