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Abstract. Variegated Glacier (Alaska) is known to surge pe-
riodically after a sufficient amount of cumulative mass bal-
ance is reached, but this observation is difficult to link with
changes in the basal conditions. Here, using a 10-yr dataset,
consisting of surface topography and surface velocity obser-
vations along a flow line for 25 dates, we have reconstructed
the evolution of the basal conditions prior to and during the
1982–1983 surge. The model solves the full-Stokes problem
along the central flow line using the finite element method.
For the 25 dates of the dataset, the basal friction parame-
ter distribution is inferred using the inverse method proposed
by Arthern and Gudmundsson(2010). This method is here
slightly modified by incorporating a regularisation term in
the cost function to avoid short wavelength changes in the
friction parameter. Our results indicate that dramatic changes
in the basal conditions occurred between 1973 to 1983. Prior
to the surge, periodic changes can be observed between win-
ter and summer, with a regular increase of the sliding from
1973 to 1982. During the surge, the basal friction decreased
dramatically and an area of very low friction moved from the
upper part of the glacier to its terminus. Using a more com-
plex friction law, these changes in basal sliding are then inter-
preted in terms of basal water pressure. Our results support
that dramatic changes took place in the subglacial drainage
system of Variegated Glacier, moving from a relatively effi-
cient drainage system prior to the surge to an inefficient one
during the surge. By reconstructing the water pressure evo-
lution at the base of the glacier it is possible to propose a sce-
nario for the hydrological history leading to the occurrence
of a surge.
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(gagliar@lgge.obs.ujf-grenoble.fr)

1 Introduction

Variegated Glacier is a temperate glacier located in the
coastal St Elias Mountains in Alaska (USA). It is approx-
imately 20 km long and 1 km wide, with ice flowing from
the altitude of 2000 m a.s.l. down to the sea. Due to its
surging behaviour, Variegated Glacier has been intensively
studied these last decades (Bindschadler et al., 1977; Bind-
schadler, 1982; Kamb et al., 1985; Raymond and Harrison,
1988; Eisen et al., 2001, 2005). Since the first listed surge of
1905–1906, Variegated Glacier has undergone 7 other surges
until the last observed in 2003–2004 (Harrison et al., 2008).
From the well-studied 1982–1983 surge, it seems that Var-
iegated Glacier is characterised by a two-phase surge, each
phase with a reasonably distinct termination separated by one
year (Eisen et al., 2005). Velocity and elevation changes were
more marked in the upper glacier during the first phase of
the 1982–1983 surge, whereas during the second phase, the
surge propagated progressively down into the lower glacier.
The highest velocity of the whole surge were observed dur-
ing the second phase on the lower glacier (Kamb et al., 1985).
One other characteristic is the seasonal timing of Variegated
surges, with an onset in late autumn or winter and termina-
tion in late spring or early summer.

As shown byEisen et al.(2001), the duration of the quies-
cent phase in between two surges is very well correlated with
the total cumulative mass balance at a point located at the al-
titude of 1500 m in the accumulation area. Variegated Glacier
is found to surge each time the ice-equivalent cumulative bal-
ance at this particular point reaches the threshold value of
43.5±1.2 m. This relation is not fulfilled for the 2003–2004
surge, for which the cumulative mass balance was only half
of that required for previous surges (Harrison et al., 2008).
As anticipated byEisen et al.(2005), this loss of correlation
might be explained by the early termination of the one-phase
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1995 surge and its unusual post-surge surface topography
corresponding to a relatively small mass transfer from the
upper part to the lower part of the glacier. Because the 2003–
2004 was a normal two-phase surge,Harrison et al.(2008)
have predicted that the mass balance correlation will hold for
the next surge. Nevertheless, the causality of this mass bal-
ance surface observationhas not yet been linkedto the basal
processes controlling the surge.

Surgesof temperate glaciersare initiated by a change in
the basal hydrological system, which moves from a discrete
efficient system with low water pressure and high water dis-
charge to a distributed inefficient system with high water
pressure (e.g.Raymond, 1987). A discrete efficient sys-
tem is usually formed by a few large channels and its in-
fluence on the ice flow is relatively low, whereas an ineffi-
cient system consists of small linked cavities strongly influ-
encing the basal velocity (Kamb, 1987). As explained by
Eisen et al.(2005), there is a seasonal pattern of surge initi-
ations and terminations.Variegated surgeinitiationsare cer-
tainly governed by a change in the glacier’s geometry, during
the quiescent phase,which affects the internal drainage sys-
tem. When a threshold amount ofsurface elevation and/or
surface slope changes arereached, the discrete system closes
at the end of the melting season when the amount of water is
insufficient to keep it open. Then, subsequent rain or melt-
water from the surface, even in small volume, will progres-
sively contribute to increase the basal water pressure, finally
leading to the glacier surge. The following spring, when
the amount of water is again sufficient, the discrete efficient
system opens again and the surge stops (Harrison and Post,
2003; Lingle and Fatland, 2003). Note that this interpretation
is consistent with the observed timing of Variegated surges,
which started during the winter and end during the summer.

During the 1982–1983 surge, short-term variations (hours
to days) of ice velocity, water pressure and outflow stream at
the glacier terminus have been observed. These observations
indicate the predominant contribution of basal sliding during
the surge phase. Measurements of the internal deformation in
a borehole during the surge show that 95 % of the surface ve-
locity is due to sliding (Kamb et al., 1985). Velocities as high
as 50 m day−1 were measured during the second phase of the
1982–1983 surge. Simultaneous records of water pressure
from borehole measurements indicate the strong correlation
between water pressure and velocity. Pulses in surge move-
ment do indeed correspond to peaks in pressure. Conversely,
the increase of the outflow stream at the terminus is closely
correlated with a rapid slowdown of the glacier (Kamb et al.,
1985). This last observation indicates that a large amount of
water is stored in subglacial cavities, inducing an increase in
water pressure and a consequent increase in ice sliding veloc-
ities. But when a threshold pressure is reached, the subglacial
water storage purges, leading to flooding at the terminus out-
flow and to a slowdown of the ice sliding.

In this paper, we propose to use the very well documented
period from 1973 to 1983 to reconstruct the history of the

basal conditions below Variegated Glacier using a full-Stokes
model. The available dataset for Variegated is presented and
discussed in the first Section. The direct full-Stokes flow
line model is presented in the second Section. The associ-
ated inverse model (Arthern and Gudmundsson, 2010) and
its extension is presented in the third Section. In the fourth
Section, the inverse model is used to infer the basal friction
distribution along the flow line at each measurement date.
In the fifth Section, following the idea proposed byFlowers
et al. (2011), changes in the basal friction parameter are in-
terpreted in terms of changes in basal water pressure through
the use of the water pressure dependent friction law proposed
by Schoof(2005) andGagliardini et al.(2007). Finally, using
the basal friction parameter distributions inferred from the in-
verse method, a transient simulation is run over the 10-yr data
period to compare modelled and observed surface geometry
evolutions.

2 Description of the datasets

Extensive measurements of the surface topography and sur-
face velocities were carried out during the 1973–1983 decade
(Bindschadler et al., 1977; Kamb et al., 1985; Raymond and
Harrison, 1988). This measurement period covers thelast
part of thequiescent phase which follows the 1964–1965
surge and includes the 1982–1983 surge. During this pe-
riod, surface elevation and horizontal surface velocity were
measured at 25 different dates, twice a year prior to the surge
and 8 times during the 2 yr of the surge. At each date, the
dataset is composed of the horizontal surface velocity and
the surface elevation every 250 m along the 20 km of the cen-
tral flow line. Most of the datasets are incomplete, mainly in
the upper and lower parts, but also where the glacier was too
crevassed to be accessible. Few attempts have been made
to reconstruct the basal condition history below Variegated
Glacier from these datasets.Raymond and Harrison(1988),
using a very simple flow line model, determined that basal
sliding increased from 1973 to 1981 and concluded that by
1981, basal sliding might be 50 % or more of the total surface
velocity in the upper part of the glacier. Again with a rela-
tively simple hydrological model,Eisen et al.(2005) showed
that the flux required to keep the efficient drainage system
open is very sensitive to the basal shear stress. Combining
the model and the observations, they determined a critical
basal shear stress along the flow line which initiates a surge.

3 Direct diagnostic model

3.1 Field equation

Available data for Variegated Glacier are limited to the cen-
tral flow line of the glacier. Therefore, the modelling is lim-
ited to a two-dimensional flow line geometry, delimited by
the bedrockb(x) and the upper surfacezs(x). We further
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assume a Cartesian coordinate system such thatx is the hor-
izontal direction andz the up-oriented vertical one. For a
given geometry, the ice flow is governed by the Stokes equa-
tions, i.e. the mass and momentum conservation equations
in which the acceleration terms are neglected. The Stokes
equationsare written:

divu = 0, b ≤ z ≤ zs, (1)

divσ +ρg+f l = 0, b ≤ z ≤ zs, (2)

Hereu = (ux,0,uz) is the velocity vector,σ = τ −pI is the
Cauchy stress tensor andp the isotropic pressure,ρ the ice
density andg = (0,0,−g) the gravity vector. The body force
f l is added in the flow line model to account for the friction
arising on the lateral side of a real glacier. To this end, the
concept of shape factor (Nye, 1965) is here extended to the
full-Stokes formulation by defining the body forcef l as

f l = −ρg · t (1−f )t , (3)

where the shape factorf = f (x) is a scalar function of the
transversal shape of the glacier andt is the unit vector tan-
gent to the upper surface. As shown by this equation, the
concept of shape factor adds a resistive body force tangent to
the upper surface. Whenf = 1, the limit case of an infinitely
large glacier is obtained, whereas smallf stands for narrow
and/or deep transverse sections.

Here, we evaluatef (x) by assuming that the transverse
shape of the bedrock is a parabola of the formb̃(x,y) =

b(x)+a(x) ·y2, where the parabola coefficienta(x) is con-
stant in time and estimated from the thickness and width
measurements performed in 1973 (Raymond and Harrison,
1988). This approach accounts for variations with time of
the shape factor induced by changes in ice thickness.

Following the approach ofNye (1965), the relation be-
tween the shape factor and the ice thickness in the central
flow line is inferred from three-dimensional full-Stokes sim-
ulations of an infinitely long glacier flowing over a parabola-
type bedrock using different values of the friction parameter.
All these three-dimensional simulations (not shown here),
are well reproduced with a two-dimensional flow line model
using the following empirical estimate of the shape factor:

f =
2

π
arctan

(
0.8146
√

a ·h

)
, (4)

whereh(x) = zs(x) − b(x) is the ice thickness. Figure1
shows the evolution of the shape factorf (x) along the flow
line for the 1973 geometry.

The ice rheology is described through a power-type flow
law, known as Glen’s law in glaciology, linking the strain-
rate tensoṙε to the deviatoric stress tensorτ such that:

ε̇ = Aτn−1
e τ , (5)

whereτ2
e = τij τij/2 is the square of the second invariant of

the deviatoric stress andA a rheological parameter, which

Fig. 1. Evolution of the shape factorf along the central flow line
for the 1973 surface topography.

depends on the ice temperature via an Arrhenius law. Since
Variegated Glacier is temperate, the constant valueA =

100 MPa−3 a−1 is adopted (close to the ones proposed in
Cuffey and Paterson, 2010).

3.2 Boundary conditions

The upper surface0s, i.e. z = zs, is a stress-free surface and
the following Neumann-type boundary condition applies:

σ ·n = 0 for z = zs. (6)

At the bedrock interface0b, i.e. z = b, zero basal melting is
assumed (u ·n = 0) as well as a linear friction law (Robin
type boundary condition). This linear friction law relates the
basal dragτnt to the sliding velocityut such that:

τnt = t ·(σ ·n)|b = −βu · t = −βut for z = b, (7)

wheren andt are the normal and tangent unit vectors to the
bedrock surface, andβ ≥ 0 is the basal friction parameter.

All these equations are solved using the finite element
method with the code Elmer/Ice. More details on the numer-
ics can be found inGagliardini et al.(2007) andGagliardini
and Zwinger(2008).

4 The inverse problem

Determining the optimal basal conditions from the glacier
topography and the surface velocities is an inverse problem.
Recently, three methods have been proposed to solve this par-
ticular inverse problem using a full-Stokes direct model. The
first one, is a Bayesian method developed byGudmunds-
son and Raymond(2008) and further applied to the Rut-
ford ice stream (West Antarctica,Raymond Pralong and
Gudmundsson, 2011). Note that for this application to real
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data, both basal friction and bedrock topography were in-
ferred by inverting surface data. The two others, which be-
long in the class of the the variational methods, are a control
method using the adjoint model of the linear Stokes equa-
tions (Morlighem et al., 2010) and a Robin inverse method
(Arthern and Gudmundsson, 2010).

These two variational methods rely on the minimisation
of a cost function that measures the mismatch between the
model and the observations. In each case, the gradient of the
cost function with respect to the basal drag coefficient is ob-
tained analytically assuming a linear flow law and a linear
sliding law. Theoretically, these results could be extended to
non-linear laws but this would require further analytical and
numerical developments. In their applications,Morlighem
et al. (2010) and Arthern and Gudmundsson(2010) show
that even by using the gradient derived in the linear case,
it is possible to minimise the cost function with non-linear
laws, but this could fail for some applications (Goldberg and
Sergienko, 2011). These two methods should lead to very
similar solutions for the basal drag coefficient and both have
advantages and drawbacks. The control method needs the
derivation of the adjoint model but it is easy to modify the
cost function to take into account the error on the observed
velocities. The Robin inverse method can be easily imple-
mented using the direct model only, but does not integrate
the observation errors in the cost function.

In this paper we present results obtained with the Robin in-
verse method (Arthern and Gudmundsson, 2010), extended
with a regularisation term. The inverse method has been
implemented in the finite element code Elmer/Ice.To our
knowledge this is the first application of this method to real
data in glaciology.

4.1 Robin method

The inverse problem is, for each dataset (surface geometry
and velocities), to determine the basal friction parameterβ

that gives the smallest mismatch between observed and mod-
elled surface velocities.

We use the inverse Robin method adapted to glaciology
by Arthern and Gudmundsson(2010). The method consists
of solving alternately the Neumann-type problem defined by
Eqs. (1, 2) and the surface boundary conditions (Eq.6), and
the associated Dirichlet-type problem defined by the same
equations excepted that the Neumann upper-surface condi-
tion (Eq.6) is replaced by a Dirichlet condition, such that:

u(zs) = uobs, (8)

whereu(zs) anduobsare the model and observed surface hor-
izontal velocities, respectively. This condition is enforced for
each location where a surface velocity was measured. The
natural Neumann condition is imposed in the vertical direc-
tion and where no observation is available.

The cost function that expresses the mismatch between the
solution of the two models is given by

Jo =

∫
0s

(uN
−uD) ·(σN

−σD) ·nd0 , (9)

where superscripts “N” and “D” refer to the Neumann and
Dirichlet problem solutions, respectively,and0s denotes the
upper surface of the glacier.

The Ĝateaux derivative of the cost functionJo with respect
to the friction parameterβ for a perturbationβ ′ is given by
(Arthern and Gudmundsson, 2010):

dβJo =

∫
0b

β ′

(
|uD

|
2
−|uN

|
2
)

d0 , (10)

where the symbol|.| defines the norm of the velocity vector.
In this paper, to avoid unphysical negative values of the

friction parameter,β is expressed as

β = 10α . (11)

The optimisation is now done with respect toα and the
Gâteaux derivative ofJo with respect toα is obtained as fol-
lows:

dαJo = dβJo

dβ

dα
=

∫
0b

α′

(
|uD

|
2
−|uN

|
2
)

10α ln(10)d0 . (12)

In the presence of noise in the observed velocities, the
method can lead to spurious small wavelength oscillations of
the inferred friction parameter.Arthern and Gudmundsson
(2010) suggestterminatingthe minimisation when the cost
function starts to stagnate at a certain level. Furthermore, the
authors show that this is in agreement with a heuristic stop-
ping criterion based on the observation errors. One drawback
of this approach is that on a glacier, the magnitude of the ve-
locities and the observation errors could vary strongly from
one place to another, but also from one dataset to another, so
that the stopping criterion should be different for each area
and each dataset. Here, an additional Tikhonov regularisa-
tion term that penalises the small wavelength oscillations of
the friction parameterβ, taken as

Jreg=

∫
0b

(
∂α

∂x

)2

d0 , (13)

is added to the cost functionJo. The total cost functionis
now

Jtot = Jo +
1

2
λūobsJreg, (14)

whereūobs is the mean value of the observed surface veloc-
ities andλ is a weighting parameter used to adjust the in-
fluence of the added regularisation with respect to the ini-
tial cost function. The term̄uobs takes into account the large
changes in velocity observed along the 10-yr dataset and al-
lows us to use a unique value of the regularisation parame-
ter λ for all the datasets. Regularisation is classical in data
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assimilation: the minimisation ofJo alone is an ill-posed
problem, and the addition of a regularisation term ensures
existence of a global minimum. Ifλ is large enough, the
problem becomes well-posed, with a unique minimum, and
therefore the minimisation algorithm shows improved con-
vergence properties. The form of the additional term ensures
that the optimalβ is smooth. The effect of this regularisation
term and the sensitivity of theβ distribution toλ is discussed
in Sect.5.

The minimisation of the cost functionJtot with respect
to β is done using the limited memory quasi-Newton rou-
tine M1QN3 (Gilbert and Lemaŕechal, 1989) implemented
in Elmer/Ice in reverse communication.In Newton’s algo-
rithm, the descent direction is a function of both the gradient
and the Hessian of the cost function. Quasi-Newton’s method
is a widely-used variant of Newton’s method which does not
require to compute the Hessian but uses approximations in-
stead, which are computed and improved throughout the it-
erations. This method has a convergence speed that is better
than a fixed-step gradient method as presented inArthern and
Gudmundsson(2010). The cost function decreases quickly
during the first 10 to 20 iterations then start to stagnate has
shown byArthern and Gudmundsson(2010). As the gradient
used here is only an approximation of the true gradient for a
non linear rheology, the iterative algorithm is usually stopped
when the cost function cannot be decreased anymore in the
descent direction, typically after 50 to 100 iterations.

4.2 Technical aspects

The Stokes equations and the Robin problem are solved using
the finite element code Elmer/Ice. For each date, a regular
mesh is constructed using 80 horizontal times 20 vertical lay-
ers of quadrangle elements, between the bedrock and upper
surface. Forice-freeareas, a minimal thickness of 3 m is im-
posed to avoid zero volume elements. Each of the 25 datasets
is composed of the surface elevation and the horizontal sur-
face velocity at 81 points regularly spaced every 250 m along
the 20 km of the glacier length. Topographic measurements
are representative of a given date whereas velocity measure-
ments refer to the period in-between two measurement dates
(Raymond and Harrison, 1988). For the quiescent period, the
same surface topography is used for the summer and for the
following winter. For the surge, because of the fast changing
topography, for a given velocity measurement, the surface
topography is taken as thetime-weighted averageof the two
surface topographies corresponding to the surface velocity
measurement dates. To construct the 25 geometries corre-
sponding to the 25 datasets, the surface elevation must be
defined along the whole glacier. Where surface topography
measurements are missing, the elevation is estimated from
the other datasets using a linear adjustment to fulfil the cur-
rent surface elevation continuity. For the velocity, the mesh
is constructed so that point measurements and mesh nodes
coincide. When solving the Dirichlet problem, measured ve-

locities are imposed only where measurements are available
and no interpolation is used to complete missing data. We
verified that a finer mesh does not change significantly the
results of the inversion of the friction parameter.

5 Inversion of the basal friction parameter

5.1 Influence of the regularisation term

We used the most complete summer 1978 dataset to assess
the influence of the regularisation term on the results. The
inferred friction parameterβ and the associated surface and
sliding velocities obtained for different values of the regu-
larisation parameterλ are shown in Fig.2. The influence
of λ is directly observable in this figure. Whenλ increases,
the inferred friction parameter distribution gets smoother, but
mean values over the glacier length ofβ are very similar for
all the values ofλ. The relative mean error between observed
and modelled velocities increases from 4.9 to 9.1 % whenλ

is increased from 0 to 106. The difference between modelled
and observed surface velocities remains small, but the short
wavelength oscillations of the observed velocities are less
well resolved when the regularisation term increases. The
corresponding sliding velocities, depicted in Fig.2c, are also
smoothed whenλ is increased, but the gap between the dif-
ferent sliding velocity distributions is much larger than for
the surface velocities. The comparison between surface and
basal velocities shows that all these small wavelength oscil-
lations arising at the base have almost no visible influence at
the glacier surface.

The oscillations of theβ parameter in Fig.2a are certainly
partly physically created, as we expect that high and low fric-
tion areas may alternate at the base of Variegated glacier, but
they are also certainly induced by errors on the measured
velocities and on the model itself (mainly the flow line as-
sumption and errors on the measured surface and bedrock
topographies).

Therefore, a difficult task is to choose an optimal regulari-
sation parameterλ, which will conduct to an optimal balance
between the fit of the observed velocities and the smooth-
ness of the inferred solution. As can be seen in Fig.2b,
the inferred velocities lie all in the error bar of the mea-
sured velocity (Raymond and Harrison, 1988), excepted that
ones inferred for a penalisation larger than 106. A first cri-
teria is then to chooseλ < 106. An other possibility to es-
timate the optimal regularisation parameterλ is the L-curve
analysis (Hansen, 2001). The L-curve method uses the log-
log plot of the norm of the regularised solutionJreg given
by Eq. (13) versus the norm of the initial cost functionJo

(Eq.9) to choose the optimal regularisation parameter. The-
oretically, the L-curve should present a corner which allows
to objectively estimate the optimal regularisation parameter
λ. As shown in Fig.3, for a non-linear model applied to
real data, the L-curve analysis is not straightforward. The
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Fig. 2. Sensitivity of the results to the regularisation penalisationλ

for the 1978 summer data.(a) Distribution of the inferred basal
friction parameterβ along the central flow line and correspond-
ing (b) modelled and measured (orange cross) surface velocities
and(c) modelled basal velocities.The yellow band represents the
±10 m a−1 error on the velocity measurements estimated byRay-
mond and Harrison(1988).

obtained L-curve is not even a strictly decreasing function as
expected theoretically (whenλ increases from 0 to 103, Jo

decreases). This might be explained by the fact that the gra-
dient of the cost function in theArthern and Gudmundsson
(2010) method is only an approximation for the non-linear
rheology, so that the exact minimum of the cost function may
not be reached exactly for anyλ. Nevertheless, from this L-
curve, one can expect the optimalλ to be larger than 103 and
adding the previous analysis on the velocity accuracy, one
might conclude that the optimalλ lies in between 103 and
105. As can be seen in Fig.2, theβ distributions obtained for
this range of regularisation parameters are still very distant.
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Fig. 3. Log-log plot of the norm of the regularised solutionJreg
given by Eq. (13) versus the norm of the initial cost functionJo

given by Eq. (9), the so-called L-curve. The cross correspond to the
regularisation parameters fromλ = 0 up toλ = 109.

Because the objective of this paper is to study changes
in basal conditions over a 10-yr period, we will arbitrarily
choose the smoothest solution and adopt in what follow a
regularisation parameterλ = 105. Spatial variation of the
friction parameter along the flow line will therefore only be
discussed if they arise over long distance, and we will con-
centrate the results analysis on the mean evolution ofβ over
the 10-yr dataset.

Note that the L-curve analysis should be conducted for all
dataset and might conduct to different values of the regulari-
sation parameter despite the weighting byūobsof the regular-
isation term in Eq. (14). Because this analysis would neces-
sitate a large number of simulations, it was not reasonably
feasible for the 25 datasets, and in what follow, the value
λ = 105 is then adopted for all the datasets.

5.2 Inferred basal friction parameter distributions

The distribution of the friction parameter was inferred using
the same method for the 25 datasets available during the qui-
escent phase and the surge. Results are shown in Fig.4. Sea-
sonal changes between summer and winter can be observed.
For a given year, the winter always presents higher friction
than the previous summer. But, during the eight years of the
quiescent phase, the friction parameterβ regularly decreases,
so that the last winter values are smaller than the first sum-
mer ones. Another remarkable feature is that the friction de-
crease is more pronounced in the upper part of the glacier
than in the lower part during the quiescent phase. Contra-
dictory to the assumption made byBindschadler(1982), our
results indicate that sliding already contributes for a large
part of the total motion of the glacier during the quiescent
phase. As shown in Fig.5, the contribution of the basal
velocity continuously increases during the quiescent phase,
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0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 

 

W 73−74

W 74−75

W 75−76

W 76−77

W 77−78

W 78−79

W 79−80

W 80−81

S 1973

S 1974

S 1975

S 1976

S 1977

S 1978

S 1979

S 1980

S 1981

Surge 82−3−6

Surge 82−6−7

Surge 82−7−9

Surge 83−1−2

Surge 83−2−3

Surge 83−3−5

Surge 83−5−6

Surge 83−6−7

u
(
z
b
)
=
u
(
z
s
)
(
%
)

x [km]

Fig. 5. Distribution of the ratio of the modelled horizontal basal velocityu(zb) over the surface velocityu(zs) along
the central flow line for the 25 dates of measurements. Results are shown only where velocity has been measured.
For the legend, see caption of Fig. 4

24

Fig. 5. Distribution of the ratio of the modelled horizontal basal velocityu(zb) over the surface velocityu(zs) along the central flow line for
the 25 dates of measurements. Results are shown only where velocity has been measured.For the legend, see caption of Fig.4
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from a mean value of 10 % in winter 1973 up to 60 % for
summer 1981 just before the surge started, confirming the
values inferred byRaymond and Harrison(1988) using a
simple model.Such progressive increase of the basal slid-
ing during the quiescent phase might confirm, as suggested
for slow-type surging glaciers byFrapṕe and Clarke(2007)
for Trapridge glacier andSund et al.(2009) for Svalbard
glaciers, that even for a fast-type surging glacier like Var-
iegated, the surge phase is in fact the final phase of a pro-
gressive acceleration.

Nevertheless,at the onset of the surge in winter 1981–
1982, dramatic changes in the basal friction occur, princi-
pally in the upper part of the glacier. The inferred friction
parameter drops by about one order of magnitude from 10−3

to 10−4 MPa m−1a, causing a high increase of the basal slid-
ing, as shown in Figs.4 and5. Therefore, even if basal slid-
ing regularly increases during the quiescent phase, initiation
of Variegated surge is clearly marked by a jump in its basal
conditions, leading to a clear distinction between the quies-
cent and surge phases.After this onset phase, the friction
continues to decrease regularly until the end of the surge in
July 1983. Both phases of the surge are visible in the re-
sults. The first phase occurs only in the upper part of the
glacier from March 1982 to September 1982 and ends with
a punctual increase of the basal friction. The second phase
starts in January 1983 and spreads down the glacier until July
1983 with a dramatic decrease of the basal friction. During
the second part of the surge, we observe the propagation of
a low basal friction area from the middle part of the glacier
down to its terminus. At the end of thesimulatedsurge, the
basal sliding accounts for more than 90 % of the observed
surface velocities everywhere on the glacier, whereas it is
only the case in the upper part during the first phase of the
surge. Figure5 shows that at some places along the flow line,
basal velocities are even greater than the surface ones. This
is possible because of the stress transmission when solving
the Stokes system with no simplification.

The inversion procedure gives a good representation of the
observed velocities of each date of the 10-yr dataset. The ob-
served changes in surface velocities during the quiescent and
surge phases can be explained by changes in the basal sliding
velocity and thus are clearly visible in the inferred distribu-
tions of the friction parameterβ. Here, the simplest linear
friction law (Eq.7) is assumed, in which the friction parame-
terβ encompasses all the complexity of basal friction. In the
next section, following the idea proposed byFlowers et al.
(2011), the inferred friction parameter distributionβ(xi,tj )

(i = 1,81 points andj = 1,25 dates) is interpreted in terms
of changes of the effective pressure at the base of Variegated
Glacier from 1973 to 1983, using a more complex friction
law.

6 Basal water distributions

6.1 A water-dependent friction law

Many authors have attempted to infer from physical and
mathematical considerations which variables should be in-
corporated in a realistic friction law (e.g.Weertman, 1957;
Lliboutry, 1968, 1979; Nye, 1969, 1970; Kamb, 1970, 1987;
Morland, 1984; Fowler, 1981, 1986, 1987; Gudmundsson,
1997a,b; Schoof, 2005). Schoof(2005) from mathematical
developments, andGagliardini et al.(2007) from finite ele-
ment simulations have both proposed a similar friction law
for the flow of clean ice over a rigid bedrock in presence of
cavitation. In its simplest form, where the basal drag tends
asymptotically to its maximum value (post-peak exponent
q = 1 in Gagliardini et al., 2007), this friction law is of the
form:

τnt

N
= C

(
u

(1−n)
t

CnNnAs+ut

)1/n

ut . (15)

In the above equation,As is the sliding parameter in the ab-
sence of cavitation andn Glen’s law exponent, resulting in a
non-linear relation between the basal dragτnt and the basal
sliding velocityut . Note that in the limit case wheren = 1
andN � 0, the sliding parameterAs and the friction parame-
terβ are inversely proportional. As shown bySchoof(2005),
the coefficientC is lower than the maximum local positive
slope of the bedrock topography at a decimetre to meter
scale, so that the ratioτnt/N ≤ C fulfils Iken’s bound (Iken,
1981). The friction law (15) is strongly related to the water
pressurepw through the effective pressureN = −σnn −pw.
Whenpw = 0, the effective pressure is equal to the normal
compressive Cauchy stress, and increasing water pressure
leads to a decrease ofN toward zero. The two parame-
tersAs = As(x) andC = C(x) are only a function of space
whereas the time-dependent changes are due to changes in
the effective pressureN = N(x,t). Note that effective pres-
sure changes reflect changes in water pressure and/or basal
normal stress, as discussed below.

AssumingAs andC are known, the effective pressure, and
thus the water pressure, can be evaluated from the previous
inversion results for all pointsxi and all datestj , as follows:

N(xi,tj ) =
βut

C
(
1−βnu

(n−1)
t As

)1/n
, (16)

and thenpw = −N −σnn.
Physically, the effective pressure is bounded, i.e. 0<

τnt/C ≤ N ≤ −σnn, but the evaluation ofN(xi,tj ) from
Eq. (16) can be out of these bounds due to the assumedAs
andC distributions. The upper boundN ≤ −σnn (or pw ≥ 0)
is violated where the sliding parameterAs is too high, so that
even with zero water pressure the sliding velocity is too large.
The boundN ≥ τnt/C (or pw ≤ −σnn − τnt/C, reminding
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σnn < 0 andτnt > 0) is never violated since it corresponds to
infinitely great sliding velocity.

By considering the upper bound, it is possible to estimate
the sliding parameter in absence of cavitationAs so thatN ≤

−σnn is always fulfilled.Assuming zero water pressure (N =

−σnn), the sliding parameter reduces to

As=
u

(1−n)
t

βn
−

ut

Cn(−σnn)
n

= ut

(
1

τn
nt

−
1

Cn(−σnn)
n

)
. (17)

Becauseτnt � σnn, As ≈ ut/τ
n
nt and it implies thatAs is al-

most independent of the choiceC. Therefore, from Eq. (16),
one can conclude that the effective pressure is simply in-
versely proportional toC.

The distribution of the minimal sliding parameterAmin
s is

then evaluated from Eqs. (7) and(17), such that:

Amin
s (xi) = min

tj
(As(xi,tj )) = min

tj

(
u

(1−n)
t

βn
−

ut

Cn(−σnn)
n

)
, (18)

whereβ, σnn andut are defined at each datetj and each point
xi where data are available. It is found that the minimal value
of As inferred from Eq. (18) is everywhere obtained for the
winter 1973 dataset, except for the upper and lower points
for which no measurement was performed in 1973. This in-
dicates that basal sliding during winter 1973 represents the
lowest values of the following 10-yr period.

In what follow, in absence of bedrock roughness data, we
will hereafter assume a uniformC distribution (C = 0.5).
The sliding parameter in absence of cavitationAs is deter-
mined then from Eq. (18). As already mentioned, because
of this arbitrary choice of the value of theC parameter, the
inferred water pressures should not be regarded as actual val-
ues and only relative changes will be discussed.

6.2 Modelled change in basal water pressure

Using the inferred sliding parameter distributionAmin
s (x), the

water pressure for the 25 dates is then obtained from Eq. (16).
Figure 6 shows the evolution with time (vertical axis) and
space (horizontal axis) of the ratio of the water pressure over
the normal stress−pw/σnn. This ratio is plotted instead of
the effective pressureN because it is visually easy to inter-
pret. When this ratio tends toward 1, the effective pressure
tends toward zero and the sliding is increased.

Themostnoticeable result is that the large changes in the
friction parameterβ shown in Fig.4 areassociated withrel-
atively small changes in terms of water pressure. As shown
in Fig. 7, the basal normal stress is almost constant during
the 10-yr period, despite strong variations along the flow
line. Therefore, changes with time of the ratio−pw/σnn

are mostly due to changes in water pressure. As shown in
Fig. 6, the ratio−pw/σnn only evolves between 0.7 to 1, if
we except the winter 1973 for which it is zero due to the def-
inition of theAs parameter. Thisstrong non-linear response
between basal drag and water pressurecan be explained by

the shape of the friction law usedhereand the fact that it
is bounded for large sliding velocity (see Fig. 8 inGagliar-
dini et al., 2007). For low sliding velocity corresponding to
great effective pressure, a great increase in water pressure is
needed to increase the velocity. For great sliding velocity, it
is the opposite due to the asymptotical behaviour of the fric-
tion law, anda small increase in water pressure leads to great
increase in velocity.

Again, the seasonality of the sliding, as well as the two
phases of the surge, are visiblein the water pressure, as de-
picted in Fig. 6. Also, as was already inferred from theβ
inversion, the greatest changes are observed in the upper part
of the glacier during the quiescent phase and the first surge
phase. For the second phase of the surge, we observe the
propagation of a high water pressure area from the upper part
to the lower part of the glacier, while the pressure in the up-
per part still remains significant. During this last stage, the
increase of water pressure, even though relatively small (2–
6 %), leads to very large increase of the ice flow.

Finally, note, that even if the normal stressσnn is almost
constant, a slight and progressive increase ofσnn in the upper
part of the glacier is visible in the years before the surge,
induced by an increase of the observed ice thickness. During
the surge, this increase propagates down the glacier attesting
displacement of the ice mass.

6.3 Effect of basal topography on basal water pressure

The topography clearly affects the waterpressurebelow Var-
iegated Glacier. First, each bump in the bedrock induces
a higher normal stressσnn on its upstream face (Fig.7).
Surprisingly, it is also the places where the ratio−pw/σnn

increases, indicating that these are the areas where the in-
crease of the water pressure is the highest. These bedrock
bumps, and more particularly the one located atx = 10 km,
seem to restrain the water in an upstream catchment. This
interpretation is consistent with the surge hypothesis for-
mulated byLingle and Fatland(2003). Indeed, the pro-
gressive evolution of the surface topography of Variegated
Glacier leads to an increasingly constricted water catchment
upstreamx = 10 km, which increases slightly the water pres-
sure up to a threshold value for which the surge occurs.As
shown in Fig.6, a high water pressure area of approximately
2 km is present since the beginning of the measurement pe-
riod, but one can observe an increase with time of the water
pressure upstream this area, indicating an upstream growth
of the water catchment. The first phase of the surge is char-
acterised by a sudden increase of the water pressure in the
whole upper glacier upstreamx = 10 km. During the sec-
ond phase of the surge, the propagation of the high water
pressure area downstreamx = 10 km (Fig.6) is probably a
consequence of the destruction of the water catchment dur-
ing the first surge stage, leading to the opening of the initially
constricted water catchment.
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Fig. 7. Evolution with time since 1973 (vertical axis) and position along the central flow line (horizontal axis) of the modelled basal normal
stress−σnn [MPa]. The lower panel represents the bedrock slope∂b/∂x.

7 Direct prognostic simulations

From the previous analysis, the friction parameterβ is re-
constructed for the 25 datasets from summers 1973 to 1983.
To test the sensitivity of the model to the surface geometry,
we run a prognostic time-dependent simulation assuming a
constant mass balance over these 10 yr and the previously in-
ferred history of the friction parameter.

Starting from the summer 1973 surface geometry, the up-
per free surface is evolved using the following kinematic
boundary condition:

∂zs

∂t
+ux

∂zs

∂x
−uz = as , (19)

whereas is the accumulation/ablation function. This func-
tion is estimated from the average mass balance measured
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Fig. 8. Comparison of modelled (line) and measured (cross) surface geometries at four different dates.

on Variegated Glacier between 1972 to 1976 (Bindschadler,
1982). The mass balance(in m a−1) is supposed to be lin-
early dependent on the surface altitudezs (in m) and the equi-
librium line located at 1050 m a.s.l., such that:

as = min

(
6
zs−1050

885
;3.2

)
. (20)

The Stokes Eqs. (1) and (2) using the basal boundary con-
dition (Eq. 7), and the free surface evolution Eq. (19) are
coupled and solved iteratively using a time step of 0.1 a. At
each time step, the basal friction parameterβ is interpolated
linearly from the two closest datasets in the time-series.

The modelled surface is compared with the observed sur-
face at four different dates just before, during and after the
surge in Fig.8. The modelled and observed surface eleva-
tions before and during the surge relative to the measured sur-
face elevation of summer 1973 are shown in Figs.9 and10.
Before the surge we observe a thickening of the upper part
of the glacier and a thinning of the lower part. The timing
and the magnitude of the changes are well reproduced by
the model except on the highest part of the glacier where the
model leads to a thinning of the glacier. Part of the discrep-
ancies between the model and observations can be explained
by errors in the mass balance and/or by three-dimensional
effects (ice convergence along the central flow line,not ac-
counted for in our model, Raymond, 1987). As a matter of
fact, the Variegated volume has been observed to increase

during the quiescent phase, whereas, in the model, the inte-
grated mass balance is slightly negative leading to a decrease
of the modelled ice volume.In Fig. 9, the oscillations of the
elevation changes from 0 to 5 km are certainly explained by
an initial surface being not in equilibrium with the model so-
lution, because the convergence/divergence of the flow is not
accounted for and the upper part of Variegated glacier is very
steep.

As expected, the modelled surge occurs in phase with the
observations when the friction parameter dramatically de-
creases in March 1982. The surge is characterised by a thin-
ning of the upper part of the glacier and a thickening of the
lower part which results in the advance of the ice front. As
already observed for the quiescent phase, the upper part of
the glacier is too thin when compared with summer 1973,
but the timing of the mass transfer from the upper part to the
lower part of the glacier is well captured by the model, and
particularly the advance of the ice front position.

The ability of our model to reproduce the main characteris-
tics of the surgejustifiesa posteriori the use of the diagnostic
model to infer the basal friction distribution for each dataset
independently. It demonstrates that the results are not very
sensitive to the surface geometry and that the Robin inverse
method (Arthern and Gudmundsson, 2010) with an appropri-
ate regularisation allows us to retrieve a good order of magni-
tude of the friction parameterβ where surface velocity obser-
vations are available. The errors on the modelled topography
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Fig. 9. Comparison of(a) modelled and(b) measured surface geometries relative to the 1973 surface topography for each date during the
quiescent phase.
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Fig. 10. Comparison of(a) modelled and(b) measured surface geometries relative to the 1973 surface topography
for each date during the surge.
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Fig. 10. Comparison of(a) modelled and(b) measured surface geometries relative to the 1973 surface topography for each date during the
surge.
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can belikely explained by the lack of data (topography, ve-
locities and mass balance) and three-dimensional effects.

8 Conclusions

We have presented the first application to a real case of
the inverse method proposed byArthern and Gudmundsson
(2010). It demonstrates the strong relevance of this inverse
method, which allowed the reconstruction of the basal condi-
tions below Variegated Glacier along a 10-yr periodconsis-
tent with surface elevation and velocity measurements. From
this reconstruction of the friction parameter,water pressure
changeswere inferred using a water pressure dependent fric-
tion law. As an important result, we showed that very large
changes in the basal friction parameter are induced by rela-
tively small changes in basal water pressure. This is mainly
due to the asymptotical behaviour of the friction law for great
sliding velocity. Our results support the presence of a sub-
glacial water storage in the mid-upper part of the glacier as
proposed byLingle and Fatland(2003).

To take this study further, our reconstruction of the basal
water pressurechangesover the 10-yr period should be used
to constrain a hydrological model coupled with an ice flow
model, as inPimentel et al.(2010). This would, however,
need to be conducted using a three-dimensional modelling
approach to overcome the limitations of a flow line hydro-
logical model. This would bea significantstep to fully relate
the surge behaviour of Variegated Glacier to its surface mass
balance over the decade 1973–1983.
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