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Abstract. Hydrographic data acquired in Kangerdlugssuaq
Fjord and adjacent seas in 1993 and 2004 are used together
with reanalysis from the NEMO ocean modelling framework
to elucidate water-mass change and ice-ocean-atmosphere
interactions in East Greenland. The hydrographic data show
that the fjord contains warm subtropical waters and that fjord
waters in 2004 were considerably warmer than in 1993. The
ocean reanalysis shows that the warm properties of fjord wa-
ters in 2004 are related to a major peak in oceanic shoreward
heat flux into a cross-shelf trough on the outer continental
shelf. The heat flux into this trough varies according to sea-
sonal exchanges with the atmosphere as well as from deep
seasonal intrusions of subtropical waters. Both mechanisms
contribute to high (low) shoreward heat flux when winds
from the northeast are weak (strong). The combined effect of
surface heating and inflow of subtropical waters is seen in the
hydrographic data, which were collected after periods when
along-shore coastal winds from the north were strong (1993)
and weak (2004). The latter data were furthermore acquired
during the early phase of a prolonged retreat of Kangerd-
lugssuaq Glacier. We show that coastal winds vary according
to the pressure gradient defined by a semi-permanent atmo-
spheric high-pressure system over Greenland and a persistent
atmospheric low situated near Iceland. The magnitude of this
pressure gradient is controlled by longitudinal variability in
the position of the Icelandic Low.

Correspondence to:P. Christoffersen
(pc350@cam.ac.uk)

1 Introduction

The mass balance of the Greenland Ice Sheet has changed
from a state close to balance in the 1980s and 1990s (Rignot
et al., 2008; Hanna et al., 2005) to a state where net annual
losses exceed 200 Gt yr−1 (Rignot and Kanagaratnam, 2006;
Velicogna and Wahr, 2006; Chen et al., 2006; Rignot et al.,
2008; van den Broeke et al., 2009). This ice loss is equivalent
to a global sea-level rise of∼0.6 mm yr−1 and there is con-
cern that future losses could accelerate substantially (IPCC,
2007). Up to 2/3 of a total net ice loss of 220 Gt in 2005
was caused by the acceleration of tidewater glaciers (Rig-
not and Kanagaratnam, 2006). Several large glaciers have
subsequently slowed down, most notably Helheim Glacier
and Kangerdlugssuaq Glacier (KG) on the east coast (Howat
et al., 2007). However, van den Broeke et al. (2009) show
that dynamic losses from discharge of ice into fjords still
amount to∼50 % of the total net ice loss when the reduced
discharges after 2005 are taken into account. In recent years,
nearly 75 % of the net annual imbalance from discharge has
come from southeast Greenland (van den Broeke et al., 2009)
where glacier fluctuations have been large and synchronous
(Luckman et al., 2006; Stearns and Hamilton, 2007; Joughin
et al., 2008a; Howat et al., 2008). While ice sheet surface
melt is known to influence ice flow (Zwally et al., 2002)
and cause diurnal fluctuations in flow speed (Shepherd et al.,
2009), the effect of surface melt appears limited on interan-
nual time scales (van de Wal et al., 2008; Sundal et al., 2011).
The sustained increase in discharge of ice, most significantly
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Fig. 1. (a) Map of central East Greenland and regions near Denmark Strait (DS). KG, KFj and KTr mark locations of Kangerdlugssuaq
Glacier, Kangerdlugssuaq Fjord and Kangerdlugssuaq Trough. White solid line shows hydrographic transect for the vertical sections shown
in (b) (1993) and(c) (2004). Black box represents the area used to compute temperature and salinity at depth. The yellow line is a transect
used to calculate variations in oceanic heat flux. Dashed arrows illustrate paths of the Irminger Current (IR), East Greenland Current (EGC)
and East Greenland Coastal Current (EGCC). Colours illustrate whether currents are warm (red) or cold (white). Contours mark bathymetry
in 500 m intervals and the background colour scheme shows sea-surface temperature in August 2004 from Oceancolor SST climatology.
Black dots mark location of Tasiilaq (T) and Stykkishólmur (S).(b) Vertical section showing potential temperature of water masses in KFj
and KTr in September 1993.(c) Same as(b), but for observations in September 2004. The topographic overlay is the observed bathymetry
in KFj and along KTr.

from eastern tidewater glaciers, may therefore be related to
oceanic conditions (Sole et al., 2008; Straneo et al., 2010;
Seale et al., 2011).

Coastal waters in West Greenland have warmed since 1996
(Holland et al., 2008) and the warming may be related to in-
creased transport of subtropical waters to the Irminger Sea
(Falina et al., 2007; Sarafanov et al., 2007, 2009; Yashayaev
et al., 2007). The latter occurred when the North Atlantic
Oscillation (NAO) switched from a strong phase in 1993–
1995 to a weak state in 1996, resulting in slowdown and
contraction of the subpolar North Atlantic gyre (Flatau et
al., 2003; Hakkinen and Rhines, 2004). As a consequence,
warmer and larger volumes of subtropical waters entered the
Irminger Sea and thus the Irminger Current, which splits near
Denmark Strait. A small branch flows clockwise around Ice-
land while the larger branch flows southward along the East
Greenland continental shelf edge (Fig. 1).

Although recent studies have suggested a sensitive inter-
action of the Greenland Ice Sheet with its surrounding seas
(Holland et al., 2008; Rignot et al., 2010; Murray et al.,
2010), ice-ocean interactions in Greenland remain uncertain
and poorly documented. It is not yet clear if recent changes in
the flow of tidewater glaciers were caused by increased trans-
port of warm subtropical waters to coastal environments and
fjords or by changes in the properties of these waters. The
influence of air-sea heat exchange associated with sustained
atmospheric warming, e.g. as reported by Box et al. (2009),
is also not firmly established.

Here, we use hydrographic data acquired in Kangerd-
lugssuaq Fjord (KFj) and adjacent seas in 1993 and 2004, to-
gether with reanalysis from the Nucleus for European Mod-
elling of the Ocean (NEMO), to establish the connection be-
tween ice-ocean interaction in a glaciated fjord and offshore
air-sea interactions. The hydrographic datasets are unique in
that they were acquired when the NAO was strong (1993)
and weak (2004), respectively. The latter data were further-
more acquired during the early stage of the rapid and well-
documented retreat of KG. In 1993, we found cold polar
surface water (<0◦C) as well as strongly modified and rela-
tively cold water with subtropical origin (∼1◦C or less). The
subtropical waters extended further into the fjord in 2004 and
the waters were less modified, warmer (∼1.8◦C or more) and
located∼100 m higher than in 1993, whilst polar surface wa-
ter was up to 4◦C warmer than in 1993.

The reanalysis shows that oceanic heat flux directed to-
wards KFj in 2003–2004 is several times higher than the heat
flux of preceding years, and it peaks about one year prior to
the abrupt retreat of KG. The heat flux varies according to
seasonal heat exchange with the atmosphere as well as from
deep seasonal inflows of subtropical waters onto the shelf.
Both mechanisms contribute to high (low) shoreward heat
flux when winds from the northeast are weak (strong) and
warm (cold). The combined effect of surface heating and
the deeper inflow of subtropical waters is consistent with the
hydrographic data, which was collected after periods when
northerly winds were strong (1993) and weak (2004).
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2 Data and methods

2.1 Hydrographic surveys

Hydrographic data from KFj and from transects along
the submarine trough known as Kangerdlugssuaq trough
(KTr) were acquired during 4–16 September 1993 and 1–10
September 2004 (Fig. 1a). A Sea-Bird 19 with conductivity,
temperature and depth (CTD) sensor was used in 1993 to de-
rive salinity and potential temperature at five stations along
KTr, from the mouth of KFj to the continental shelf break
(Fig. 1a), and in three stations located in the central upper
part of the fjord near KG (Fig. 3a) (Azetsu-Scott and Tan,
1997). A Sea-Bird CTD sensor was also used in 2004 to de-
rive the salinity and potential temperature of water masses.
The difference in station locations in the upper part of KFj
(Fig. 3a) was a result of a high concentration of icebergs pro-
duced by KG in July and August 2004, i.e. during the early
phase of the prolonged retreat that lasted until March 2005.
Salinity and temperature sensors were calibrated prior to data
acquisition. Salinity was further calibrated in 2004 using
salinity samples collected at each station from the rosette wa-
ter sampler mounted on the CTD frame. The bathymetry of
KFj and the adjacent East Greenland shelf and its cross-shelf
trough (KTr) are from Syvitski et al. (1996) and Dowdeswell
et al. (2010).

2.2 Ocean reanalysis

The interannual variations of subsurface waters along the
East Greenland continental shelf is examined using a 22-
year-long ocean reanalysis (1987–2008) from the NEMO
coupled ocean modelling framework version 2.3 (Madec,
2008). The reanalysis is produced by the OPA9 ocean model
and the LIM2.0 sea ice model (Fichefet and Maqueda, 1997;
Goosse and Fichefet, 1999) with eddy-permitting1/4 de-
gree resolution on the tripolar ORCA025 grid (Barnier et
al., 2006). The ocean model simulation is referred to as
reanalysis (rather than a hindcast) because it assimilates in
situ measurements of temperature and salinity. The model
has 46 vertical levels with thicknesses ranging from 6 m at
the surface to 250 m at the ocean floor. The deep (>300 m)
bathymetry at1/4 degree resolution is constructed from the
2-minute ETOPO global bathymetric field from the National
Geophysical Data Centre, while shallower regions on conti-
nental shelves are approximated with the GEBCO 1-minute
bathymetry.

Surface atmospheric forcing for the reanalysis is the
DRAKKAR Forcing Set 3 (Brodeau et al., 2010), a hybrid
dataset making use of the ERA-40 atmospheric reanalysis,
ECWMF operational analyses and the Common Ocean Ref-
erence Experiment dataset (Large and Yeager, 2004). The
parameter settings of the eddy-permitting1/4 degree res-
olution NEMO ocean model are discussed by Barnier et
al. (2006) and Penduff et al. (2010).
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Fig. 2. Map of Greenland and the Irminger Sea with yellow
dots showing location of in situ salinity and temperature measure-
ments assimilated in the ocean reanalysis (see text for details).
White arrow marks location of KFj and background colour shows
bathymetry of the ocean.

The model experiment used for this analysis is referred
to as UR025.1. In situ temperature and salinity obser-
vations from the UK Met Office quality controlled EN-
ACT/ENSEMBLES dataset EN3-v1c (which includes data
from the World Ocean Database 2005 (www.nodc.noaa.gov/
OC5/WOD05/prwod05), the Global Temperature-Salinity
Profile Program (http://www.nodc.noaa.gov/GTSPP/) and
Argo (http://www.argo.net)) are assimilated using the S(T)
method (Haines et al., 2006). This limits model bias and
results in more accurate representation of water mass proper-
ties (Gemmell et al., 2008, 2009; Smith et al., 2010). There
is a good coverage of temperature and salinity observations
from the outer shelf region of southeast Greenland and the
Irminger Sea (Fig. 2), making this ocean reanalysis appro-
priate for the purposes of this study.

3 Results

3.1 Hydrographic observations from KFj and KTr

We identify four different water masses with properties simi-
lar to those characterised by Rudels et al. (2002) and Suther-
land and Pickart (2008). In 1993, Atlantic Water (AW) with
potential temperatureθ> 2 ◦C and salinityS ∼35 penetrated
beneath cold Polar Surface Water (PSW) withθ< 0 ◦C and
S < 32 (Fig. 1b). The densest water on the shelf was Po-
lar Intermediate Water (PIW) with potential density ofσ θ >

27.9 compared with 27.55< σ θ < 27.75 for AW andσ θ <

27.7 for PSW. Inside KFj (Fig. 3), we observed cold PSW
(θ ∼ −1 ◦C) in the upper 100 m while deeper water was the
denser PIW (Fig. 3a). Cooled and strongly modified AW
water (∼1◦C or less) was located near the fjord mouth at
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Fig. 3. (a)Landsat image showing KG and KFj on 16 August 2002. White circles show locations of CTD casts in 1993 and red dots show
corresponding stations in 2004.(b) Potential temperature and salinity from CTD data acquired in the upper central fjord (68.4◦ N, 32.2◦ W)
in 1993 (black) and 2004 (red). Data from 0–100 m are marked open circles and deeper measurements are shown with asterisk.(c) Same
as(b) but for data acquired at fjord mouth (68.1◦ N, 31.9◦ W). (d) Potential temperature from CTD casts in upper fjord in 1993 (black) and
2004 (red).(e)Same as(d), but for CTD casts near fjord mouth.

280–590 m depth (Fig. 3c, e) and at depths>350 m in the
central part of the fjord (Fig. 3b, d). Warm PSW (PSWw)
with θ > 2◦C andS < 32 was in 2004 present throughout
the 300-km-long shelf (Fig. 1c). The PSWw inside the fjord
was up to∼4◦C warmer than the PSW observed in 1993
(Fig. 3b, d). The temperature of PSWw near the fjord mouth
was> 3 ◦C in 2004 compared with< 0 ◦C for PSW in 1993
(Fig. 3c, e). The AW deep intrusion was in 2004 warmer
(∼1.8◦C) and located 100 m higher than in 1993 (Fig. 3d, e).

Figure 4 shows mean annual air temperature in Aputiteq
at the southern end of the fjord mouth (67.78◦ N, 32.30◦ W,
25 m a.s.l). The record shows that air temperatures during
the early 2000s were considerably warmer than the 1990s.
The mean annual air temperature was−2.4◦C in 2004 com-
pared to−4.4◦C in 1993. The mean temperature averaged
for summer months only (June–September) was 2.8◦C in
2004 compared to 0.90◦C in 1993. Theθ -S plots in Fig. 3
nonetheless show that properties of PSWw observed in 2004
were influenced by mixing with warm AW in addition to the

exchange of heat with the atmosphere. However, with only
two snapshots of the subsurface conditions, we cannot firmly
establish whether the measured properties represent a signifi-
cant change or whether they are a result of seasonal or higher
frequency variability. The properties of water masses in the
intervening period are therefore examined using the ocean
reanalysis described in Sect. 2.2. above.

3.2 Shelf water exchange in ocean reanalysis

The KTr is a cross-shelf trough, extending about 300 km
from the fjord mouth to the continental shelf edge. It has
a maximum depth of about 600 m set between shallower
banks of about 400 m water depth (Syvitski et al., 1996;
Dowdeswell et al., 2010). The trough is capable of steer-
ing waters in the East Greenland and Irminger currents onto
the continental shelf, as illustrated in Fig. 1a (Sutherland
and Pickart, 2008). Figure 5 shows Hovmøller diagrams of
temperature and salinity for water masses flowing into and
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mean winter (December–March) difference between atmospheric
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land). See text for details.

out of KTr (see Fig. 2 for location). Seasonal changes are
seen at all depths with near-surface temperatures varying be-
tween∼0◦C in winter to∼10◦C in summer. Decadal aver-
ages of temperature (salinity) of surface waters in the upper
100 m change from 4.5◦C (34.54) in 1989–1998 to 5.6◦C
(34.70) in 1999–2008 (Fig. 7a). This trend comprises a grad-
ual rise from 3.3◦C (34.38) in 1995 to 6.9◦C (34.87) in 2003.

Temperature profiles for September 1993 and September
2004, as seen in the ocean reanalysis, are plotted in Fig. 6a,
b together with temperature profiles from station measure-
ments taken in the same months at nearby locations. The
comparison of reanalysis data and observations is favourable
in that the former falls within the variability of the latter. The
ocean reanalysis profiles are calculated for the box shown in
Fig. 6c, which is the same box used to calculate temperature
and salinity as shown in Figs. 5 and 7. When observations
are averaged across the approximate same area, we find a
very good fit between modelled and observed temperature
and salinity (Fig. 6d).

The seasonal temperature changes at depths of 400–800 m
seen in Fig. 5 are not caused by near-surface variations re-
lated to sea ice formation and melt and the exchange of heat
with the atmosphere (Fig. 5). The variations are caused in-
stead by movement of water masses onto and off the con-
tinental shelf, with temperature and salinity of deep waters
co-varying synchronously (Fig. 7a, b). Decadal averages of
temperature (salinity) at 400–800 m rise from 4.1◦C (34.98)
in 1989–1998 to 4.7◦C (35.03) in 1999–2008. The in-
creases in temperature and salinity are higher than the warm-
ing (∼0.2◦C) and salinification (∼0.022) observed in the
central Irminger Sea at equivalent depth between 1996 and
2006 (Sarafanov et al., 2007). The difference is related to
the variable volume flux of AW into KTr. Notable increase
in the inflow of AW occurred in 1991, 1996 and 2001–2005

(Fig. 7a, b), corresponding to years when the NAO was weak.
The extended NAO winter index (December–March), which
is based on the difference of normalised sea-level pressure
between Lisbon (Portugal) and Stykkishólmur (Iceland), is
shown in Fig. 7b. The index has a marked similarity to salin-
ity as well as temperature variations at 400–800 m (Fig. 7a).
This connection is related to coastal winds, as explained in
Sect. 5 below, whilst changing properties of surface water
is mainly a result of increased air-sea heat exchange due to
atmospheric warming since 1995 (Box et al., 2009). The lat-
ter is also seen in the Aputiteq temperature record (Fig. 4).
The increased temperatures near the surface as well as depths
of 400–800 m cause high heat flux into KTr in 2003–2004
(Fig. 7c). The heat flux with reference to 0◦C is calculated
across the transect shown in Fig. 2. Although the absolute
value of this flux is not definitive, as it is calculated on the
basis of a reference value and because there is a net vol-
ume flux across the transect, its relative temporal variabil-
ity is here both meaningful and informative because it speci-
fies the relative significance of warm inflow and cold outflow.
The interannual trend of the heat flux into KTr, as shown in
Fig. 7c, is calculated by filtering monthly mean values with
a 12-month-moving average. The heat flux varies signifi-
cantly with peaks and troughs ranging from 2.8 TW in 1994
to 13 TW in 2003 and back to 3.2 TW in 2007. This vari-
ability is a result of variable air-sea heat exchange as well
as variable extent of intrusions of AW onto the shelf. How-
ever, the mean annual heat flux was<5 TW in 1992–1995
while >11 TW in 2003–2004. It then decreased to<6 TW in
2005–2008.

Figure 8 shows correlations between volume and heat
fluxes into KTr and atmospheric forcing. The volume flux
(positive north, i.e. into KTr) correlates with the wind speed
across Denmark Strait at 66.3◦ N (Fig. 8a). Correlation coef-
ficients arer = 0.69 for winter months (December to March)
andr = 0.61 when all data are included. Heat flux into KTr
is strongly correlated with volume flux into KTr (Fig. 8b)
(r = 0.85), which is not surprising because the former is
calculated from the latter. However, we also find that the
volume flux into KTr correlates strongly with along-shore
volume flux (r = 0.74) (Fig. 8c). This shows that strong
(weak) along-shore transport coincides with low (high) vol-
ume and heat fluxes into KTr and this is due to the strong
(weak) forcing by coastal winds. Surface atmospheric forc-
ing used to drive the ocean model is illustrated in Fig. 9. In
the winter of 1994–1995, northerly winds are persistently
strong. These winds cool surface waters and increase the
transport of water masses along the coast (Bacon et al.,
2008). Cold and fresh waters flow out of KTr as a result,
and this reduces the inflow of AW. The 1994–1995 winter
is the winter when the calculated heat flux into KTr is nega-
tive from December to March (Fig. 8). Atmospheric condi-
tions are fundamentally different in the winter of 1995–1996
when northerly winds were uncharacteristically and persis-
tently weak (Fig. 9). This change of atmospheric conditions

www.the-cryosphere.net/5/701/2011/ The Cryosphere, 5, 701–714, 2011
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Fig. 5. Hovmøller diagrams showing potential temperature(a) and salinity(b) in ocean reanalysis. The data area-averaged across black box
shown in Fig. 1a.

is seen in the meteorological record from Aputiteq where
mean winter air temperature (December–March) in 2004–
2005 is−8.7◦C compared to−11.7◦C in the previous win-
ter (Fig. 4). The ocean model shows that transportation of
cold water masses out of KTr is concurrently reduced while
inflow of AW is substantially increased (Fig. 5). Whilst air-
sea interactions are considerably different in 1995 and 1996,
a prolonged warm phase associated with reduced air flow
through Denmark Strait occur in 2001–2005. This results
in high and persistent inflow of AW at depths of 400–800 m
while surface waters warm due to exchange of heat with the
atmosphere (Fig. 5). The heat flux directed into KTr in 2003
and 2004 is therefore about threefold that of the early 1990s
(Fig. 7c). Cold and relatively strong air flow from north-
east re-occur after 2005 and inflows of AW and the heat flux
into KTr return to levels similar to those in the early 1990s
(Fig. 7c).

4 The abrupt retreat of KG in 2004–2005

Figure 7c shows the calculated heat flux into KTr as well as
mean monthly calving-front position of KG. The front po-
sitions are determined from MODIS imagery acquired since
2000, as described by Seale et al. (2011). The time series
was extended using previously published data for 1992–2000
(Luckman et al., 2006). An interannual trend is derived by
eliminating the seasonal variability and this was done by fil-

tering monthly mean positions with a 12-month moving av-
erage. This trend is defined by advance of∼1.5 km in 1992–
1995; retreat of∼3 km in 1996–1998; relatively constant po-
sitions between 1999 and 2004; and a sudden large retreat
of ∼7 km between July 2004 and March 2005, as described
in several previous studies (Howat et al., 2007; Joughin et
al., 2008a; Luckman et al., 2006; Stearns and Hamilton,
2007; Seale et al., 2011). The glacier re-advanced∼2 km
in 2006–2007 and variation has since been restricted to reg-
ular seasonal fluctuations. The large retreat in 2004–2005 is
well-documented by MODIS imagery, which shows retreat
of ∼2.2 km between 1 July and 14 September, 2004, which
was when the latest set of hydrographic data was acquired
(Fig. 3). Large amounts of icebergs were present in the fjord
during the cruise in 2004 and the MODIS imagery shows that
this condition was caused by break-up of the sikussak (a sea-
sonally rigid melange of icebergs, bergy bits and sea ice) in
front of KG. Contrary to previous years, recession continued
throughout autumn and winter, with the calving front located
6.8 km inland of the 2004 maximum position on 8 March
2005 (Seale et al., 2011).

The time series of heat flux into KTr and the observed mar-
gin position of KG show that the rapid retreat in 2004–2005
occurred about one year after the peak heat flux into KTr in
the ocean reanalysis. This delay is comparable to transporta-
tion of AW across the shelf, although we do not know how
accurately the eddy-permitting model simulates across shelf
flows. Nonetheless, the shelf waters including AW were in

The Cryosphere, 5, 701–714, 2011 www.the-cryosphere.net/5/701/2011/
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in (c). (b) Same as(a) but for September 2004. Ocean reanaly-
sis data are shown by magenta line and red lines are observations.
(c) Location diagram with black diamonds and grey shading illus-
trating area used derive modelled temperature profiles as shown in
(a) and(b). The same area is used to derive the water mass proper-
ties shown in Figs. 5 and 7. Black dots and dashed line show station
transect and location of stations in 1993. Red dots and dashed line
show station transect and location of stations in 2004.(d) Potential
temperature and salinity for water masses as seen in ocean reanaly-
sis for September 1993 (green) and September 2004 (magenta), and
the mean of nearby observations from September 1993 (black) and
September 2004 (red).

September 2004 observed to flow at rates up to 20 cm s−1

across the station transect shown in Fig. 1a, suggesting the
transport of AW from continental slope to fjord is feasible
in one year or less. Transport of AW from fjord mouth to
glacier termini may require only a few weeks if the circu-
lation of water masses is influenced by intermittent storms,
as reported by Straneo et al. (2010) for the similarly sized
Sermilik Fjord farther south.

The delayed retreat of KG relative to peak heat flow into
KTr is similar to the delayed retreat of glaciers farther south
relative to peaks seen in sea-surface temperature data (Howat
et al., 2008). Howat et al. (2008) suggest the delay is con-
nected to initial slow retreat over topographic high points and
subsequent fast retreat across over-deepened troughs with re-
verse bed slopes. Whereas Helheim Glacier retreated across
an over-deepening (Nick et al., 2009), it is not certain that
glaciers undergoing significant retreat are necessarily posi-
tioned over topographic over-deepenings. The observed de-
lays may in general be connected to the period over which
water masses travel from deep ocean, across the continen-
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Fig. 7. (a) Time series of potential temperature as shown in
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Dashed blue line and asterisk show the extended NAO winter in-
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12-month-moving average. The red line is the 12-month-moving
average of heat flux calculated at transect shown in Fig. 1a and with
reference to 0◦C. The heat flux is positive northward, which is into
KTr and towards the coast.

tal shelf and into fjords, as well as the sensitivity of indi-
vidual glaciers to oceanographic change. The latter is be-
yond the scope of this study, but includes the influence of
glacier geometry and calving-related processes, such as ice-
front melting (Rignot et al., 2010) and presence of proglacial
ice melange and sikussak (Reeh et al., 2001; Joughin et al.,
2008b; Amundson et al., 2010).
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Fig. 8. Correlation plots from ocean reanalysis.(a) Scatter plot
of mean monthly volume flux into and out of KTr (yellow line in
Fig. 1a) and mean monthly speed of winds crossing Denmark Strait
from the north at 66.3◦ N. North-flowing waters and wind yield pos-
itive values, which means that northerly winds have negative speed
while transport into KTr and towards coast is positive.(b) Same as
(a), but with towards-shore volume flux compared against towards-
shore heat flux calculated with reference to 0◦C. Heat flow is pos-
itive towards north, i.e. when it is directed into KTr and towards
the coast.(c) Same as(a) and(b), but with towards-shore volume
flux plotted against the along-shore volume flux, i.e. flow of waters
crossing the hydrographic transect shown by white line in Fig. 1a.
This volume flux is positive when transport is from west to east.
(d) Same as(a), but with monthly wind speeds plotted against the
Denmark Strait atmospheric pressure gradient,1P, derived from
meteorological stations in Stykkishólmur and Tasiilaq (see text for
details). Open circles and correlation coefficients shown in nor-
mal font represent monthly means while data averaged for winters
months (December–March) are shown with filled solid circles and
bold correlation coefficients.

5 Synoptic atmospheric forcing

Our results show that coastal wind forcing in East Greenland
is related to the large-scale atmospheric pressure gradient
across Denmark Strait. Here, we define the latter,1P, as the
difference between weather station measurements in Stykk-
ishólmur (Iceland) and Tasiilaq (East Greenland), and its re-
lation to wind forcing is shown in Fig. 8d. There is a strong
correlation between1P and wind speed (r = 0.87) because
the former is a very good indicator of the geostrophic wind,
developing from a stationary atmospheric high-pressure sys-
tem residing over the Greenland Ice Sheet and the Icelandic
Low (IL) (Blindheim and Malmberg, 2005; Bacon et al.,
2008). The IL is a synoptic pressure system that defines the

northern component of the NAO. The geostrophic wind rep-
resented by highly negative1P (about−5 hPa) is strong and
cold, and the air flow follows the coast from the northeast.
This wind pattern develops when a deep IL and the stable
high pressure over Greenland result in isobars that are near-
parallel to the east coast of Greenland (Bacon et al., 2008).
Northerly winds are weak when1P approaches or exceeds
zero, as it did in 1996 and in the early 2000s, when the IL
was positioned differently. The prevailing wind in this set-
ting is warmer and directed towards shore because isobars
are perpendicular to the coast. The connection between the
large-scale pressure systems and prevailing wind is seen in
Fig. 4 as a statistically significant relationship between1P
and the mean annual air temperature in Aputiteq (r = 0.64).
Below, we refer to highly negative values of1P as high1P,
while values near zero and above are referred to as low1P.

The link between1P and the IL is found when the latter is
considered to be a “centre of action”. Bakalian et al. (2007)
used “centres of action”, as defined by Hameed et al. (1995),
to show that the latitude of the IL influences the frequency
of intermittent storms known as tip jets. Adopting the same
technique, we determine the latitude and longitude of the
IL using monthly mean sea level pressure data in the ERA-
Interim reanalysis, which cover our period of investigation
(Simmons et al., 2006). An area-weighted departure from a
sea-level pressure threshold of 1014 mb is in this approach
calculated for December to March in a domain that encircles
45◦ N to 70◦ N and 70◦ W to 10◦ E. Variations in the latitude
and longitude of IL are shown in Fig. 10 together with the
NAO winter index (Fig. 10a) and1P (Fig. 10b). The data
show a strong statistical correlation between (i) the latitude
of IL and the NAO index (r = 0.78), and (ii) the longitude of
IL and 1P (r = 0.82). The first relationship shows that the
IL has a northern (southern) position when the NAO index
is high (low). The second shows that periods of high (low)
1P, corresponding to strong (weak) northeasterly air flow in
East Greenland, occur when the IL has an eastern (western)
position. The eastern position of the IL is over the Irminger
Sea southwest of Iceland (∼32–35◦ W), whereas the western
position is over the Labrador Sea closer to Canada (∼39–
42◦ W). Almost identical relationships are found in ERA-40,
which is a reanalysis product of the ECMWF covering the
period 1958–2002 (Uppala et al., 2005). The correlations are
r ≥ 0.99 when IL positions for the period of overlap (1989–
2002) are compared. Furthermore, the relationships between
IL position, NAO index and1P remain statistically signif-
icant on the 99 % level when ERA-40 reanalysis data for
1958–1988 are used together with the ERA-Interim reanal-
ysis (1989-present). The relationships are also seen in the
NCEP/NCAR reanalysis data (Kalnay et al., 1996) (data not
shown), confirming that the interannual variability of the IL
as a centre of action can be firmly identified with atmospheric
reanalysis data.
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Fig. 9. Maps showing speed and direction of winds near the Denmark Strait during winters in 1994–1995 (top) and 1995–1996 (bottom).
The data are from the atmospheric forcing set used to drive the ocean model (see text for details).

6 Synthesis

A switch of the IL from 31.6◦ W in the winter of 1994–1995
to 41.4◦ W in 1995–1996 (Fig. 10) and the accompanying
change of1P from−4.5 hPa to +2.2 hPa (Fig. 4) explains the
very different wind forcing fields shown in Fig. 9. The switch
from strong to weak northeasterly air flow warms the surface
layer at KTr, while deeper levels warm from the concurrent
higher inflow of AW at depth. Although the ocean reanaly-
sis was produced with assimilation of extensive hydrographic
data including the Irminger Sea, constraints from the season-
ally ice covered coastal regions are more sparse, so we cannot
firmly establish the transportation of AW inside and around
fjords. Nonetheless, the warming and cooling of coastal wa-
ters seen in the reanalysis at the outer continental shelf is
consistent with observations. Holland et al. (2008) show that
AW from the Irminger Sea and the east coast warmed coastal
waters in West Greenland after 1997 and they suggest that
the warming was a result of a the shift in the NAO from
a very strong phase in 1992–1995 to a very weak state in
1996. Warming associated with this event is clearly seen in
the ocean reanalysis, and we attribute the warming to primar-
ily be a result of the change in1P and the coastal winds. The
warming in 1996 may be the cause of substantial thinning of
KG by 50 m at some point between 1993 and 1998 (Thomas
et al., 2000). The thinning reported by Thomas et al. (2000)
coincides with our observed interannual retreat of∼3 km in
1995–1998 (Fig. 7c), which is significant because seasonal
variability is excluded, although considerably less than the
retreat experienced by the glacier in 2004–2005. The larger
impact of the latter event is explained in our analysis by sur-

face warming as well as a higher inflow of subtropical waters
at depth. The concurrent warming of surface waters and the
deeper inflows of AW is consistent with the hydrographic
data acquired in KFj in 2004, and both aspects of warming
were a result of weak northeasterly air flow associated with
low 1P and a persistent eastern position of the IL over the
Labrador Sea (Fig. 10b).

The wider effect of1P on coastal water temperature and
glacier dynamics are shown in Fig. 11. The figure shows
changes in the frontal position of 30 marine-terminating
glaciers in East Greenland, as reported by Seale et al. (2011).
The figure clearly shows that retreats were common in 2000–
2005 for glaciers south of 69◦ N (Fig. 11a), whereas glaciers
further north remained largely unchanged (Fig. 11b). The re-
treat of the southern glaciers coincides with major warming
of the entire water column at adjacent coastal sites (Fig. 11c).
Furthermore, the connection between1P and water mass
change, as discussed above, remains intact when assessed
on a regional scale (Fig. 11c). The role of the geostrophic
wind and the mechanisms of water mass exchange between
the Irminger Sea and KTr thus apply to the shelf seas of
East Greenland south of 69◦ N, causing impact on outlet
glaciers along the entire southeast coast of Greenland. (The
lag between1P and coastal water temperatures (illustrated
in Fig. 11c by a six month offset) is associated with the rate
of water mass transport across the continental shelf.) The
setting of glaciers north of 69◦ N is considerably different
in that temperatures of coastal waters are largely below 0◦C
(Fig. 11d). The unchanged position of northern glaciers may
thus be explained by cold properties of coastal shelf waters
(Seale et al., 2011). The cold state of shelf waters north of
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Denmark Strait is associated with transport of cold polar wa-
ters and sea ice from the Arctic Ocean and a much more lim-
ited and distant supply of AW.

7 Summary and conclusions

Hydrographic surveys conducted in KFj and in transects
along KTr show warm properties of fjord waters in 2004
relative to 1993. In 1993, we found strongly modified and
relatively cold (∼1◦C or less) water with subtropical ori-
gin at depths of 280–590 m near coast and at depths>350 m
in the central part of the fjord. The subtropical waters ex-
tended further into the fjord in 2004 and the waters were less
modified, warmer (∼ 1.8◦C or more) and located∼100 m
higher than in 1993. The surface layer changed from cold
(< −1◦C) PSW in 1993 to much warmer PSWw (>2◦C) in
2004, consistent with a change in mean air temperature for
June–September from 0.90◦C in 1993 to 2.8◦C in 2004. Sur-
face warming and AW inflows at depth are both important.
The former may have delayed the onset of seasonal freeze-
up, whilst promoting continued retreat of KG, as observed
(Fig. 7c), due to delayed freeze-up and a subsequently pro-
longed season with open water and high calving rate. The
latter would have influenced KG directly if AW was in direct
contact with the calving front, but we cannot confirm this
with the available data.

Subtropical waters in an ocean reanalysis are found to sea-
sonally intrude into KTr, a glacially eroded cross-shelf sub-
marine trough extending from KFj to the continental shelf
edge. The intrusions occur mainly in spring and early sum-
mer at depths of several hundred meters, and they are driven
by winds. Thoma et al. (2008) report similar wind-driven
intrusions into a trough carved by glaciers on the Amund-
sen Sea continental shelf in Antarctica. The oceanic forcing
of Greenlandic tidewater glaciers may thus be similar to the

oceanic forcing of Antarctic ice streams, although the former
glaciers are associated with a much faster response due to
their smaller size and steeper terrain (see analysis in Howat
et al. (2005) for a comparison). The along-shore volume and
freshwater fluxes increase when northerly winds are strong
while towards-shore volume and heat fluxes into KTr are re-
duced or even negative. When northerly winds are weak,
surface waters warm due to warmer easterly air flow. Deep
waters warm because subtropical waters flow onto the shelf
at depths of>400 m. We calculated the annual heat flux into
KTr and there is significant variations: from<5 TW in 1992–
1995 to>11 TW in 2003–2004. The heat flux was much
reduced in 2005–2008 with values ranging from 4.4 TW to
6.1 TW and this decrease coincides with the stabilisation and
partial re-advance of KG in 2005–2008. The hydrographic
station data from KTr show transport of water masses across
the shelf at rates up to 20 cm s−1, suggesting that advection of
AW from continental slope to fjord may occur in one year or
less. If AW is subsequently flushed through the fjord by the
intermediary circulation described by Straneo et al. (2010),
KG could be exposed to subtropical AW very effectively. A
previously documented episode of thinning in the mid-1990s
coincide with observed retreat of KG by∼3 km and with a
sudden warming of waters on the outer shelf in 1996 due
to a major shift in the intensity of the NAO. We show that
this event caused sudden warming of coastal waters due to a
marked change of winds on synoptic scale and that it was a
precursor of the larger event in 2004–2005.

The results from this study show that the seasonal and
large-scale characteristics of coastal winds are controlling
factors in exchange of water masses off the coast of East
Greenland. The wind stress on a synoptic scale is defined
by the direction and magnitude of isobars associated with
semi-permanent atmospheric pressure systems residing over
Greenland (high pressure) and near Iceland (low pressure).
We found that variations in the longitudinal position of the
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Fig. 11.Map of Greenland and surrounding seas (top) with coloured squares showing locations of marine-terminating glaciers whose frontal
positions are shown in(a) and(b). Coloured dots show adjacent locations where subsurface temperatures are examined in ocean reanalysis
(c–d). The colour scale show sea surface temperature averaged for 2004. EGC, IC and NAC refer to East Greenland Current, Irminger
Current and North Atlantic Current.(a) Changes in the position of calving fronts for glaciers south of 69◦ N. The colours represent three
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including KG (blue).(b) Same as(a) but for glaciers north of 69◦ N. The glaciers are Borggraven (magenta); eight glaciers in Scoresbysund
including Daugaard-Jensen (red); Hisingers and Nordenskjorlds Gletscher near Mestervig (cyan); four glaciers in and around Kejser Franz
Joseph Fjord (green), and four glaciers near Danmarkshavn (black). Colours match locations shown on map (top).(c) Subsurface temperature
from ocean reanalysis averaged from 100 m to bottom for sites near glaciers south of 69◦ N. Seasonal temperature variations are excluded
by filtering the time-series of monthly means with a 12-month-moving average. Colours correspond to those in(a) and locations shown
on map (top). Black diamonds and solid black line show winter atmospheric pressure difference across Denmark Strait (1P) as seen in
station records from Tasiilaq and Stykkishólmur (see Fig. 1 for location and text for details).(d) Same as(c) but temperature is for sites near
northern glaciers. Modified from Seale et al. (2011).

IL explain 67 % of the variability in1P, which is the atmo-
spheric pressure gradient that controls the wind stress along
the east coast of Greenland. The wind stress is high and
from the north when the IL is positioned over the Irminger
Sea (∼35◦ W) and this synoptic setting is associated with
cold air temperatures and coastal water masses. The wind
stress is low and from the east when the IL is situated over

the Labrador Sea (∼40◦ W) and this synoptic setting is as-
sociated with warmer air flow and warming of coastal water
masses.

Our findings show that the geostrophic wind should be re-
garded as a key factor in the oceanographic forcing of the
Greenland Ice Sheet. The connection between the position
of the IL and1P and its influence on coastal waters apply
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712 P. Christoffersen et al.: Warming of waters in an East Greenland fjord

to the shelf seas south of 69◦ N, causing impact on outlet
glaciers along the entire southeast coast of Greenland. The
same mechanism explains the warming observed in coastal
waters along the west coast (Holland et al., 2008), as coastal
waters from East Greenland are transported to the west coast
in coastal currents. Khan et al. (2010) report a shift in the
centre of ice-sheet mass losses, from southeast to northwest
Greenland after 2007, and these losses may comprise a de-
layed response of north-western tidewater glaciers to warm
coastal waters originating from the east coast.
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