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Abstract. Phenomena involving frozen soil or rock are im-
portant in many natural systems and, as a consequence, there
is a great interest in the modeling of their behavior. Few
models exist that describe this process for both saturated and
unsaturated soil and in conditions of freezing and thawing,
as the energy equation shows strongly non-linear character-
istics and is often difficult to handle with normal methods
of iterative integration. Therefore in this paper we propose
a method for solving the energy equation in freezing soil.
The solver is linked with the solution of Richards equation,
and is able to approximate water movement in unsaturated
soils and near the liquid-solid phase transition. A globally-
convergent Newton method has been implemented to achieve
robust convergence of this scheme. The method is tested by
comparison with an analytical solution to the Stefan problem
and by comparison with experimental data derived from the
literature.

1 Introduction

The analysis of freezing/thawing processes and phenomena
in the ground is important for hydrological and other land
surface and climate model simulations (e.g.Viterbo et al.,
1999; Smirnova et al., 2000). For example, comparisons
of results from the Project for Intercomparison of Land Sur-
face Parameterization Schemes have shown that the models
with an explicit frozen soil scheme provide more realistic
soil temperature simulation during winter than those without
(Luo et al., 2003). Freezing soil models may be divided into
three categories:empirical and semiempirical, analytical,
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andnumerical physically-based(Zhang et al., 2008). Em-
pirical and semiempirical algorithms relate ground thawing-
freezing depth to some aspect of surface forcing by one or
more experimentally established coefficients (e.g.Anisimov
et al., 2002). Analytical algorithms are specific solutions to
heat conduction problems under certain assumptions. The
most widely applied analytical solution is Stefan’s formula-
tion, which simulates the freezing/thawing front using ac-
cumulated ground surface degree-days (either a freezing or
thawing index) (Lunardini, 1981). Numerical physically-
based algorithms simulate ground freezing by numerically
solving the complete energy equation, and in natural condi-
tions they are expected to provide the best accuracy in sim-
ulating ground thawing and freezing (Zhang et al., 2008).
However, this approach has difficulties, especially regarding
the treatment of phase change, which is strongest in a narrow
range of temperatures near the melting point, and thus rep-
resents a discontinuity that may create numerical oscillations
(Hansson et al., 2004). Furthermore, the freezing process
has a profound effect also to the water fluxes in the soil, as
it changes the soil hydraulic conductivity and induces pres-
sure gradients driving water movements. Therefore, a cou-
pled mass and energy system is needed to simulate both the
thermal and hydraulic characteristics of the soil.

The objectives of the paper are: (1) to revisit the theory
of the freezing soil in order to provide the formulation for
the unfrozen water pressure, which can accomodate variably-
saturated soils; (2) to outline and describe a numerical ap-
proach for solving coupled mass and energy balance equa-
tions in variably-saturated freezing soils, based on the split-
ting method; (3) to provide an improved numerical scheme
that: (i) is written in conservative way, (ii) is based on the
globally convergent Newton scheme, and (iii) can handle
the high non-linearities typical of the freezing/thawing pro-
cesses.
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The algorithm is tested against the analytical solution
of unilateral freezing of a semi-infinite region given by
Neumann (Carslaw and Jaeger, 1959; Nakano and Brown,
1971), in order to test convergence under extreme con-
ditions, and against the experimental results published by
Hansson et al.(2004), in order to test the coupled water and
heat flow.

2 Freezing-soil models

One of the first attempts to include soil freeze-thaw into a
numerical model is the work ofNakano and Brown(1971),
who assumed the advance of the freezing front as a moving
boundary. They applied the analytical solution ofCarslaw
and Jaeger(1959) to a porous soil, and introduced the ef-
fect of an artificial freezing zone of finite width between the
frozen and the unfrozen parts; this avoids the problem of
shock wave propagation in the transition between the frozen
and thawed state, typical of the “freezing front” assumption.
No water flow, i.e. no mass balance equation, is taken into
account and the energy balance is expressed through the def-
inition of an apparent heat capacity during phase change, as
proposed byLukyanov and Golovko(1957). Harlan(1973)
is probably the first to attempt to solve coupled mass and en-
ergy balance equations for freezing soil by making an anal-
ogy between the mechanism of water transport in partially
frozen soils and those in unsaturated soils. He solves the
system on a homogeneous rigid porous medium through a
fully implicit finite difference scheme, where the unknowns
are temperature and soil water potential; phase change in the
water balance appears in the source/sink term. He also uses
the apparent heat capacity formulation in the energy balance.
The results show that the freezing process induces the move-
ment of both heat and mass from warm to cold regions, caus-
ing the moisture content in the unfrozen soil zone to decrease
sharply towards the freezing front. Soil texture and initial
moisture conditions seem to be crucial in affecting the avail-
ability and mobility of water.Fuchs et al.(1978) developed
a theory of soil freezing applicable to unsaturated conditions
with solute presence in the soil. They considered that so-
lutes tend to depress the freezing point temperature and mod-
ified the relationship between temperature, moisture content
and apparent thermal properties of the soil. Phase change
was taken into account with the apparent heat capacity the-
ory, and the water flow contribution is accounted for in the
apparent thermal conductivity. Therefore, the simultaneous
heat and water transport equations result in a merged single
differential equation for heat.Jame and Norum(1980) fur-
ther developed the model ofHarlan(1973), and highlighted
that the effect of mass transfer on the thermal state of soil
is an important factor to be considered.Newman and Wil-
son (1997) proposed a theoretical formulation for unsatu-
rated soils using soil-freezing and soil-water characteristic
curve data to combine the heat and mass transfer relation-

ships into a single equation for freezing or frozen regions
of the soil. Christoffersen and Tulaczyk(2003) constructed
a high-resolution numerical model of heat, water, and solute
flows in sub-ice stream till subjected to basal freeze-on. They
proposed a formulation of the equilibrium relation without
assuming zero ice pressure through the full version of the
generalized Clapeyron equation (Mikkola and Hartikainen,
2001), which enables them to model segregation ice onto the
freezing interface and so develop stratified basal ice layers.
Hansson et al.(2004) introduced a new method for coupled
heat transport and variably saturated water flow using the
Richards’ equation. They accounted for water flow due to
gravity, pressure gradient and temperature gradient, both for
liquid and vapor phase.McKenzie et al.(2007) proposed the
freezing module of SUTRA for saturated conditions.Daa-
nen et al.(2007) developed a 3-D model of coupled energy
and Richards equation to analyze the effects that lead to the
formation of non-sorted circles, an example of a relatively
stable patterned-ground system. Their model is very similar
to Hansson et al.(2004), but it differs in the linkage between
ice content and temperature.Watanabe(2008) also used a
similar model toHansson et al.(2004). He reproduced direc-
tional freezing experiments on silty soil and compared this to
experimental data.

Basing on these studies, some important aspects in freez-
ing soil algorithms may be highlighted:

1. the degree of soil saturation is often not specified, and
thus soil is tacitly assumed fully saturated;

2. the relation between liquid water content and temper-
ature, usually derived by the “freezing= drying” as-
sumption (Miller , 1965), is not linked to the soil satu-
ration degree;

3. the method used to solve the mass and energy balance
is seldom accurately explained, especially regarding the
approach to the coupled differential equations.

3 Mass and energy in the soil

A soil is usually composed of soil particles (subscript “sp”)
and water. The content and phase (liquid or solid) of wa-
ter vary with soil temperature and saturation degree: in
unsaturated-unfrozen conditions liquid water (subscript “w”)
and air are present, whereas in unsaturated-frozen conditions
ice (subscript “i”) also occurs (Fig.1).

Let us assume the following hypothesis: (1) rigid soil
scheme, i.e. the volumeVc is constant and no volume ex-
pansion during freezing is allowed. Therefore the density of
waterρw and of iceρi (kg m−3) must be considered equal,
because otherwise the change of the water density upon
freezing would lead to unrealistically large gauge pressures
that cannot be converted into an expansion of the soil ma-
trix, due to the lack of a mechanical model; (2) the “Freez-
ing= drying” assumption (Miller , 1965; Spaans and Baker,
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in order to test the coupled water and heat flow.

2 Freezing-soil models

One of the first attempts to include soil freeze-thaw into a
numerical model is the work of Nakano and Brown (1971),
who assumed the advance of the freezing front as a moving
boundary. They applied the analytical solution of Carslaw
and Jaeger (1959) to a porous soil, and introduced the ef-
fect of an artificial freezing zone of finite width between the
frozen and the unfrozen parts; this avoids the problem of
shock wave propagation in the transition between the frozen
and thawed state, typical of the “freezing front” assumption.
No water flow, i.e. no mass balance equation, is taken into
account and the energy balance is expressed through the def-
inition of an apparent heat capacity during phase change, as
proposed by Lukyanov and Golovko (1957). Harlan (1973)
is probably the first to attempt to solve coupled mass and en-
ergy balance equations for freezing soil by making an anal-
ogy between the mechanism of water transport in partially
frozen soils and those in unsaturated soils. He solves the
system on a homogeneous rigid porous medium through a
fully implicit finite difference scheme, where the unknowns
are temperature and soil water potential; phase change in the
water balance appears in the source/sink term. He also uses
the apparent heat capacity formulation in the energy balance.
The results show that the freezing process induces the move-
ment of both heat and mass from warm to cold regions, caus-
ing the moisture content in the unfrozen soil zone to decrease
sharply towards the freezing front. Soil texture and initial
moisture conditions seem to be crucial in affecting the avail-
ability and mobility of water. Fuchs et al. (1978) developed
a theory of soil freezing applicable to unsaturated conditions
with solute presence in the soil. They considered that so-
lutes tend to depress the freezing point temperature and mod-
ified the relationship between temperature, moisture content
and apparent thermal properties of the soil. Phase change
was taken into account with the apparent heat capacity the-
ory, and the water flow contribution is accounted for in the
apparent thermal conductivity. Therefore, the simultaneous
heat and water transport equations result in a merged sin-
gle differential equation for heat. Jame and Norum (1980)
further developed the model of Harlan (1973), and high-
lighted that the effect of mass transfer on the thermal state
of soil is an important factor to be considered. Newman and
Wilson (1997) proposed a theoretical formulation for unsat-
urated soils using soil-freezing and soil-water characteristic
curve data to combine the heat and mass transfer relation-
ships into a single equation for freezing or frozen regions
of the soil. Christoffersen and Tulaczyk (2003) constructed
a high-resolution numerical model of heat, water, and solute
flows in sub-ice stream till subjected to basal freeze-on. They
proposed a formulation of the equilibrium relation without
assuming zero ice pressure through the full version of the

Fig. 1. Frozen soil constituents and schematization of the control
volume Vc

generalized Clapeyron equation (Mikkola and Hartikainen,
2001), which enables them to model segregation ice onto the
freezing interface and so develop stratified basal ice layers.
Hansson et al. (2004) introduced a new method for coupled
heat transport and variably saturated water flow using the
Richards’ equation. They accounted for water flow due to
gravity, pressure gradient and temperature gradient, both for
liquid and vapor phase. McKenzie et al. (2007) proposed the
freezing module of SUTRA for saturated conditions. Daa-
nen et al. (2007) developed a 3D model of coupled energy
and Richards equation to analyze the effects that lead to the
formation of non-sorted circles, an example of a relatively
stable patterned-ground system. Their model is very similar
to Hansson et al. (2004), but it differs in the linkage between
ice content and temperature. Watanabe (2008) also used a
similar model to Hansson et al. (2004). He reproduced direc-
tional freezing experiments on silty soil and compared this to
experimental data.
Basing on these studies, some important aspects in freezing
soil algorithms may be highlighted:

1. the degree of soil saturation is often not specified, and
thus soil is tacitly assumed fully saturated;

2. the relation between liquid water content and tempera-
ture, usually derived by the “freezing=drying” assump-
tion (Miller, 1965), is not linked to the soil saturation
degree;

3. the method used to solve the mass and energy balance
is seldom accurately explained, especially regarding the
approach to the coupled differential equations.

Fig. 1. Frozen soil constituents and schematization of the control
volumeVc.

1996), which implicitly implies that: (i) the freezing (thaw-
ing) water is like evaporating (condensing) water; (ii) the ice
pressure is equal to the air pressure; (iii) the water and ice
content in the soil may be related to the soil matric potential
according to the soil water retention curve, e.g.Brooks and
Corey(1964), Clapp and Hornberger(1978), Gardner(1958)
or Van Genuchten(1980); (iii) the volumeVc is represen-
tative of soil volumes above the water table or at shallow
depths below the water table, where the water pressure may
be considered similar to the atmospheric pressure.

Let us defineψw0 (m) as the matric potential correspond-
ing to the total water content (liquid and ice), andψ (m) as
the matric potential corresponding to the liquid water content
only. Indicating withf () the water retention curve function
relating water content to matric potential, it is:θw = f (ψ)

and2v = f (ψw0), whereθw andθi (−) are respectively the
volumetric water and ice contents.2v := θw + θi (−) is the
total volumetric content of ice and water, as explicated in
AppendixA. Since the liquid water content cannot be larger
than the total water content andf is normally represented as
a monotone function, it follows that: θw ≤2v ≤ θs

ψ ≤ψw0 ≤ 0
(1)

whereθs (−) the soil saturated water content. When the soil
volumeVc is saturated,ψw0 = 0 and2v = θs. When the soil
is unfrozenψ =ψw0 andθw =2v.

The energy content of the soil volumeVc is represented by
the internal energyU (J m−3), which, neglecting the energy
of air and excluding the work of volume expansion passing
from the liquid to the frozen state, can be calculated as the
sum of the internal energy of the soil particles, ice and liquid
water:

U =Usp+Ui +Uw (2)

In particular, with regard to a reference temperatureTref (K),
each of the above terms becomes:
Usp(T )= ρsp csp(1−θs) (T −Tref)

Ui(θi,T )= ρiθici (T −Tref)

Uw(θw,T )= ρwθw [Lf +cw (T −Tref)]

(3)

whereT (K) is the temperature,Lf is the latent heat of fusion
(J kg−1), ρsp (kg m−3) is the density of soil particles, andcsp,
ci andcw (J kg−1 K−1) are the specific thermal capacity of
soil particle, ice and liquid water, respectively. UsuallyTref
is set to the melting temperatureTm at atmospheric pressure,
equal to 273.15 K. Summing the components in Eq. (3) in a
more compact form gives:

U =CT ·(T −Tref)+ρwLfθw (4)

whereCT := ρspcsp(1−θs)+ρiciθi +ρwcwθw (J m−3 K−1) is
the total thermal capacity of the soil volume.

The conservation law

Water and energy fluxes through the boundaries ofVc cause
variations of water content and internal energy. Neglecting
the ice flux within the soil, the mass conservation in a soil
volume may be written as (Harlan, 1973):

∂(Mw +Mi)

∂t
+ρw Vc ·∇•J w +ρw Vc Sw = 0 (5)

whereMw andMi (kg) are the mass of water and ice respec-
tively present inVc, the symbol “∇•” refers to the divergence
operator andSw (s−1) is a sink term due to evapotranspira-
tion. After some calculations one obtains:

∂2m

∂t
+∇•J w +Sw = 0 (6)

where2m (−) is the total water content as derived by the
fraction of the total mass of water and iceMt =Mw +Mi
(kg) and the maximum mass of water that would fit inVc, as
explained in AppendixA.

J w (m s−1) is the water flux within the soil following the
Darcy-Buckingham formulation:

J w(ψ)= −KH ∇(p+zf ) (7)

“∇” is the gradient operator,KH (m s−1) is the hydraulic con-
ductivity,p (m) is the liquid water pressure head (equal to the
soil matric potential when soil is unsaturated), andzf (m) is
the elevation with respect to a reference. Analogous to the
case of water content controlled only by drying processes, the
hydraulic conductivity is dependent on the soil matric poten-
tial ψ associated with liquid water (Mualem, 1976), with its
maximum valueKH,satwhen water is unfrozen and soil satu-
rated. However, the presence of ice may significantly reduce
the hydraulic conductivity due to the apparent pore block-
age effect exerted by ice. This is accounted for by further
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reducing the hydraulic conductivity by an impedance factor
smaller than 1 and equal to 10−ωq (Zhao et al., 1997; Hans-
son et al., 2004), whereω is a coefficient andq is the ice
fractional content given by θi

θs−θr
, whereθr is the residual wa-

ter content.Zhao et al.(1997) andHansson et al.(2004) both
setω equal to 7.

The energy conservation in a soil volumeVc may be writ-
ten as (Fuchs et al., 1978):

∂U

∂t
+∇•(G+J )+Sen= 0 (8)

where:

1. Sen (W m−3) represents a sink term due to energy losses;

2. G (W m−2) is the conduction flux through the volume
boundaries. According to the Fourier law,G is defined
as:

G = −λT ∇T (9)

whereλT = λT(λsp,θw,θi) (W m−1 K−1) is the thermal
conductivity of the soil withinVc that depends on the
thermal conductivity of the soil particles (λsp) and on
the proportions of ice and water and the temperatureT

(Johansen, 1975; Farouki, 1981).

3. J (W m−2) is the heat advected by flowing water:

J = ρw · [Lf +cw (T −Tref)] ·J w (10)

Eventually the equations to be solved are the mass conser-
vation (Eq.6) and energy conservation (Eq.8), which rep-
resent a system of two differential equations. If the soil is
unfrozen, the unknowns areψ andT , and so the system is
solvable; if the soil is frozen, the unknowns are:ψ , ψw0 and
T , and so, in order to solve the system, it is necessary to pro-
vide a further closure relation relating the temperature and
soil water pressure head.

4 Pressure and temperature under freezing condition

When the soil is unfrozen, the liquid water content (θw) co-
incides with the total water content. At freezing conditions,
however, it depends also on temperature. According to the
“freezing= drying” assumption, the ice pressure is set to
null, and so the generalized Clapeyron equation becomes:

ρwLf
dT

T
= dpw (11)

wherepw (Pa) is the water pressure. This equation states that
the variation of water pressure head during phase change is
only dependent on water temperature.

If the soil volumeVc is saturated, we can assume that the
water pressure at the soil surface equals the atmospheric pres-
surepa. In order to derive the pressurepw at freezing condi-
tions, where the temperature is lower than the melting tem-
perature at atmospheric pressure (Tm), one should integrate
Eq. (11) as follows:∫ T

Tm

Lf
dT

T
=

∫ pw

pa

dp′
w (12)

The left hand term of Eq. (12) may be approximated as:∫ T

Tm

Lf
dT

T
=Lf ln

(
T

Tm

)
≈Lf

T −Tm

Tm
(13)

Usually the atmospheric pressure is set to zero (pa = 0).
Combining Eqs. (12) and (13) one obtains:

Lf
T −Tm

Tm
=

∫ pw

0
dp′

w =pw (14)

Considering thatpw ≤ 0 and ρw · g ·ψw = pw, where g
(m s−2) is the acceleration due to gravity, one can find the
liquid water matric potential (ψ) subject to freezing condi-
tions:

ψ =ψ(T )=
Lf

g Tm
(T −Tm) (15)

If the soil is unsaturated, the surface tension at the water-air
interface decreases the water melting temperature to a value
T ∗<Tm. Let us callpw0 the pressure of water corresponding
to the pressure headψw0. The value ofT ∗ may be found
integrating Eq. (11) in temperature fromTm to the unknown
T ∗, which means integrating in pressure head from the value
pa= 0 to the degree of saturation given bypw0. One obtains:∫ T ∗

Tm

Lf
dT

T
=

∫ pw0

0
dp′

w (16)

which, considering the approximation of Eq. (13), provides
the melting temperatureT ∗ at unsaturated conditions:

T ∗
= Tm+

g Tm

Lf
ψw0 (17)

When T ≥ T ∗, the soil is unfrozen whereas whenT <
T ∗, the soil is under freezing conditions. The above
relation, applying the Laplace equation for determining
the radius r from ψw0, becomes similar to Eq. (5) in
Watanabe and Mizoguchi(2002).

The liquid water pressurepw depends on the intensity of
freezing condition provided byT , and may be found integrat-
ing Eq. (11) in pressure frompw0 to pw and in temperature
from T ∗ to T . One obtains:∫ T

T ∗

Lf
dT

T
=

∫ pw

pw0

dp′
w (18)

and consequently:

ψ =ψ(T )=ψw0+
Lf

g T ∗
(T −T ∗) (19)
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and consequently:

ψ=ψ(T ) =ψw0 +
Lf
g T ∗

(T −T ∗) (19)

The above equation is valid for T < T ∗: in fact, when T ≥
T ∗, the freezing process is not activated and the liquid water
pressure head is equal to the ψw0. Equations (17) and (19)
collapse in Eq. (15) for a saturated soil (i.e. ψw0 = 0). Thus
the formulation of the liquid water pressure head ψ(T ) under
freezing conditions, valid both for saturated and unsaturated
soils, becomes:ψ(T ) =ψw0 + Lf

g T∗ (T −T ∗) if T <T ∗

ψ(T ) =ψw0 if T ≥T ∗
(20)

which can be summarized using the Heaviside function H( )
as:

ψ(T ) =ψw0 +
Lf
g T ∗

(T −T ∗) ·H(T ∗−T ) (21)

If the soil water retention curve is modeled according to the
Van Genuchten (1980) model, the total water content be-
comes:

Θv = θr+(θs−θr) ·{1+[−α ψw0]n}−m (22)

where θr (-) is the residual water content. The liquid water
content θw becomes:

θw = θr+(θs−θr) ·{1+[−α ψ(T )]n}−m (23)

Equation (23) gives the liquid water content at sub-zero
temperature and is usually called ”freezing-point depression
equation” (e.g. Zhang et al., 2007 and Zhao et al., 1997).
Differently from Zhao et al. (1997), it takes into account not
only the temperature under freezing conditions but also the
depressed melting temperature T ∗, which depends on ψw0. It
comes as a consequence that the ice fraction is the difference
between Θv and θw:

θi = Θv(ψw0)−θw [ψ(T )] (24)

It results that, under freezing conditions (T < T ∗), θw and
θi are function of ψw0, which dictates the saturation degree,
and T, that dictates the freezing degree. Equation (24), usu-
ally called “freezing-point depression equation”, relates the
maximum unfrozen water content allowed at a given temper-
ature in a soil. Figure 2 reports the freezing-point depression
equation for pure water and the different soil types according
to the Van Genuchten parameters given in Table 1.
Equations (21) and (17) represent the closure relations sought
for the differential equations of mass conservation (Eq. 6)
and energy conservation (Eq. 8).

Table 1. Porosity and Van Genuchten parameters for water and
different soil types as visualized in Fig. 2

θs θr α n source
(-) (-) (mm−1) (-)

water 1.0 0.0 4E-1 2.50
sand 0.3 0.0 4.06E-3 2.03
silt 0.49 0.05 6.5E-4 1.67 (Schaap et al., 2001)
clay 0.46 0.1 1.49E-3 1.25 (Schaap et al., 2001)
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Fig. 2. Freezing curve for pure water and various soil textures, ac-
cording to the Van Genuchten parameters given in Table 1.

5 The decoupled solution: splitting method

The final system of equations is given by the equations of
mass conservation (Eq. 6) and energy conservation (Eq. 8):

∂Θm(ψw0,T )
∂t +∇•Jw(ψw0,T )+Sw = 0

∂U(ψw0,T )
∂t +∇• [G(T )+J(ψw0)]+Sen = 0

(25)

The previous system is a function of T and ψw0 and can be
solved by the splitting method, as explained in Appendix B.
In the first half time step, the Richards’ equation is solved
and the internal energy is updated with only the advection
contribution. In the second half, no water flux is allowed,
which makes the volume a closed system, and the internal
energy is updated with the conduction flux in order to find
the new temperature and the new combination of water and
ice contents.

Fig. 2. Freezing curve for pure water and various soil textures, ac-
cording to the Van Genuchten parameters given in Table1.

The above equation is valid forT < T ∗: in fact, whenT ≥

T ∗, the freezing process is not activated and the liquid water
pressure head is equal to theψw0. Equations (17) and (19)
collapse in Eq. (15) for a saturated soil (i.e.ψw0 = 0). Thus
the formulation of the liquid water pressure headψ(T ) under
freezing conditions, valid both for saturated and unsaturated
soils, becomes:
ψ(T )=ψw0+

Lf
g T ∗ (T −T ∗) if T <T ∗

ψ(T )=ψw0 if T ≥ T ∗

(20)

which can be summarized using the Heaviside functionH( )

as:

ψ(T )=ψw0+
Lf

g T ∗
(T −T ∗) ·H(T ∗

−T ) (21)

If the soil water retention curve is modeled according to the
Van Genuchten(1980) model, the total water content be-
comes:

2v = θr +(θs−θr) ·
{
1+ [−α ψw0]n

}−m (22)

whereθr (−) is the residual water content. The liquid water
contentθw becomes:

θw = θr +(θs−θr) ·
{
1+ [−α ψ(T )]n

}−m (23)

Equation (23) gives the liquid water content at sub-zero
temperature and is usually called “freezing-point depression
equation” (e.g.Zhang et al., 2007 and Zhao et al., 1997).
Differently from Zhao et al.(1997), it takes into account not
only the temperature under freezing conditions but also the

Table 1. Porosity and Van Genuchten parameters for water and
different soil types as visualized in Fig.2.

θs θr α n source
(−) (−) (mm−1) (−)

water 1.0 0.0 4×10−1 2.50
sand 0.3 0.0 4.06×10−3 2.03
silt 0.49 0.05 6.5×10−4 1.67 (Schaap et al., 2001)
clay 0.46 0.1 1.49×10−3 1.25 (Schaap et al., 2001)

depressed melting temperatureT ∗, which depends onψw0. It
comes as a consequence that the ice fraction is the difference
between2v andθw:

θi =2v(ψw0)−θw [ψ(T )] (24)

It results that, under freezing conditions (T < T ∗), θw and
θi are function ofψw0, which dictates the saturation degree,
andT , that dictates the freezing degree. Equation (24), usu-
ally called “freezing-point depression equation”, relates the
maximum unfrozen water content allowed at a given temper-
ature in a soil. Figure2 reports the freezing-point depression
equation for pure water and the different soil types according
to the Van Genuchten parameters given in Table1.

Equations (21) and (17) represent the closure relations
sought for the differential equations of mass conservation
(Eq.6) and energy conservation (Eq.8).

5 The decoupled solution: splitting method

The final system of equations is given by the equations of
mass conservation (Eq.6) and energy conservation (Eq.8):

∂2m(ψw0,T )
∂t

+∇•J w(ψw0,T )+Sw = 0

∂U(ψw0,T )
∂t

+∇• [G(T )+J (ψw0)] +Sen= 0
(25)

The previous system is a function ofT andψw0 and can be
solved by thesplitting method, as explained in AppendixB.
In the first half time step, the Richards’ equation is solved
and the internal energy is updated with only the advection
contribution. In the second half, no water flux is allowed,
which makes the volume a closed system, and the internal
energy is updated with the conduction flux in order to find
the new temperature and the new combination of water and
ice contents.

5.1 Step 1: water and advection flux

Let us indicate with the superscript “n” the quantities at the
time stepn, with “n+1” the quantities at the time stepn+1:
thentn+1

= tn+1t (1t being the integration interval), and
with “n+1/2” the quantities at the end of the first step (tem-
porary quantities). In the first step of the splitting method,
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the temperatureT is kept constant and phase change is not
allowed, i.e. the ice content remains constant. The result-
ing equations to be solved are Eqs. (B3) and (B4), whose
solution are represented by the fluxJ w, the water pressure
ψn+1/2

= ψn +1ψ , which results inψn+1
w0 = ψnw0 +1ψ

(see Eq.21), and eventually in the new total water content
2n+1

v =2nv +1θfl
w (see Eq.22). The variation of liquid wa-

ter content1θfl
w is subject to the following limitation given

by volume conservation:

θr −θ
n
w ≤1θfl

w ≤ θs−θ
n
w −θni (26)

The internal energy of the System is changed by the quantity:

1Ufl
= ρw

[
Lf +cw(T

n
−Tref)

]
·1θfl

w (27)

5.2 Step 2: energy flux and phase change

In the second step of the splitting method, water flux is not
allowed and2v = θnw +θni +1θfl

w is kept constant; for mass
conservation this means that the mass of water subject to
phase change is equal to the mass of ice subject to phase
change. The resulting equations to be solved are Eqs. (B5)
and (B6), whose solution are represented by the new temper-
atureT n+1 and the new combination of ice and liquid water
content. The variation of liquid water due to phase change
1θ

ph
w is subject to the following limitation due to the volume

conservation:

θr −θ
n
w −1θfl

w ≤1θ
ph
w ≤ θs−θ

n+1
i −θnw −1θfl

w (28)

The internal energy of the system is eventually subject to the
following variation:

1Uph
=CT (T

n+1
−T n)+ρwcw(T

n+1
−T n) ·1θfl

w (29)

+ρw

[
Lf +(cw −ci)(T

n+1
−Tref)

]
·1θ

ph
w

6 The numerical implementation

Equations (B3) and (B5) share the common characteristics
of the nonlinear diffusion-advection equations. Let us now
propose a numerical scheme to solve this type of equations in
one dimension, based on the Newton method. The notation
is based on Eq. (B5), but the same scheme applies also to
Eq. (B3).

Let us consider a 1-D domain composed by a soil column
with uniform area� (m2) and let us divide the column intoN
cells. Let us indicate with the subscript “l” the cell number
l (1 ..., N ): according to this notation,zl represents the po-
sition of the celll, zl+1 the position of the celll+1, located
below the celll, andzl+1/2 identifies the lower border of the
cell l, that coincides with the upper border of the celll+1.
It results that:zl+1/2 = zl+1zl/2 where1zl is the depth of
the celll.

In one dimension the lateral energy fluxes are neglected,
therefore the energy conservation equation becomes:

∂U(T )

∂t
+∇•G+S(T )= 0 (30)

where, for simplicity of notation,S is intended asSen. Inte-
grating the above equation in the celll of volumeVc from the
upper border (zl−1/2) to the lower border (zl+1/2) one gets:

∂U∗

∂t
+

∫
Vc

∇•G dVc+ S∗

l = 0 (31)

where the quantitiesU∗ (J) andS∗ (W) are to be considered
as the integral in the cell:

U∗(T )l :=

∫
Vc

U dVc =

∫ z
l+ 1

2

z
l− 1

2

dz

∫
�

U d� (32)

=

∫ zl+1/2

zl−1/2

U(T )� dz

S∗(T )l :=

∫ zl+1/2

zl−1/2

S(T )� dz (33)

Applying the divergence theorem yields:∫
Vc

∇•G dVc =

∫
�

G d�=G∗

l+1/2−G∗

l−1/2 (34)

where:

G∗

l+ 1
2
:= −�

(
λn
l+ 1

2

Tl+1−Tl

zl+1−zl

)n+1

(35)

G∗

l− 1
2
:= −�

(
λn
l− 1

2

Tl−Tl−1

zl−zl−1

)n+1

After discretization, the equation is still exact and no approx-
imation of any of its quantities has been made.

The time derivative in Eq. (31) can be estimated, by using
a finite difference scheme betweentn andtn+1. This yields:

U∗

l (T
n+1)−U∗

l (T
n)

1t
+G∗

l+1/2(T
n+1)+ (36)

−G∗

l−1/2(T
n+1)+S∗

l (T
n+1)= 0

where energy is integrated over the cell volumes. The dis-
cretized equation can be written as:

Rl(T
n+1) : =U∗

l (T
n+1)−U∗

l (T
n)+1t

[
fl(T

n+1)
]
=0 (37)

Rl(T ) l= 1..., N (J ) is a component of an array ofN func-
tions, said residuals;fl is the sum of the fluxes and the source
term at time stepn+1:

fl(T
n+1) : =G∗

l+1/2(T
n+1)−G∗

l−1/2(T
n+1)+S∗

l (T
n+1) (38)

Rl(T
n+1) is a non linear function of the temperature in the

l-th volume at timetn+1, and finding its root (for anyl) is
equivalent to find the solution of Eq. (30). This problem can
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be solved iteratively through the Newton method (e.g.Kel-
ley, 2003), which consists of approximating the non linear
functions as:

R(T
n+1,m+1
k )≈ R(T

n+1,m
k ) (39)

+(J
n+1,m
R )l,k ·(T

n+1,m+1
k −T

n+1,m
k )= 0 l,k= 1...N

where “l,k” represent a layer index, “m” the Newton itera-
tion number, “n” the time step,(Jn+1,m

R )l,k is the Jacobian
matrix of R

n,m
k . The approximate solution is obtained by

solving iteratively the linear system Eq. (39), until the fol-
lowing condition is met:

||R(T
n+1,m+1
k )||<ε k= 1...N (40)

whereε (W) is the tolerance on the energy balance that can
be set by the user. Eventually the new temperature becomes:

T
n+1,m+1
k = T

n+1,m
k −1T mk k= 1...N (41)

with:

1T mk = (Jn+1,m
R )−1

l,k ·Rk(T
n+1,m) k= 1...N (42)

The Jacobian is defined as:

(Jn+1,m
R )l,k :=

∂Rl

∂Tk
=



∂R1
∂T1

∂R1
∂T2

...
∂R1
∂TN

∂R2
∂T1

∂R2
∂T2

...
∂R2
∂TN

∂Rl
∂T1

∂Rl
∂T2

...
∂Rl
∂TN

∂RN
∂T1

∂RN
∂T2

...
∂RN
∂TN



n+1,m

(43)

Considering a constant cell area� in the same soil column,
the above matrix becomes tridiagonal and is composed by:

(JR)l,k =



−�1t

(
λn
l−1/2

zl−zl−1

)
k= l−1

dU∗

dT

∣∣n+1,m
l

+�1t

(
λn
l−1/2

zl−zl−1
+

λn
l+1/2

zl+1−zl

)
k= l

−�1t

(
λn
l+1/2

zl+1−zl

)
k= l+1

0 otherwise

(44)

where all the symbols are defined in TableC1. At each of the
Newton iterations, saym+1, finding the approximate roots
means solving the linear system Eq. (39). In this 1-D case the
matrix is tridiagonal and the linear system may be solved by
the Thomas algorithm (Conte and De Boor, 1980). The de-
tails of the numerical procedure may be found inDall’Amico
(2010).

6.1 The boundary conditions

The boundary conditions may be of Neumann or Dirichlet
type. The Neumann boundary conditions are represented by
the water and energy fluxes at the boundaries. For the mass
conservation, the flux is represented by rain or snow melt-
ing (mm s−1) at the top, and the water leakage (mm s−1) at
the bottom. For the energy conservation, at the top it is repre-
sented by the soil heat flux (W m−2), as a result of the surface
energy balance; at the bottom, it represents the geothermal
heat flux (W m−2). The Dirichlet boundary conditions, both
at the top and at the bottom, are given by values of soil water
pressure head for the mass conservation and temperature for
the energy conservation.

6.2 The non-linearity in the energy conservation
equation

The derivativedU
∗

dT

∣∣n+1,m
l

in Eq. (44) deserves special atten-
tion. From the definition (Eq.32) one gets:

dU∗

dT
=� 1z ·

dU

dT
(45)

Deriving Eq. (4) with respect toT and applying the first
Equation of the System (Eq.B6), after some intermediate
steps, one gets:

dU

dT
=CT +ρw

[
(cw −ci) ·(T −Tref)+Lf

]∂θw
∂T

(46)

The variation of liquid water content in temperature may be
calculated through the derivative chain rule:

∂θw [ψ(T )]

∂T
=
∂θw

∂ψ
·
∂ψ

∂T
(47)

The term∂θw/∂ψ := CH (m−1) is defined as the hydraulic
capacity and is the slope of the soil water retention curve.
The second term∂ψ /∂T represents the slope of the pressure-
temperature relation (Eq.21) derived by the Clausius-
Clapeyron equation. Eventually inserting Eq. (47) into
Eq. (45) yields:

dU∗

dT
=� ·1z ·Ca(T ) (48)

whereCa (J m−3 K−1) is the so-called apparent heat capacity
(Williams and Smith, 1989):

Ca=CT (49)

+ρw [Lf +(cw −ci) ·(T −Tref)] CH
Lf

g T ∗
H(T ∗

−T )

and is the sum of the sensible heat transmitted to the soil
matrix and the latent released by phase change. The appar-
ent heat capacity formulation is one of the approaches usu-
ally used to deal with phase change, as it has the advantage
of relating the latent heat term of the equation to tempera-
ture, without the need to split the pure conduction and phase
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Fig. 3. Schematization of a Newton-Raphson iteration unable to
converge towards T

and is the sum of the sensible heat transmitted to the soil
matrix and the latent released by phase change. The appar-
ent heat capacity formulation is one of the approaches usu-
ally used to deal with phase change, as it has the advantage
of relating the latent heat term of the equation to tempera-
ture, without the need to split the pure conduction and phase
change terms in the equation (Shoop and Bigl, 1997). How-
ever, with this approach the formulation of the internal en-
ergy becomes highly non-linear near T ∗, where it increases
by several orders of magnitude, often inducing numerical
oscillations and convergence problems (cf. Hansson et al.,
2004). The following section proposes an improved scheme
to deal with the high non-linearities typical of phase change
problems.

6.3 Globally convergent iteration

The Newton method transforms the initial non-linear prob-
lem into a sequence of linear problems and, according to a
tolerance ε, preserves the conserved variable. However, it
only works well if the initial guess is close enough to the
true solution; typically, a region that is well-behaved is first
located with some other method and the Newton method is
then used to refine the solution (the root finding). It may hap-
pen that the residual array of function is not convex or con-
cave close to the solution (always decreasing or increasing
with increasing or decreasing derivative, respectively), and
the method may pass from T0 to T1 without converging, as
shown in Fig. 3. In the energy equation solution this happens
during the phase transition, when temperature passes from
positive to negative values or vice-versa. At positive tem-
peratures the heat capacity is ≈2 MJ m−3K−1 and at -0.1◦C
it assumes more or less the same value. All the latent term
of the equation, in fact, is comprised in very small tempera-
ture intervals, where the peak of the apparent heat capacity
is positioned, and may increase by three orders of magnitude
depending on the Van Genuchten parameters. Hansson et al.
(2004) recommend, in order to converge, to set the value of

the heat capacity to its maximum value when passing from
positive to negative temperature (let us hereafter indicate this
method as Newton C-max). However, for very steep freezing
characteristic curves, Newton C-max is not converging and
therefore precludes model verification by comparison with
the analytical solution (see Fig. 4 and section 7.1 for the test
explanation).
A considerable improvement was obtained using the so-
called globally convergent Newton scheme, hereafter New-
ton Global (e.g. Kelley 2003). This is based on the fact that
the direction of the tangent given by the Newton scheme is
always good in the sense that it points to the direction of
decreasing residuals. Yet the final point may be too far from
the solution causing the scheme to oscillate. In order to avoid
this, the globally convergent Newton scheme tests the resid-
ual:

if
||R(T )n+1,m+1||> ||R(T )n+1,m|| (50)

then
T n+1,m+1 = T n+1,m−∆Tm ·δ (51)

This test implies that, far from the solution, the increment is
multiplied by a reduction factor δ with 0≤ δ≤ 1. If δ= 1 the
scheme coincides with the normal Newton-Raphson scheme.
This method, together with the maximum heat capacity im-
position, allows the scheme to converge. This scheme is also
applied by Tomita (2009) to solve surface energy balance
equation, when the surface temperature shows oscillations
caused by the exclusion or poor consideration of the surface
temperature dependence of the turbulent transfer coefficient
at the surface.

7 Model testing

This section deals with the verification of the model and the
numerical algorithm. The first test regards the application
of the model to a special case of freezing, know as the Ste-
fan problem, of which an analytical solution exists for special
cases. Neglecting water movement and energy advection, the
objective of this comparison is to test the proper implemen-
tation and accuracy of the numerical algorithm applied to Eq.
(B5). The second test is a comparison against experimental
data provided by Hansson et al. (2004), where a soil column,
under controlled boundary conditions, is forced to freezing.
The objective is to test the splitting method for solving both
mass and energy conservation (Eq. 25) in a case where both
water and heat fluxes are allowed. In a final experiment, the
solution of infiltration into frozen soil is demonstrated.

7.1 Phase change without water flux: analytical solu-
tion

The model and the numerical algorithm are compared
against the analytical solution of unilateral freezing of a

Fig. 3. Schematization of a Newton-Raphson iteration unable to
converge towardsT .

change terms in the equation (Shoop and Bigl, 1997). How-
ever, with this approach the formulation of the internal en-
ergy becomes highly non-linear nearT ∗, where it increases
by several orders of magnitude, often inducing numerical
oscillations and convergence problems (cf.Hansson et al.,
2004). The following section proposes an improved scheme
to deal with the high non-linearities typical of phase change
problems.

6.3 Globally convergent iteration

The Newton method transforms the initial non-linear prob-
lem into a sequence of linear problems and, according to a
toleranceε, preserves the conserved variable. However, it
only works well if the initial guess is close enough to the
true solution; typically, a region that is well-behaved is first
located with some other method and the Newton method is
then used to refine the solution (the root finding). It may hap-
pen that the residual array of function is not convex or con-
cave close to the solution (always decreasing or increasing
with increasing or decreasing derivative, respectively), and
the method may pass fromT0 to T1 without converging, as
shown in Fig.3. In the energy equation solution this happens
during the phase transition, when temperature passes from
positive to negative values or vice-versa. At positive temper-
atures the heat capacity is≈2 MJ m−3 K−1 and at−0.1◦C
it assumes more or less the same value. All the latent term
of the equation, in fact, is comprised in very small tempera-
ture intervals, where the peak of the apparent heat capacity
is positioned, and may increase by three orders of magnitude
depending on the Van Genuchten parameters.Hansson et al.
(2004) recommend, in order to converge, to set the value of
the heat capacity to its maximum value when passing from
positive to negative temperature (let us hereafter indicate this
method asNewton C-max). However, for very steep freezing
characteristic curves,Newton C-maxis not converging and
therefore precludes model verification by comparison with
the analytical solution (see Fig.4 and Sect.7.1 for the test
explanation).

A considerable improvement was obtained using the so-
calledglobally convergent Newton scheme, hereafterNewton
Global (e.g.Kelley 2003). This is based on the fact that the
direction of the tangent given by the Newton scheme is al-
ways good in the sense that it points to the direction of de-
creasing residuals. Yet the final point may be too far from
the solution causing the scheme to oscillate. In order to avoid
this, theglobally convergent Newton schemetests the resid-
ual:

if

||R(T )n+1,m+1
||> ||R(T )n+1,m

|| (50)

then

T n+1,m+1
= T n+1,m

−1T m ·δ (51)

This test implies that, far from the solution, the increment is
multiplied by a reduction factorδ with 0≤ δ≤ 1. If δ= 1 the
scheme coincides with the normal Newton-Raphson scheme.
This method, together with the maximum heat capacity im-
position, allows the scheme to converge. This scheme is also
applied byTomita (2009) to solve surface energy balance
equation, when the surface temperature shows oscillations
caused by the exclusion or poor consideration of the surface
temperature dependence of the turbulent transfer coefficient
at the surface.

7 Model testing

This section deals with the verification of the model and the
numerical algorithm. The first test regards the application of
the model to a special case of freezing, know as the Stefan
problem, of which an analytical solution exists for special
cases. Neglecting water movement and energy advection,
the objective of this comparison is to test the proper imple-
mentation and accuracy of the numerical algorithm applied
to Eq. (B5). The second test is a comparison against experi-
mental data provided byHansson et al.(2004), where a soil
column, under controlled boundary conditions, is forced to
freezing. The objective is to test the splitting method for
solving both mass and energy conservation (Eq.25) in a
case where both water and heat fluxes are allowed. In a fi-
nal experiment, the solution of infiltration into frozen soil is
demonstrated.

7.1 Phase change without water flux: analytical
solution

The model and the numerical algorithm are compared against
the analytical solution of unilateral freezing of a semi-infinite
region given by Neumann. The features of this problem are
the existence of a moving interface between the two phases,
in correspondence of which heat is liberated or absorbed,
and the discontinuity on the thermal properties of the two
phases (Carslaw and Jaeger, 1959). The assumptions are:
(1) constant Dirichlet boundary condition at the top, (2) pure
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conductive heat flow in both the frozen and thawed regions,
(3) change of volume negligible, i.e.ρw = ρi and (4) isother-
mal phase change atT = Tm, i.e. no unfrozen water exists
at temperatures less then the melting temperatureTm. The
isothermal phase change and uniform thermal characteristics
in the frozen and unfrozen state, may be assumed by im-
posing a discontinuity on the freezing front linez= Z(t):
θw(z)= 0, θi(z)= 1 λ(z)= λi , CT(z)= ρici for (t > 0, z <
Z(t)) and θw(z) = 1, θi(z) = 0 λ(z) = λw, CT(z) = ρwcw
for (t > 0, z ≥ Z(t)), respectively. The initial conditions
are:Ti(t = 0,z>0)= +2◦C and a substance completely un-
frozen: θw(t = 0,z)= 1 andθi(t = 0,z)= 0. The boundary
conditions of Dirichlet type:Ts(t > 0,z= 0)= −5 ◦C and
Tbot(t > 0,z→ ∞)= +2 ◦C for the top and bottom bound-
ary, respectively. AsNakano and Brown(1971) did for the
case of an initially frozen soil, in AppendixC we reported
the complete derivation of the solution both for freezing and
thawing processes.

As the analytical solution considers the freezing of pure
water, in the numerical scheme we have considered a soil
with porosityθs = 1 characterized by a very steep soil water
retention curve with no residual water content, approaching
a step function (Table1).

The domain is composed of 500 cells characterized by a
uniform depth1z= 10 mm; the integration time1t = 10 s.
We have already shown in Fig.4a the results of the test with-
out the globally convergent method. Figure5 shows the com-
parison between the numerical and the analytical solutions
of the soil temperature profile using the globally convergent

Newton’s method. The analytical solution is represented by
the dotted line and the simulation according the numerical
model by the solid line. The results are much improved with
the globally convergent method, as the simulated tempera-
ture follows the analytical solution very well. The temper-
ature evolution shows a change in the slope that coincides
with the separation point between the upper frozen and the
lower thawed part. Figure4b reports the comparison on the
time axis (days) at different depths (m). The numerical sim-
ulation result shows oscillations, which begin at the time of
phase change and then dampen with time. In the numerical
solution the temperature starts decreasing only when all the
water in the grid cell has been frozen. Furthermore,Tl is
influenced by the phase change ofTl+1 by the release of la-
tent heat and thus the temperature oscillation continues also
in the frozen state. Therefore, oscillation amplitude is both
linked to the grid size and to the time: increasing the grid
size, the oscillation amplitude increases, as the mass of wa-
ter to freeze increases before the temperature may decrease.
The oscillation amplitude dampens with time as the freezing
front moves away fromzl ; it may be reduced but not elimi-
nated, as it is embedded with the fixed-grid Eulerian method,
where the freezing front may move in a discrete way and not
in a continuum as in the reality. In order to test the energy
conservation capabilities of the algorithm, the error, defined
as the difference between the analytical and the simulated so-
lution, was calculated at each time step as the p-norm (p= 1)
of all the components and was cumulatively summed for the
duration of the simulation. The toleranceε on the energy
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balance was set to 1×10−8. Figure6 shows the cumulated
error in J (solid line) and in percentage as the ratio between
the error and the total energy of the soil in the time step. With
ε set to 1×10−8, after 75 days of simulation, the error in per-
centage remains very low (< 1×10−10), suggesting a good
energy conservation capability of the algorithm.

7.2 Coupled water and energy flux: experimental data

In order to test the splitting time method for solving the cou-
pled water and energy conservation, as done byDaanen et al.
(2007), the model was tested against the experiment ofHans-
son et al.(2004). The soil considered represents a Kana-
gawa sandy loam, with the following parameters:θs= 0.535,
θr = 0.05,α= 1.11×10−3 mm−1, n= 1.48,Cgs= 2.3×106,
J m−3 K−1, λgs = 2.5 W m−1 K−1 and saturated hydraulic
conductivity KH(sat)= 0.0032 mm s−1. The column was
considered initially unfrozen, with a uniform total water con-
tent2v = 0.33 which, given the parameters of the soil reten-
tion curve, corresponds toψw0 = −2466.75 mm, and initial
temperatureT = 6.7 ◦C uniform. The boundary conditions
are of Neumann type: for the energy balance, at the top a
flux F = −28·(T1+6) was considered, whereT1 is the tem-
perature of the first layer, and a zero flux condition at the
bottom. For the mass balance equation, a zero flux at both
top and bottom boundaries were used.

Figure7 shows the comparison of the profile of the total
water content2v. Starting from a thawed condition and a
uniform water content2v = 0.33, the liquid water content
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decreases from above due to the increase of ice content. It is
visible that the freezing of the soil sucks water from below.
The increase in total water content reveals the position of
the freezing front: after 12 h it is located about 40 mm from
the soil surface, after 24 h at 80 mm and finally after 50 h at
140 mm. Similar toHansson et al.(2004), the results were
improved by multiplying the hydraulic conductivity by an
impedance factor, as described is Sect. 3.1. It was found that
the value ofω that best resembles the results is 7.

Figure 8 shows the cumulative number of iterations re-
quired by theNewton C-maxand theNewton globalschemes
to converge. It is clear that the number of iterations of the
new method is much lower than the previous, indicating that
this method provides improved performance on the total sim-
ulation time.

7.3 Infiltration into frozen soil

The coupled mass and energy conservation algorithm was
finally tested with simulated rain (infiltration) during the
thawing of a frozen soil. The soil geometry is a 20 cm
depth column discretized in 800 layers of 0.25 mm depth;
the top boundary condition for the energy equation is of
Neumann type, with 10 W m−2 constant incoming flux (no
daily cycle) and the bottom boundary condition is a zero
energy flux. The initial conditions on the temperature are:
Ti(t = 0,z > 0)= −10◦C; the soil is considered initially un-
saturated, with water pressure headψw0 given by a hydro-
static profile based on a water table at 5 m depth. This profile
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Fig. 7. Comparison between the numerical (solid line) and the experimental results (points) obtained by Hansson et al. (2004) of the total
water (liquid plus ice) after 12 (left), 24 (center) and 50 hours (right).
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7.3 Infiltration into frozen soil

The coupled mass and energy conservation algorithm was fi-
nally tested with simulated rain (infiltration) during the thaw-
ing of a frozen soil. The soil geometry is a 20 cm depth
column discretized in 800 layers of 0.25 mm depth; the top
boundary condition for the energy equation is of Neumann
type, with 10 W m−2 constant incoming flux (no daily cycle)
and the bottom boundary condition is a zero energy flux. The
initial conditions on the temperature are: Ti(t= 0,z > 0) =
−10◦C; the soil is considered initially unsaturated, with wa-
ter pressure head ψw0 given by a hydrostatic profile based on
a water table at 5 m depth. This profile corresponds, accord-
ing to Eq. (23) and (24), to the water and ice contents at each
level. The soil texture and thermal parameters are as in the
experiment described in Section 7.2, whereas the saturated
hydraulic conductivity is 0.3 mm s−1. As far as the bound-
ary condition on the mass is concerned, the bottom bound-
ary is characterized by a no flux condition, whereas the top
boundary condition varies along two simulations: zero flux
(without rain) and constant 10 mm h−1 flux, resembling a
constant precipitation (with rain). As can be seen in Fig. 9,
in the first 6-7 days the behaviors with rain (solid line) and
without precipitation (dotted line) are almost equal, because
hydraulic conductivity is so low due to the fast ice-saturation
of the first layer during cold conditions neat the beginning of
the experiment. Then, when some ice is melted, hydraulic

Fig. 7. Comparison between the numerical (solid line) and the experimental results (points) obtained byHansson et al.(2004) of the total
water (liquid plus ice) after 12 (left), 24 (center) and 50 h (right).
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7.3 Infiltration into frozen soil

The coupled mass and energy conservation algorithm was fi-
nally tested with simulated rain (infiltration) during the thaw-
ing of a frozen soil. The soil geometry is a 20 cm depth
column discretized in 800 layers of 0.25 mm depth; the top
boundary condition for the energy equation is of Neumann
type, with 10 W m−2 constant incoming flux (no daily cycle)
and the bottom boundary condition is a zero energy flux. The
initial conditions on the temperature are: Ti(t= 0,z > 0) =
−10◦C; the soil is considered initially unsaturated, with wa-
ter pressure head ψw0 given by a hydrostatic profile based on
a water table at 5 m depth. This profile corresponds, accord-
ing to Eq. (23) and (24), to the water and ice contents at each
level. The soil texture and thermal parameters are as in the
experiment described in Section 7.2, whereas the saturated
hydraulic conductivity is 0.3 mm s−1. As far as the bound-
ary condition on the mass is concerned, the bottom bound-
ary is characterized by a no flux condition, whereas the top
boundary condition varies along two simulations: zero flux
(without rain) and constant 10 mm h−1 flux, resembling a
constant precipitation (with rain). As can be seen in Fig. 9,
in the first 6-7 days the behaviors with rain (solid line) and
without precipitation (dotted line) are almost equal, because
hydraulic conductivity is so low due to the fast ice-saturation
of the first layer during cold conditions neat the beginning of
the experiment. Then, when some ice is melted, hydraulic

Fig. 8. Cumulative number of iterations of theNewton C-maxand
theNewton globalmethods on the simulation test based on the ex-
perimental results obtained byHansson et al.(2004).

corresponds, according to Eqs. (23) and (24), to the water
and ice contents at each level. The soil texture and thermal
parameters are as in the experiment described in Sect.7.2,
whereas the saturated hydraulic conductivity is 0.3 mm s−1.
As far as the boundary condition on the mass is concerned,
the bottom boundary is characterized by a no flux condition,
whereas the top boundary condition varies along two simula-
tions: zero flux (without rain) and constant 10 mm h−1 flux,
resembling a constant precipitation (with rain). As can be
seen in Fig.9, in the first 6–7 days the behaviorswith rain
(solid line) andwithout precipitation(dotted line) are almost
equal, because hydraulic conductivity is so low due to the fast
ice-saturation of the first layer during cold conditions neat
the beginning of the experiment. Then, when some ice is
melted, hydraulic conductivity increases so that some water
can infiltrate. At this point some incoming water may freeze
because the soil is still cold, the ice content is increased (not
shown here) and the zero-curtain effect is prolonged. As a
result, infiltrating water provides energy (latent), so that tem-
perature rises above 0◦C earlier than in the case ofwithout
rain. This earlier complete thaw is more evident at greater
depths: in the casewithout rain, one has complete thawing at
≈ −0.1◦C (change of slope of dashed curve) because the soil
remains unsaturated and is characterized byT ∗<Tf , while in
the casewith rain complete thawing occurs at 0◦C because
there is saturation. When soil is thawed, in thewith rain case
soil temperature rises more slowly due to the lower thermal
diffusivity of the soil. It is interesting to notice that water
only partially infiltrates into the frozen soil (see that dotted
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conductivity increases so that some water can infiltrate. At
this point some incoming water may freeze because the soil
is still cold, the ice content is increased (not shown here)
and the zero-curtain effect is prolonged. As a result, infiltrat-
ing water provides energy (latent), so that temperature rises
above 0◦C earlier than in the case of without rain. This ear-
lier complete thaw is more evident at greater depths: in the
case without rain, one has complete thawing at ≈−0.1◦C
(change of slope of dashed curve) because the soil remains
unsaturated and is characterized by T ∗ < Tf , while in the
case with rain complete thawing occurs at 0◦C because there
is saturation. When soil is thawed, in the with rain case soil
temperature rises more slowly due to the lower thermal dif-
fusivity of the soil. It is interesting to notice that water only
partially infiltrates into the frozen soil (see that dotted line
is equal to the solid line) because, as the soil is very cold, it
freezes and so the first layers become saturated with ice thus
forming an impervious barrier for the rain. The simulation
results are based on the assumption of infiltration in thermo-
dynamical equilibrium.

8 Conclusions

In this paper we have proposed a new method for robustly
solving energy and mass balance equations in simulations
dealing with phase change under in variably-saturated soil.
The differences with respect to previous methods are: (1) a
very robust solution based on the globally convergent New-

ton scheme is used; (2) the notation of the energy equation is
based on the internal energy, which makes it possible to gen-
eralize the problem to a diffusion-advection equation, sim-
ilar to the mass balance equation (Richard’s equation), and
thus the numerical method used in the energy equation can
be further used to the mass balance equation; (3) the soil
freezing curve implies that the ice content depends not only
on temperature but also on the total water content, making
this scheme useable in non-saturated conditions; and (4) the
detailed explanation of the splitting method to decouple the
system of equations is included.
The test against analytical solutions shows good agreement,
improving previous results obtained with methods based just
on the maximum heat capacity formulation. The model was
applied to simulate temperature-driven water flow in freez-
ing soil, and the results were compared to the experimental
findings of Hansson et al. (2004) with good agreement. Sim-
ilar to previous studies, a high sensitivity to the value of the
impedance factor ω of the hydraulic conductivity was found.
This algorithm can now be applied in more realistic config-
urations, with complex boundary conditions accounting for
the soil-atmosphere energy exchange, and thus contribute
to improve our understanding of the factors controlling the
soil freezing and thawing processes in the Alpine and Arctic
cryosphere. Endrizzi et al. (submitted), who included this
algorithm in the open-source hydrological model GEOtop
(Rigon et al., 2006), present a first application.

Appendix A

Mass and volumetric water content in soils

Based on Fig. 1, let us define Vc (m3) the total control vol-
ume, Vw, Vi, Va and Vsp (m3) the water, ice, air and soil
particle volume respectively. For volume conservation one
obtains:

Vw+Vi≤Vc−Vsp (A1)

which, dividing by Vc, becomes:

θw+θi≤ θs (A2)

where θw (-) and θi (-) are defined as the volumetric liquid
and solid (ice) water content respectively, and θs (-) the satu-
rated water content. Let us define the total volumetric water
content Θv (-) as the sum of the liquid and the solid volumet-
ric water content respectively: it becomes:

θw+θi := Θv (A3)

Let us defineMw andMi (kg) respectively the mass of water
and ice present in Vc, and MT the total mass of water (both
in liquid and solid phase):

MT :=Mw+Mi (A4)

Fig. 9. Temperature at different depths (m) of a soil subject to thaw-
ing from above. The solid line represents a condition of constant
rain, the dotted line a dry condition (without rain).

line is equal to the solid line) because, as the soil is very
cold, it freezes and so the first layers become saturated with
ice thus forming an impervious barrier for the rain. The sim-
ulation results are based on the assumption of infiltration in
thermodynamical equilibrium.

8 Conclusions

In this paper we have proposed a new method for robustly
solving energy and mass balance equations in simulations
dealing with phase change under in variably-saturated soil.
The differences with respect to previous methods are: (1) a
very robust solution based on theglobally convergent New-
ton schemeis used; (2) the notation of the energy equation is
based on the internal energy, which makes it possible to gen-
eralize the problem to a diffusion-advection equation, sim-
ilar to the mass balance equation (Richard’s equation), and
thus the numerical method used in the energy equation can
be further used to the mass balance equation; (3) the soil
freezing curve implies that the ice content depends not only
on temperature but also on the total water content, making
this scheme useable in non-saturated conditions; and (4) the
detailed explanation of the splitting method to decouple the
system of equations is included.

The test against analytical solutions shows good agree-
ment, improving previous results obtained with methods
based just on the maximum heat capacity formulation. The
model was applied to simulate temperature-driven water flow
in freezing soil, and the results were compared to the exper-
imental findings ofHansson et al.(2004) with good agree-
ment. Similar to previous studies, a high sensitivity to the
value of the impedance factorω of the hydraulic conductiv-
ity was found.

This algorithm can now be applied in more realistic con-
figurations, with complex boundary conditions accounting
for the soil-atmosphere energy exchange, and thus contribute
to improve our understanding of the factors controlling the
soil freezing and thawing processes in the Alpine and Arctic
cryosphere.Endrizzi et al.(2011), who included this algo-
rithm in the open-source hydrological model GEOtop (Rigon
et al., 2006), present a first application.

Appendix A

Mass and volumetric water content in soils

Based on Fig.1, let us defineVc (m3) the total control vol-
ume, Vw, Vi , Va andVsp (m3) the water, ice, air and soil
particle volume respectively. For volume conservation one
obtains:

Vw +Vi ≤Vc−Vsp (A1)

which, dividing byVc, becomes:

θw +θi ≤ θs (A2)

whereθw (−) andθi (−) are defined as the volumetric liq-
uid and solid (ice) water content respectively, andθs (−) the
saturated water content. Let us define the total volumetric
water content2v (−) as the sum of the liquid and the solid
volumetric water content respectively: it becomes:

θw +θi :=2v (A3)

Let us defineMw andMi (kg) respectively the mass of water
and ice present inVc, andMT the total mass of water (both
in liquid and solid phase):

MT :=Mw +Mi (A4)

Considering the density of waterρw and of iceρi (kg m−3)
and dividing byVc one obtains:

ρwθw +ρiθi =
MT

Vc
(A5)

Dividing now by the water density:

θw +
ρi

ρw
θi =

MT

ρw Vc
:=2m (A6)
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one obtains2m which is defined as the total equivalent liquid
water content present inVc. The relation between2v and2m
is:

2m =2v +

(
ρi

ρw
−1

)
θi (A7)

Appendix B

The splitting method

The system represented by Eq. (25) can be arranged as:
∂θfl

w(ψw0)

∂t
+
∂θ

ph
w (T )
∂t

+
ρi
ρw

∂θi(T )
∂t

+∇•J w +Sw = 0

∂Ufl(ψw0)
∂t

+
∂Uph(T )
∂t

+∇•J +∇•G+Sen= 0

(B1)

where the superscript “fl” refers to the changes due to the
“flux” of water, and the superscript “ph” refers to the changes
due to the “phase change” of water. The above system is
equivalent to:

∂θfl
w
∂t

+∇•J w +Sw = −

(
∂θ

ph
w
∂t

+
ρi
ρw

∂θi
∂t

)
∂Ufl

∂t
+∇•J = −

(
∂Uph

∂t
+∇•G+Sen

) (B2)

Equalizing the two equations to a common value, say zero,
one obtains four equations:

∂θfl
w(ψw0)

∂t
+∇•J w(ψw0)+Sw = 0 (B3)

∂Ufl(ψw0)

∂t
+∇•J (ψw0)= 0 (B4)

∂Uph(T )

∂t
+∇•G(T )+Sen= 0 (B5)

∂θ
ph
w (T )

∂t
+
ρi

ρw

∂θi(T )

∂t
= 0 (B6)

which can be solved in sequence. The first two Equations are
only function ofψw0 and can be solved consideringT = cost:
Equation (B3) is the Richards’ equation, which dictates the
new matric potentialψw0 and therefore the new volumetric
water content2v; Eq. (B4) represents the update of the in-
ternal energy with the advection of heat provided by the flow
of liquid water.

The last two Equations are only function ofT and can be
solved consideringψw0 = cost: Eq. (B5) represents the en-
ergy conservation equation under a “no-flux” condition, that
gives the new temperature and the amount of mass that un-
dergoes phase change; Eq. (B6) can be used to update the ice
and liquid water content with the mass of water that under-
goes phase change.

Appendix C

Analytical solution of phase change during
freezing and thawing

Assume a semi-infinite plane composed of two regions: the
frozen region (subscript 1) above, and the thawed region
(subscript 2) below, separated by an interface at a depthZ

which moves downward in time. The system of equations in
this case becomes:

v1 = v2 = Tm (t >0,z=Z(t))

v2 → Ti (t >0,z→ ∞)

v1 = Ts (t >0,z= 0)

λ1
∂v1
∂z

−λ2
∂v2
∂z

=Lfρwθs
dZ(t)
dt

(t >0,z=Z(t))

∂v1
∂t

= d1
∂2v1
∂z2 (t >0,z<Z(t))

∂v2
∂t

= d2
∂2v2
∂z2 (t >0,z>Z(t))

v1 = v2 = Ti (t = 0,z)

(C1)

wherev represents the temperature. The first and second
equations in (C1) give the boundary conditions at bottom
(T = Ti) and at the surface (T = Ts) of the domain respec-
tively (Dirichlet condition); the third and fourth equations
refer to the boundary conditions at the interface between the
two substances, indicating that the temperatures of the two
states are equal to the temperature of phase change on the
surface and that the energy derived by the difference of the
heat fluxes is exploited for phase change. The fifth and sixth
equations refer to the approximation of linear conduction be-
havior of the temperature in the two states, whered = λT/CT
is the thermal diffusivity. Finally the last equation reports the
initial condition in which the whole system is set atT = Ti .

Eventually the analytical solution becomes:
v1(t,z)= Ts+

Tm−Ts
erfζ ·erf z

2
√
d1t

if z≤Z(t)

v2(t,z)= Ti −
Ti−Tm

erf c

(
ζ

√
d1
d2

) ·erf c z

2
√
d2t

if z>Z(t)
(C2)

whereζ is the solution of the following implicit algebraic
equation:

exp(−ζ 2)

ζ ·erf ζ
−

λT 2
√
d1(Ti −Tm)

λT 1
√
d2(Tm−Ts)ζ ·erf c

(
ζ

√
d1
d2

) (C3)

·exp

(
−
d1

d2
ζ 2

)
=

Lfρwθs
√
π

CT 1(Tm−Ts)
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Table C1. Table of symbols used.

Symbol Name Value or Range Unit

t time s
T temperature ◦C
ρw density of liquid water in soil 1000 kg m−3

ρi density of ice 918 kg m−3

ρsp density of soil particles kg m−3

Mw mass of liquid water in soil kg
Mi mass of ice in soil kg
Vw volume of liquid water in soil m3

Vi volume of ice in soil m3

θw fraction of liquid water in soil dimensionless
θi fraction of ice in soil dimensionless
zf elevation with respect to a reference m
z position in the soil column along the vertical m
1zl depth of the celll m
g gravity acceleration 9.81 m s2

f function of the soil water retention curve dimentionless
Vc volume of control in the soil m3

� cell area m2

β impedance factor dimentionless
θs soil saturated water content dimensionless
θr residual water content dimensionless
2v θw +θi dimensionless
2m θw +

ρi
ρw
θi dimensionless

ψw0 soil matric potential corresponding to2v ≤ 0 m
pa reference atmospheric pressure Pa
ψ soil matric potential corresponding toθw m
Tm water melting temperature at atmospheric pressure 273.15 K
T ∗ depressed water melting temperature under unsaturated conditions K
Tref reference temperature, usually set toTm K
α parameter according toVan Genuchten(1980) mm−1

n parameter according toVan Genuchten(1980) dimentionless
m parameter according toVan Genuchten(1980) usually:m := 1−n−1 dimentionless
Jw volumetric liquid water flux m s−1

J i volumetric ice flux m s−1

KH hydraulic conductivity m s−1

λT total thermal conductivity of soil W m−1 K−1

λsp thermal conductivity of the soil grains W m−1 K−1

λw water thermal conductivity 0.6 W m−1 K−1

λi ice thermal conductivity 2.29 W m−1 K−1

dw water thermal diffusivity 1.43×10−7 m2 s−1

di ice thermal diffusivity 1.13×10−6 m2 s−1

Lf latent heat of fusion 333.7 kJ kg−1

CH hydraulic capacity of soil m−1

CT total volumetric thermal capacity of soil J m−3 K−1

Ca volumetric apparent thermal capacity of soil J m−3 K−1

ci specific thermal capacity of ice 2117 J kg−1 K−1

cw specific thermal capacity of water 4188 J kg−1 K−1

csp specific thermal capacity of soil particles J kg−1 K−1

U volumetric internal energy of soil J m−3

Sen sink term of energy losses W m−3

Sw sink term of mass losses s−1

G heat conduction flux in the ground W m−2

J heat flux due to water advection W m−2

H Heaviside function dimentionless
� Area of the soil column m2

ε tolerance on the Newton method W
ω impedance factor dimentionless
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In the thawing case the frozen and thawed parts are below
and abovez=Z(t) respectively, and the analytical solution
of v1 andv2 becomes:
v1(t,z)= Ti −

Ti−Tm

erf c

(
ζ

√
d2
d1

) ·erf c z

2
√
d1t

if z>Z(t)

v2(t,z)= Ts+
Tm−Ts
erf ζ ·erf z

2
√
d2t

if z≤Z(t)

(C4)

whereζ is given by the solution of:

exp(−ζ 2)

ζ ·erf ζ
−

λT 1
√
d2(Ti −Tm)

λT 2
√
d1(Tm−Ts)ζ ·erf c

(
ζ

√
d2
d1

) (C5)

·exp

(
−
d2

d1
ζ 2

)
=

Lfρwθs
√
π

CT 2(Tm−Ts)
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