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Abstract. Phenomena involving frozen soil or rock are im- and numerical physically-baseZhang et al.2008. Em-
portant in many natural systems and, as a consequence, thepéical and semiempirical algorithms relate ground thawing-
is a great interest in the modeling of their behavior. Fewfreezing depth to some aspect of surface forcing by one or
models exist that describe this process for both saturated anghore experimentally established coefficients (Augisimov
unsaturated soil and in conditions of freezing and thawing,et al, 2002. Analytical algorithms are specific solutions to
as the energy equation shows strongly non-linear characteheat conduction problems under certain assumptions. The
istics and is often difficult to handle with nhormal methods most widely applied analytical solution is Stefan’s formula-
of iterative integration. Therefore in this paper we proposetion, which simulates the freezing/thawing front using ac-
a method for solving the energy equation in freezing soil.cumulated ground surface degree-days (either a freezing or
The solver is linked with the solution of Richards equation, thawing index) Lunardini 1981). Numerical physically-
and is able to approximate water movement in unsaturatedased algorithms simulate ground freezing by numerically
soils and near the liquid-solid phase transition. A globally- solving the complete energy equation, and in natural condi-
convergent Newton method has been implemented to achievigons they are expected to provide the best accuracy in sim-
robust convergence of this scheme. The method is tested bylating ground thawing and freezingtlang et al. 2008.
comparison with an analytical solution to the Stefan problemHowever, this approach has difficulties, especially regarding
and by comparison with experimental data derived from thethe treatment of phase change, which is strongest in a narrow
literature. range of temperatures near the melting point, and thus rep-
resents a discontinuity that may create numerical oscillations
(Hansson et al.2004). Furthermore, the freezing process
has a profound effect also to the water fluxes in the soil, as
it changes the soil hydraulic conductivity and induces pres-
Sure gradients driving water movements. Therefore, a cou-
gled mass and energy system is needed to simulate both the
thermal and hydraulic characteristics of the soil.

1 Introduction

The analysis of freezing/thawing processes and phenome
in the ground is important for hydrological and other land

surface a|_'1d climate model simulations (evigerbo et _al, The objectives of the paper are: (1) to revisit the theory
1999 Smirnova et al. 2000. For example, comparisons ; - . .
of the freezing soil in order to provide the formulation for

of results from the Project for Intercomparison of Land Sur- . :
- he unfrozen water pressure, which can accomodate variably-
face Parameterization Schemes have shown that the modeﬁs

: o . - ... saturated soils; (2) to outline and describe a numerical ap-
with an explicit frozen soil scheme provide more realistic i

. . . . . ; proach for solving coupled mass and energy balance equa-
soil temperature simulation during winter than those W|thouttions 1 variablv-saturated freezing soils. based on the split-
(Luo et al, 2003. Freezing soil models may be divided into y g ' b

three categoriesempirical and semiempiricalanalytical ting method, (3) to provide an improved numerical scheme
9 P P y that: (i) is written in conservative way, (ii) is based on the

globally convergent Newton scheme, and (iii) can handle
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The algorithm is tested against the analytical solutionships into a single equation for freezing or frozen regions
of unilateral freezing of a semi-infinite region given by of the soil. Christoffersen and Tulaczy®2003 constructed
Neumann Carslaw and Jaeget959 Nakano and Brown  a high-resolution numerical model of heat, water, and solute
1971, in order to test convergence under extreme con-flows in sub-ice stream till subjected to basal freeze-on. They
ditions, and against the experimental results published byroposed a formulation of the equilibrium relation without
Hansson et al2004), in order to test the coupled water and assuming zero ice pressure through the full version of the
heat flow. generalized Clapeyron equatiolikkola and Hartikainen

2001, which enables them to model segregation ice onto the
freezing interface and so develop stratified basal ice layers.
2 Freezing-soil models Hansson et al(2004) introduced a new method for coupled
heat transport and variably saturated water flow using the
One of the first attempts to include soil freeze-thaw into aRichards’ equation. They accounted for water flow due to
numerical model is the work dflakano and Browr§1971), gravity, pressure gradient and temperature gradient, both for
who assumed the advance of the freezing front as a movindjquid and vapor phaséicKenzie et al(2007) proposed the
boundary. They applied the analytical solution@dirslaw  freezing module of SUTRA for saturated conditiori3aa-
and Jaege(1959 to a porous soil, and introduced the ef- nen et al(2007) developed a 3-D model of coupled energy
fect of an artificial freezing zone of finite width between the and Richards equation to analyze the effects that lead to the
frozen and the unfrozen parts; this avoids the problem offormation of non-sorted circles, an example of a relatively
shock wave propagation in the transition between the frozerstable patterned-ground system. Their model is very similar
and thawed state, typical of the “freezing front” assumption.to Hansson et a(2004), but it differs in the linkage between
No water flow, i.e. no mass balance equation, is taken intdce content and temperatur&Vatanabg2008 also used a
account and the energy balance is expressed through the defimilar model taHansson et al2004). He reproduced direc-
inition of an apparent heat capacity during phase change, asonal freezing experiments on silty soil and compared this to
proposed by ukyanov and Golovkd1957. Harlan(1973 experimental data.
is probably the first to attempt to solve coupled mass and en- Basing on these studies, some important aspects in freez-
ergy balance equations for freezing soil by making an analing soil algorithms may be highlighted:
ogy between the mechanism of water transport in partially
frozen soils and those in unsaturated soils. He solves the
system on a homogeneous rigid porous medium through a
fully implicit finite difference scheme, where the unknowns 2. the relation between liquid water content and temper-
are temperature and soil water potential; phase change inthe ature, usually derived by the “freezirgdrying” as-
water balance appears in the source/sink term. He also uses sumption Miller, 1965, is not linked to the soil satu-
the apparent heat capacity formulation in the energy balance.  ration degree;
The results show that the freezing process induces the move-
ment of both heat and mass from warm to cold regions, caus- s _the method used to solve _the mass af‘d energy l_)alance
ing the moisture content in the unfrozen soil zone to decrease is seldom accurately expla_lned, e_spemally_ regarding the
sharply towards the freezing front. Soil texture and initial approach to the coupled differential equations.
moisture conditions seem to be crucial in affecting the avail-
ability and mobility of water.Fuchs et al(1978 developed 3 Mass and energy in the soil
a theory of soil freezing applicable to unsaturated conditions
with solute presence in the soil. They considered that so-A soil is usually composed of soil particles (subscript “sp”)
lutes tend to depress the freezing point temperature and modgnd water. The content and phase (liquid or solid) of wa-
ified the relationship between temperature, moisture contenter vary with soil temperature and saturation degree: in
and apparent thermal properties of the soil. Phase changensaturated-unfrozen conditions liquid water (subscript “w”)
was taken into account with the apparent heat capacity theand air are present, whereas in unsaturated-frozen conditions
ory, and the water flow contribution is accounted for in the ice (subscript “i”) also occurs (Fid.).
apparent thermal conductivity. Therefore, the simultaneous Let us assume the following hypothesis: (1) rigid soil
heat and water transport equations result in a merged singlscheme, i.e. the volum@&; is constant and no volume ex-
differential equation for heatJame and Norunf1980 fur- pansion during freezing is allowed. Therefore the density of
ther developed the model éfarlan(1973, and highlighted  water py, and of icep; (kg m—3) must be considered equal,
that the effect of mass transfer on the thermal state of soibecause otherwise the change of the water density upon
is an important factor to be considereNewman and Wil-  freezing would lead to unrealistically large gauge pressures
son (1997 proposed a theoretical formulation for unsatu- that cannot be converted into an expansion of the soil ma-
rated soils using soil-freezing and soil-water characteristictrix, due to the lack of a mechanical model; (2) the “Freez-
curve data to combine the heat and mass transfer relatioring = drying” assumptioniller, 1965 Spaans and Baker

1. the degree of soil saturation is often not specified, and
thus soil is tacitly assumed fully saturated;
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Volume In particular, with regard to a reference temperaiee(K),
Air gas A A each of the above terms becomes:
7
Va Usp(T) = psp csp(1—0s) (T — Tref)
A 4
Liguid water 1 Ui(6:,T) = pithci (T — Trer) 3
M, Vv,
¥ Uw(Ow,T) :pWQW[Lf+CW (T—Tref)]

whereT (K) is the temperaturd,; is the latent heat of fusion
(Ikg™1), psp (kg m~3) is the density of soil particles, angp,

v ci andeyw (Jkg 1K~1) are the specific thermal capacity of
Soil particles soil particle, ice and liquid water, respectively. Usudllys

is set to the melting temperatufig, at atmospheric pressure,
equal to 273.15 K. Summing the components in Bjirf a
more compact form gives:

Fig. 1. Frozen soil constituents and schematization of the control

volume Ve. U=C1- (T —Te) + pwLitw 4)

whereCr := pspesp(1—0s) + picibi + pwewbw (I m-3 Kil) is

. . . the total th | ity of the soil volume.
1996, which implicitly implies that: (i) the freezing (thaw- = oo rermal capacity

ing) water is like evaporating (condensing) water; (i) the iceé The conservation law

pressure is equal to the air pressure; (iii) the water and ice

content in the soil may be related to the soil matric potential\Wwater and energy fluxes through the boundarie¥ofause
according to the soil water retention curve, éBgooks and  variations of water content and internal energy. Neglecting
Corey(1964, Clapp and Hornberg€i 979, Gardne(1958 the ice flux within the soil, the mass conservation in a soil
or Van Genuchter(1980); (iii) the volume V¢ is represen-  volume may be written asgHarlan 1973:

tative of soil volumes above the water table or at shallow

depths below the water table, where the water pressure maw +pw Ve VeJw+pw Ve Sw=0 (5)
be considered similar to the atmospheric pressure. ot

Let us defingfwo (M) as the matric potential correspond- whereM,, andM; (kg) are the mass of water and ice respec-
ing to the total water content (liquid and ice), andm) as tively present inv;, the symbol 'V e” refers to the divergence
the matric potential corresponding to the liquid water contentoperator ands,, (s™1) is a sink term due to evapotranspira-
only. Indicating with f () the water retention curve function tion. After some calculations one obtains:
relating water content to matric potential, it i&y = f () Om
and®y = f (Ywo), whered,, ande; () are respectively the  —-=+ VeJw+Sw=0 (6)
volumetric water and ice content®, := 6y +6; (—) is the
total volumetric content of ice and water, as explicated inwhere®m (=) is the total water content as derived by the
AppendixA. Since the liquid water content cannot be larger fraction of the total mass of water and id& = My + M;
than the total water content arfdis normally represented as (kg) and the maximum mass of water that would fit4) as

a monotone function, it follows that: explained in AppendiA.
Jw (ms1) is the water flux within the soil following the
bw < Oy <05 Darcy-Buckingham formulation:
1)
¥ <Ywo <0 JwW)=—Kn V(p+zy) (7)

whereds (—) the soil saturated water content. When the soil “ V" is the gradient operatok  (m s~) is the hydraulic con-
volume V is saturatedyr,o = 0 and®y = fs. When the soil  ductivity, p (m) is the liquid water pressure head (equal to the
is unfrozemy = Yo andéy = Oy. soil matric potential when soil is unsaturated), ardm) is

The energy content of the soil voluniig is represented by ~ the elevation with respect to a reference. Analogous to the
the internal energy/ (J n3), which, neglecting the energy ¢ase of water content cpntrolled only by drymg processes, the
of air and excluding the work of volume expansion passinghydraulic conductivity is dependent on the soil matric poten-
from the liquid to the frozen state, can be calculated as thdia! ¥ associated with liquid wateMualem 1979, with its
sum of the internal energy of the soil particles, ice and liquid MaXimum valuekw satwhen water is unfrozen and soil satu-

water: rated. However, the presence of ice may significantly reduce
the hydraulic conductivity due to the apparent pore block-
U=Usp+ Ui+ Uy (2) age effect exerted by ice. This is accounted for by further
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472 M. Dall’Amico et al.: Freezing unsaturated soil model

reducing the hydraulic conductivity by an impedance factor If the soil volumeV; is saturated, we can assume that the
smaller than 1 and equal to 1% (Zhao et al. 1997 Hans-  water pressure at the soil surface equals the atmospheric pres-
son et al. 2004, wherew is a coefficient andy is the ice  surep,. In order to derive the pressupg, at freezing condi-
fractional content given bg"_i—r, wheref, is the residual wa-  tions, where the temperature is lower than the melting tem-
ter contentZhao et al(199§) andHansson et a(2004) both perature at atmospheric pressufi), one should integrate

setw equal to 7. Eqg. (11) as follows:
The energy conservation in a soil voluriigmay be writ- T g7 Pw

ten as Fuchs et al.1978: / Ls - :f dpy, (12)
Tm Pa

U

v +Ve(G+J)+Sen=0 (8)  The left hand term of Eq1@) may be approximated as:

: r dr T T-T,

where: / Li — = L¢In (—) ~ Ly L (13)

T, T Tm Tm

1. Sen(W m~3) represents a sink term due to energy losses; . .
en( )rep a9y Usually the atmospheric pressure is set to zgig={ 0).

2. G (Wm~2) is the conduction flux through the volume Combining Egs.12) and (L3) one obtains:

boundaries. According to the Fourier la@,is defined T—T Pw
m /
as: L = [ vl =pu (14)
Tm 0
G=-)7 VT (9) Considering thatpy <0 and py - g - Yw = pw, Where g

(ms~2) is the acceleration due to gravity, one can find the
wherear = A1 (Asp, bw.6) (W m~1K=1) is the thermal  liquid water matric potentiali) subject to freezing condi-
conductivity of the soil withinV, that depends on the tions:
thermal conductivity of the soil particles.dy) and on b=y (T) = L(T—T )
the proportions of ice and water and the temperafure - g Tm m
(Johansenl975 Farouki 1987).

(15)

If the soil is unsaturated, the surface tension at the water-air

3. J (Wm2)is the heat advected by flowing water: interface decreases the water melting temperature to a value
T* < Tm. Letus callpyo the pressure of water corresponding
J=pw-[Li+cw (T =Tren]- Jw (10) to the pressure heafl,o. The value of7* may be found

integrating Eq. 11) in temperature fronTy, to the unknown
Eventually the equations to be solved are the mass consef-*, which means integrating in pressure head from the value

vation (Eq.6) and energy conservation (E8), which rep- ~ pa=0to the degree of saturation given pyo. One obtains:
resent a system of two differential equations. If the soil is .7+ dT Pwo
unfrozen, the unknowns afg and 7, and so the system is f Ly — =/ dp}, (16)
solvable; if the soil is frozen, the unknowns ate; Yo and Tm r 0
T, and so, in order to solve the system, it is necessary to prowhich, considering the approximation of E4.3}, provides

vide a further closure relation relating the temperature andhe melting temperaturg* at unsaturated conditions:
soil water pressure head.

T
T = Tm+ gL_m Ywo (17)
f
4 Pressure and temperature under freezing condition When T > T*, the soil is unfrozen whereas wheh <

T*, the soil is under freezing conditions. The above

When the soil is unfrozen, the liquid water contef)co-  (g|ation, applying the Laplace equation for determining
incides with the total water content. At freezing conditions, he radiusr from Ywo, becomes similar to Eq. (5) in

however, it depends also on temperature. According to thgy/atanabe and Mizoguck2002).

“freezing=drying” assumption, the ice pressure is set tf’ The liquid water pressurg,, depends on the intensity of
null, and so the generalized Clapeyron equation becomes: freezing condition provided by, and may be found integrat-

T ing Eqg. (L1) in pressure fronpyo to pw and in temperature
pwlt —— =dpw (11)  from T* to T. One obtains:
T
wherepy, (Pa) is the water pressure. This equation states thaj L d_T :/Pwdpcv (18)
the variation of water pressure head during phase change ir+ T Pwo

only dependent on water temperature. and consequently:

Ls

¢=W(T)=lﬁwo+g T

- (T=T%) (19)
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Table 1. Porosity and Van Genuchten parameters for water and
different soil types as visualized in FiB.

Os Or o n source
=) ) mmY)  (-)
water 1.0 0.0 4101 250
sand 03 00 46x103 203
silt 049 005 6x10% 1.67 Schaap etal200])
clay 0.46 0.1 49x10~3 125 Schaap etal200])

depressed melting temperatdrg, which depends offy,. It
comes as a consequence that the ice fraction is the difference
between®, andod,:

0 = QV(WWO) - ew[W(T)]

It results that, under freezing conditions & T*), 6,y and
6; are function ofyg, which dictates the saturation degree,
andT, that dictates the freezing degree. Equati®),(usu-
ally called “freezing-point depression equation”, relates the

(24)

Fig. 2. Freezing curve for pure water and various soil textures, ac-maximum unfrozen water content allowed at a given temper-

cording to the Van Genuchten parameters given in Table

The above equation is valid faf < T*: in fact, whenT >

ature in a soil. Figur@ reports the freezing-point depression
equation for pure water and the different soil types according
to the Van Genuchten parameters given in Tdble

Equations 21) and (7) represent the closure relations

T*, the freezing process is not activated and the liquid wateisougnt for the differential equations of mass conservation

pressure head is equal to tiigo. Equations 17) and (L9)
collapse in Eq.15) for a saturated soil (i.e/wo=0). Thus
the formulation of the liquid water pressure head’) under

(Eq.6) and energy conservation (Eg).

freezing conditions, valid both for saturated and unsaturated The decoupled solution: splitting method

soils, becomes:

Y (T)=vYwo+

Lt

Ho@-17 i T<T*

(20)

v(I)=ywo If T=T*

which can be summarized using the Heaviside functan
as:

L
w(T) =1/fwo+g% (T —T*)-H(T*—T) (21)

The final system of equations is given by the equations of
mass conservation (Ef) and energy conservation (E8):

00mu0.1) 1 o Jyy (Yo, T) + Sw=0
(25)

WWwoT) 1 o[G(T)+ J (Ywo)] + Sen=0

The previous system is a function 6fand v, and can be
solved by thesplitting methodas explained in Appendii.
In the first half time step, the Richards’ equation is solved

If the soil water retention curve is modeled according to theand the internal energy is updated with only the advection

Van Genuchter{1980 model, the total water content be-
comes:

Oy =6+ (Os— 00 - {1+ [~ Ywo]"} "

where6; (—) is the residual water content. The liquid water
contentd,, becomes:

Ow =0+ (Os— ) - {1+[—a y(D)]"} "

Equation 23) gives the liquid water content at sub-zero

(22)

(23)

contribution. In the second half, no water flux is allowed,
which makes the volume a closed system, and the internal
energy is updated with the conduction flux in order to find
the new temperature and the new combination of water and
ice contents.

5.1 Step 1: water and advection flux

Let us indicate with the superscript™the quantities at the

temperature and is usually called “freezing-point depressiortime stepn, with “n + 1” the quantities at the time stept 1:

equation” (e.gZhang et al. 2007 and Zhao et al. 1997).
Differently from Zhao et al(1997), it takes into account not

thens"+1 =" + Ar (Ar being the integration interval), and
with “n+1/2" the quantities at the end of the first step (tem-

only the temperature under freezing conditions but also theporary quantities). In the first step of the splitting method,

www.the-cryosphere.net/5/469/2011/
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474 M. Dall’Amico et al.: Freezing unsaturated soil model

the temperaturd is kept constant and phase change is not In one dimension the lateral energy fluxes are neglected,
allowed, i.e. the ice content remains constant. The resulttherefore the energy conservation equation becomes:

ing equations to be solved are EqB3) and B4), whose oU(T)

solution are represented by the fl, the water pressure
Y Y2 =y Ay, which results inytEt =yl 4 Ay
(see Eqg.21), and eventually in the new total water content where, for simplicity of notation§ is intended asen. Inte-
Ot = 0!+ Ad (see Eq22). The variation of liquid wa-  grating the above equation in the dedif volume V. from the
ter contentA@J‘v is subject to the following limitation given upper borderg;_1,,) to the lower borderz1/2) one gets:

by volume conservation: SU*

O — 0l < A6 < 65— 011 — 6" (26) ot

+VeG+S(T)=0 (30)

+/ VeG dV.+ SI*IO (31)
Ve

The internal energy of the System is changed by the quantitywhere the quantitie&* (J) andS* (W) are to be considered
as the integral in the cell:

AU = Pw [Lf +cew(T" — Tref)] : Ae\;l/ (27) 1
% - _ 1+§
5.2 Step 2: energy flux and phase change U= /VCU dVe _/Z 1 dz-/QU a9 42
13
In the second step of the splitting method, water flux is not _ Z’“/ZU(T)Q d
allowed and®y =6}, + 6" + Adfl is kept constant; for mass N 12 ¢

conservation this means that the mass of water subject to
phase change is equal to the mass of ice subject to phasse‘(T)l — /ZHMS(T)Q dz (33)
change. The resulting equations to be solved are BH). ( .

and B6), whose solution are represented by the new temper- i ) )

atureT" ! and the new combination of ice and liquid water APPIYing the divergence theorem yields:

1-1/2

content. The variation of liquid water due to phase change . .
Ae\f&h is subject to the following limitation due to the volume /VC VeGdVe= fQG dQ=Gip12= Gl 1y (34)
conservation:
where:
0 — 0 — MDY < NGB < 05— 0" — 01 — A0l (28) il
The internal energy of the system is eventually subject to the™ i+3 +3 z1—2
following variation: . T —T_1\"*!
G | =—Q (M | ————
AUPP=Cr (T =T + pwen(T" L =T") - A6 (29) -3 < -3 z;—z11>
+pw [Lf +(cw—ci)(T" T = Tref)] N After discretization, the equation is still exact and no approx-
imation of any of its quantities has been made.
The time derivative in Eq.31) can be estimated, by using
6 The numerical implementation a finite difference scheme betwegnand:"+1. This yields:
Equations B3) and B5) share the common characteristics U;(T"th — U (T™) Gt 36
of the nonlinear diffusion-advection equations. Let us now At LT+ (36)
propose a numerical scheme to solve this type of equations in —G;“_l/Z(T”*l) + S,*(T"*l) =0

one dimension, based on the Newton method. The notation
is based on EqRS), but the same scheme app”es also to where energy is integratEd over the cell volumes. The dis-
Eq. B3). cretized equation can be written as:

Let us consider a 1-D domain composed by a soil column
with uniform area? (m?) and let us divide the column int
cells. Let us indicate with the subscrigt ‘the cell number
I (1..., N): according to this notation, represents the po-
sition of the celll, z;.+1 the position of the cell+ 1, located
below the cell, andz;4 1/, identifies the lower border of the
cell 1, that coincides with the upper border_ of the deli 1. F (T =G7‘+1/2(T"+1)—G}"_l/z(T"“)—l—S,*(T”*l) (38)

It results thatz;,1/2 = z; + Az; /2 whereAz; is the depth of

the celll. R;(T™*1) is a non linear function of the temperature in the
I-th volume at timer”+1, and finding its root (for any) is
equivalent to find the solution of Eq3@). This problem can

Ry(T™Y) : =UF (T" Y —UF (T") + At [ f,(T”“)] —0 (37)
R(T)l=1...,N (J) is a component of an array of func-

tions, said residualgfj is the sum of the fluxes and the source
term at time step 4 1:

The Cryosphere, 5, 46884, 2011 www.the-cryosphere.net/5/469/2011/



M. Dall’Amico et al.: Freezing unsaturated soil model 475

be solved iteratively through the Newton method (&gl- 6.1 The boundary conditions
ley, 2003, which consists of approximating the non linear

functions as: The boundary conditions may be of Neumann or Dirichlet
Ll ndm type. The Neumann boundary conditions are represented by
R(T, 7" H)=R(T, ") (39)  the water and energy fluxes at the boundaries. For the mass

+(J,'§+1’m)1,k'(TZH""+1—TZH’m) =0 Ilk=1.N conservation, the flux is represented by rain or snow melt-

ing (mms1) at the top, and the water leakage (mm)sat
where 1,k” represent a layer indexyi” the Newton itera-  the bottom. For the energy conservation, at the top it is repre-

wn

tion number, #” the time step,(J',';”l’m)l,k is the Jacobian sented by the soil heat flux (WTA), as a result of the surface

n,m

matrix of R;"". The approximate solution is obtained by energy balance; at the bottom, it represents the geothermal

solving iteratively the linear system Eg39), until the fol-  heat flux (W n1?2). The Dirichlet boundary conditions, both
lowing condition is met: at the top and at the bottom, are given by values of soil water

et Lmtl pressure head for the mass conservation and temperature for
IR(T " )l <e k=1..N (40)  the energy conservation.

wheree (W) is the tolerance on the energy balance that cang o The non-linearity in the energy conservation
be set by the user. Eventually the new temperature becomes:

equation
ritbmtl _putlm _Apm gk =1..N 41 e _ _
k k k S denvatwe%’?“’m in Eq. (44) deserves special atten-
with: tion. From the definition (EB2) one gets:
AT =@ R Ly @) AU U @9
dT dT

The Jacobian is defined as: o ) ) _
Deriving Eg. @) with respect toT' and applying the first

Mk p e Equation of the System (Edg6), after some intermediate
steps, one gets:

IRy IRy ORp

R, 3T, 9T, " 9Ty av _ [ (T ]%
(J',@*l”")z,k:a—Tk: . @3) gy =Crtpw|(ew—c) (T =Ten + Lt | oo (46)

3 0T, " Iy The variation of liquid water content in temperature may be
calculated through the derivative chain rule:

Ry IRy ORy

9Ty 9T, " Ty 6wy ()] _ 36, v )
Considering a constant cell aréain the same soil column, aT oy T

the above matrix becomes tridiagonal and is composed by: N _ )
The termdé,, /oy := Cy (m~") is defined as the hydraulic

Moo capacity and is the slope of the soil water retention curve.
—QAr| =2 k=I1-1
a=z-1 The second teriy /T represents the slope of the pressure-
temperature relation (Eg21) derived by the Clausius-

v ntlm o Feve | Mg \ g Clapeyron equation. Eventually inserting Eet7) into

ar i TRAN =0 T o Eq. @5) yields:
Rk = (44)

an U7 G az.C (T) (48)
_ 1+1/2 _ =384-AZ-Cg
QAt(—ZM_ZI> k=I+1 dT
whereC, (I m3 K1) is the so-called apparent heat capacity

0 otherwise (Williams and Smith1989:

where all the symbols are defined in Tablé Ateachofthe Ca=Ct (49)

Newton iterations, say: + 1, finding the approximate roots
means solving the linear system E&9). In this 1-D case the
matrix is tridiagonal and the linear system may be solved by

the Thomas algorithmQonte and De Boorl980. The de- and is the sum of the sensible heat transmitted to the soil
tails of the numerical procedure may be foundiall’Amico matrix and the latent released by phase change. The appar-
(2010. ent heat capacity formulation is one of the approaches usu-

ally used to deal with phase change, as it has the advantage
of relating the latent heat term of the equation to tempera-
ture, without the need to split the pure conduction and phase

Ls
+powl[Lt+ (cw—¢i) - (T —Tren)] CH WH(T* -T)
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A considerable improvement was obtained using the so-
calledglobally convergent Newton scherhereafteiNewton
Global (e.g.Kelley 2003. This is based on the fact that the
direction of the tangent given by the Newton scheme is al-
ways good in the sense that it points to the direction of de-
creasing residuals. Yet the final point may be too far from
the solution causing the scheme to oscillate. In order to avoid
this, theglobally convergent Newton schenests the resid-
ual:

if
[|R(T)"FLm L)) > || R(T)"+HLm| (50)

Fig. 3. Schematization of a Newton-Raphson iteration unable tothen
converge towardg. rrtimtl — prtlm _A7m . § (51)

T4 T To

This test implies that, far from the solution, the increment is

ever, with this approach the formulation of the internal en- ScCheme coincides with the normal Newton-Raphson scheme.

ergy becomes highly non-linear negt, where it increases Thig .method, together with the maximum hgat capacity im-
by several orders of magnitude, often inducing numericalPosition, allows the scheme to converge. This scheme is also
oscillations and convergence problems (dnsson et gl.  @pplied byTomita (2009 to solve surface energy balance
2004). The following section proposes an improved scheme€quation, when the surface temperature shows oscillations

to deal with the high non-linearities typical of phase changecaused by the exclusion or poor consideration of the surface
problems. temperature dependence of the turbulent transfer coefficient

at the surface.
6.3 Globally convergent iteration

The Newton method transforms the initial non-linear prob- 7 Model testing

lem into a sequence of linear problems and, according to a_, . . . S
tolerancee, preserves the conserved variable. However, itar his sgctlon degls with thg verification of the mode.I aqd the
numerical algorithm. The first test regards the application of

only works well if the initial guess is close enough to the h del t ial e a. Kk the Stef
true solution; typically, a region that is well-behaved is first € Mocel 1o a special case of freezing, know as the Stetan
roblem, of which an analytical solution exists for special

located with some other method and the Newton method i€ Neglecti ¢ t and dvecti
then used to refine the solution (the root finding). It may hap_cases. eglecting water movement and energy advection,

pen that the residual array of function is not convex or con—the objective of this comparison is to test the proper imple-

cave close to the solution (always decreasing or increasin entation and accuracy of the numencgl algorltr_\m applleql
0 Eq. B5). The second test is a comparison against experi-

m;hn;r;;eozsEgyoggses;?g%n% (;?rsvlsﬂ\éi’t ::eosnr\)/z(;g}/neg)é:n mental data provided biansson et al(.200.4)., whe.re a soil
shown in Fig.3. In the energy equation solution this happens CO'U’T‘”' under C°T‘”°.”ed. boundary cond|t_|o.ns, Is forced to
during the phase transition, when temperature passes frorﬁee'zmg. The objective is to test the spl{ttlhg met'hod for
positive to negative values or vice-versa. At positive temper—SOIVIng both mass and energy conservation (&9).in a ,
case where both water and heat fluxes are allowed. In a fi-

atures the heat capacity 2 MJ 2K " and at—0.1°C al experiment, the solution of infiltration into frozen soil i
it assumes more or less the same value. All the latent terrﬂem(;(r?strlated ' solutl intiitration | zen sonis

of the equation, in fact, is comprised in very small tempera-

ture intervals, where the peak of the apparent heat capacitgf.1 Phase change without water flux: analytical

is positioned, and may increase by three orders of magnitude solution

depending on the Van Genuchten parametdensson et al.

(2004 recommend, in order to converge, to set the value ofThe model and the numerical algorithm are compared against
the heat capacity to its maximum value when passing fromghe analytical solution of unilateral freezing of a semi-infinite
positive to negative temperature (let us hereafter indicate thi$egion given by Neumann. The features of this problem are
method asNewton C-mak However, for very steep freezing  the existence of a moving interface between the two phases,
characteristic curvedyjewton C-maxs not converging and in correspondence of which heat is liberated or absorbed,
therefore precludes model verification by comparison withand the discontinuity on the thermal properties of the two
the analytical solution (see Fig.and Sect7.1 for the test phases Carslaw and Jaeget959. The assumptions are:
explanation). (1) constant Dirichlet boundary condition at the top, (2) pure
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Fig. 4. Comparison between the analytical solution (dotted line) and the simulated numerical (solid line) at various depths (m). The
numerical model in pandA) usesNewton C-masthe one in pane{B) usesNewton Global Both have a grid spacing of 10 mm and 500
cells. Oscillations are present in paiiB) but not in pane(A) where no convergence is reached.

conductive heat flow in both the frozen and thawed regionsNewton’s method. The analytical solution is represented by
(3) change of volume negligible, i.ey = pj and (4) isother-  the dotted line and the simulation according the numerical
mal phase change &t = T, i.e. no unfrozen water exists model by the solid line. The results are much improved with
at temperatures less then the melting temperdfiy.e The the globally convergent method, as the simulated tempera-
isothermal phase change and uniform thermal characteristicsire follows the analytical solution very well. The temper-
in the frozen and unfrozen state, may be assumed by imature evolution shows a change in the slope that coincides
posing a discontinuity on the freezing front line= Z(¢): with the separation point between the upper frozen and the
Ow(z) =0, 6i(z) =1 A(z) = Ai, C1(2) = picj for (t > 0, z < lower thawed part. Figurédb reports the comparison on the
Z(t)) and 6y(z) =1, 6i(z) =0 A(z) = 2w, CT(2) = pwew time axis (days) at different depths (m). The numerical sim-
for (r > 0, z > Z(t)), respectively. The initial conditions ulation result shows oscillations, which begin at the time of
are:T;(t =0,z > 0) = +2°C and a substance completely un- phase change and then dampen with time. In the numerical
frozen: 6w (t =0,z) =1 and6j(t =0,z) =0. The boundary solution the temperature starts decreasing only when all the
conditions of Dirichlet type:Ts(r > 0,z =0) = —-5°C and  water in the grid cell has been frozen. Furthermdfeis
Tohot(t > 0,z = 00) = +2°C for the top and bottom bound- influenced by the phase changeTafi by the release of la-
ary, respectively. ANakano and Browrf1971]) did for the  tent heat and thus the temperature oscillation continues also
case of an initially frozen soil, in Appendi® we reported in the frozen state. Therefore, oscillation amplitude is both
the complete derivation of the solution both for freezing andlinked to the grid size and to the time: increasing the grid
thawing processes. size, the oscillation amplitude increases, as the mass of wa-

As the analytical solution considers the freezing of pureter to freeze increases before the temperature may decrease.
water, in the numerical scheme we have considered a soil he oscillation amplitude dampens with time as the freezing
with porosityfs = 1 characterized by a very steep soil water front moves away frony;; it may be reduced but not elimi-
retention curve with no residual water content, approachinghated, as itis embedded with the fixed-grid Eulerian method,
a step function (Tabla). where the freezing front may move in a discrete way and not

The domain is composed of 500 cells characterized by dn @ continuum as in the reality. In order to test the energy
uniform depthAz = 10 mm; the integration times =10s.  conservation capabilities of the algorithm, the error, defined
We have already shown in Figa the results of the test with-  @s the difference between the analytical and the simulated so-
out the globally convergent method. Fig@irshows the com-  lution, was calculated at each time step as the p-ngrea {)
parison between the numerical and the analytical solution®f all the components and was cumulatively summed for the
of the soil temperature profile using the globally convergentduration of the simulation. The toleraneeon the energy
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Fig. 5. Comparison between the simulated numerical and the anFig. 6. Cumulative error associated with the the globally convergent

alytical solution. Soil profile temperature at different days. Grid Newton method. Solid line: cumulative error (J), dotted line: cumu-

size=10mm,N =500 cells. lative error (%) as the ratio between the error and the total energy
of the soil in the time step: was set to & 1078,

balance was set t0x110-8. Figure6 shows the cumulated ) i i
error in J (solid line) and in percentage as the ratio betweel‘ﬁj_e(_:reases from abO\_/e due to the_mcrease of ice content. Itis
the error and the total energy of the soil in the time step. Withv's'bl_e that the_ freezing of the soil sucks water from l_)_elow.
¢ setto 1x 1078, after 75 days of simulation, the error in per- The increase in total water _co_ntent reveals the position of
centage remains very lows(1 x 10-19), suggesting a good the fre.ezmg front: after 12 h it is located apout 40 mm from
energy conservation capability of the algorithm. the soil surfage, after 24 h at 80 mm and finally after 50 h at
140 mm. Similar toHansson et al(2004), the results were

improved by multiplying the hydraulic conductivity by an
impedance factor, as described is Sect. 3.1. It was found that
the value ofw that best resembles the results is 7.

Figure 8 shows the cumulative number of iterations re-
quired by theNewton C-maxand theNewton globakchemes
to converge. It is clear that the number of iterations of the
new method is much lower than the previous, indicating that
this method provides improved performance on the total sim-
ulation time.

7.2 Coupled water and energy flux: experimental data

In order to test the splitting time method for solving the cou-
pled water and energy conservation, as donBagnen et al.
(2007, the model was tested against the experimentanfs-
son et al.(2004. The soil considered represents a Kana-
gawa sandy loam, with the following parameteis= 0.535,
6 =0.05,0 =1.11x 103 mm~1, n = 1.48,Cgs= 2.3 x 1P,
I 3K=1 Ags=25Wm 1K1 and saturated hydraulic
conductivity Kn(sat= 0.0032mms?t. The column was 7.3
considered initially unfrozen, with a uniform total water con-
tent®, = 0.33 which, given the parameters of the soil reten- The coupled mass and energy conservation algorithm was
tion curve, corresponds o = —246675mm, and initial  finally tested with simulated rain (infiltration) during the
temperaturel’ = 6.7 °C uniform. The boundary conditions thawing of a frozen soil. The soil geometry is a 20cm
are of Neumann type: for the energy balance, at the top &lepth column discretized in 800 layers of 0.25mm depth;
flux F =—28-(T1+6) was considered, whef® is the tem-  the top boundary condition for the energy equation is of
perature of the first layer, and a zero flux condition at theNeumann type, with 10 W r? constant incoming flux (no
bottom. For the mass balance equation, a zero flux at botijaily cycle) and the bottom boundary condition is a zero
top and bottom boundaries were used. energy flux. The initial conditions on the temperature are:
Figure 7 shows the comparison of the profile of the total 7;(r =0,z > 0) = —10°C; the soil is considered initially un-
water content®,. Starting from a thawed condition and a saturated, with water pressure hesgp given by a hydro-
uniform water conten®, = 0.33, the liquid water content static profile based on a water table at 5 m depth. This profile

Infiltration into frozen soil
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perimental results obtained biansson et al2004).
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corresponds, according to Eq&3| and @4), to the water
and ice contents at each level. The soil texture and thermal
parameters are as in the experiment described in 3et:t.
whereas the saturated hydraulic conductivity is 0.3mM s

As far as the boundary condition on the mass is concerned,
the bottom boundary is characterized by a no flux condition,
whereas the top boundary condition varies along two simula-
tions: zero flux without rain) and constant 10 mnTH flux,
resembling a constant precipitatiowith rain). As can be
seen in Fig9, in the first 67 days the behaviongth rain
(solid line) andwithout precipitation(dotted line) are almost
equal, because hydraulic conductivity is so low due to the fast
ice-saturation of the first layer during cold conditions neat
the beginning of the experiment. Then, when some ice is
melted, hydraulic conductivity increases so that some water
can infiltrate. At this point some incoming water may freeze
because the soil is still cold, the ice content is increased (not
shown here) and the zero-curtain effect is prolonged. As a
result, infiltrating water provides energy (latent), so that tem-
perature rises above°Q earlier than in the case @fithout
rain. This earlier complete thaw is more evident at greater
depths: in the caseithout rain, one has complete thawing at

~ —0.1°C (change of slope of dashed curve) because the soil
remains unsaturated and is characterize@d by Tz, while in

the casewith rain complete thawing occurs at’C because
there is saturation. When soil is thawed, in ti¢h rain case

soil temperature rises more slowly due to the lower thermal
diffusivity of the soil. It is interesting to notice that water
only partially infiltrates into the frozen soil (see that dotted

The Cryosphere, 5,4892011



480 M. Dall’Amico et al.: Freezing unsaturated soil model

The test against analytical solutions shows good agree-
ment, improving previous results obtained with methods
based just on the maximum heat capacity formulation. The
model was applied to simulate temperature-driven water flow
in freezing soil, and the results were compared to the exper-
imental findings ofHansson et al(2004 with good agree-
ment. Similar to previous studies, a high sensitivity to the
value of the impedance factar of the hydraulic conductiv-
ity was found.

This algorithm can now be applied in more realistic con-
figurations, with complex boundary conditions accounting
for the soil-atmosphere energy exchange, and thus contribute
to improve our understanding of the factors controlling the
soil freezing and thawing processes in the Alpine and Arctic
cryosphere.Endrizzi et al.(2011), who included this algo-
rithm in the open-source hydrological model GEOtRjgon
, , , , et al, 2000, present a first application.

6 8 10 12 14 16

1.0

— with rain

without rain

0.5

Temp C
0.0
!

-1.0

time (days) Appendix A

Fig. 9. Temperature at different depths (m) of a soil subject to thaw- Mass and volumetric water content in soils

ing from above. The solid line represents a condition of constant

rain, the dotted line a dry condition (without rain). Based on Figl, let us defineV, (m3) the total control vol-
ume, Vi, Vi, Va and Vg (m3) the water, ice, air and soil
particle volume respectively. For volume conservation one

line is equal to the solid line) because, as the soil is verygbtains:

cold, it freezes and so the first layers become saturated with

ice thus forming an impervious barrier for the rain. The sim- Viy + Vi < Ve —Vgp (A1)
ulation results are based on the assumption of infiltration in o
thermodynamical equilibrium. which, dividing by V¢, becomes:

ew+9i < 05 (AZ)

8 Conclusions ' -
wheref,, (—) andé; (—) are defined as the volumetric lig-

In this paper we have proposed a new method for robustyid and solid (ice) water content respectively, @¢-) the
solving energy and mass balance equations in simulation§aturated water content. Let us define the total volumetric
dealing with phase change under in variably-saturated soilwater conten®y (—) as the sum of the liquid and the solid
The differences with respect to previous methods are: (1) ¥olumetric water content respectively: it becomes:
very robust solution based on tigobally convergent New-
ton schemés used; (2) the notation of the energy equation is Ow +0; := Oy (A3)
basgd on the internal energy, V\{hiCh make's it possiple to 98N[ ot us defineM,, andM;
_erallze the problem to a dlﬁu5|_on-ad\_/ect|or? equatlc_)n, SIM-and ice present i¥;, and Mt the total mass of water (both
ilar to the mass balance equat|0n (Richard’s equatlon), an% liquid and solid phase):
thus the numerical method used in the energy equation can
be further used to the mass balance equation; (3) the soils; :— pm,, + M; (A4)
freezing curve implies that the ice content depends not only
on temperature but also on the total water content, makingConsidering the density of watgg, and of icep; (kg m—2)
this scheme useable in non-saturated conditions; and (4) thand dividing byV; one obtains:
detailed explanation of the splitting method to decouple the Iy

-

system of equations is included. owbw + pii = — (A5)
Ve

(kg) respectively the mass of water

Dividing now by the water density:

i M-
9W+ﬂ9i= T

=0 A6
Pw pw Ve m (A0)
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one obtain®, which is defined as the total equivalent liquid Appendix C

water content present k. The relation betwee®, and®n,

is: Analytical solution of phase change during
freezing and thawing

om_ov+<——1>9. (A7)
Pw Assume a semi-infinite plane composed of two regions: the
frozen region (subscript 1) above, and the thawed region
Appendix B (subscript 2) below, separated by an interface at a dgpth
which moves downward in time. The system of equations in
The splitting method this case becomes:
The system represented by ER5) can be arranged as: vi=v2=Tm (t>0,z=2())
3‘9\2 W W i
g(;,lf 0)‘|‘80 (T)+p 39'(T)+V Jw=+Sw=0 vo— T (t >0,z > 00)
(B1)
auf'a(;//wo)JraUg*;(T)+V.J+V,G+Sen=o v1="Ts (t>0,z=0)
where the superscript “fl” refers to the changes due to the )»1 — g2 avz _prwgsdz(f) (t>0,2=27(1)) 1)

“flux” of water, and the superscript “ph” refers to the changes

due to the “phase change” of water. The above system is| ,,, 82v1
equivalent to: 5 =157 (t>0,z<Z())
2
aeW+V.JW+SW__<aeW+§V.V%> 2 =y 02 (t>0,2> Z(1))
(B2)
vi=v2=T; (t=0,2)

Wl Ve J_—("Up +V.G+Sen)
where v represents the temperature. The first and second
equations in €C1) give the boundary conditions at bottom
(T =T;) and at the surfacel(= Ts) of the domain respec-

Equalizing the two equations to a common value, say zero
one obtains four equations:

39&',(%%0) tively (Dirichlet condition); the third and fourth equations
+VeJw(¥wo)+Sw=0 (B3)  refer to the boundary conditions at the interface between the
two substances, indicating that the temperatures of the two
AU (Ywo) states are equal to the temperature of phase change on the
5 +VeJ(Ywo) = (B4) surface and that the energy derived by the difference of the
A heat fluxes is exploited for phase change. The fifth and sixth
aUPNT) equations refer to the approximation of linear conduction be-
T a9 tVeG(T)+Sen=0 (BS) havior of the temperature in the two states, whetel1/Ct

is the thermal diffusivity. Finally the last equation reports the

V@h(T) n P 36i(T) initial condition in which the whole system is setfat=T;.

=0 B6 . :
ot ow Of (B6) Eventually the analytical solution becomes:
which can be solved in sequence. The first two Equations are T i
only function ofyy,o and can be solved considerifig= cost: vi(t.2) =Ts+ erf; F itz=2(@t)
Equation B3) is the Richards’ equation, which dictates the - (C2)

new matric potential/wo and therefore the new volumetric va(t,z2) =T — -erfc ZF if z>Z(t)

water contentdy; Eq. B4) represents the update of the in- eff‘(é’ *1>

ternal energy with the advection of heat provided by the flow

of liquid water. where¢ is the solution of the following implicit algebraic
The last two Equations are only function Bfand can be  equation:

solved consideringo = cost: Eq. B5) represents the en-

d2

ergy conservation equation under a “no-flux” condition, that exp(— 42) Ar2/d1(Ti — Trm) c3
gives the new temperature and the amount of mass that un- ¢-erf¢ @ (C3)
dergoes phase change; E6J can be used to update the ice Arav/da(Tm—To)¢ -erfc (f\/—)

and liquid water content with the mass of water that under- di Lt pwbsy/T

goes phase change. expl ——¢7 = Cri(Tm—To
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Table C1. Table of symbols used.

M. Dall’Amico et al.: Freezing unsaturated soil model

Symbol Name Value or Range Unit

t time S

T temperature °C

ow density of liquid water in soil 1000 kg M8

0i density of ice 918 kg m3

Psp density of soil particles kg m?

My mass of liquid water in soil kg

M; mass of ice in soil kg

Vw volume of liquid water in soil M

Vi volume of ice in soil m

Ow fraction of liquid water in soil dimensionless
6 fraction of ice in solil dimensionless
zf elevation with respect to a reference m

z position in the soil column along the vertical m

Az depth of the cell m

g gravity acceleration 9.81 s

f function of the soil water retention curve dimentionless
Ve volume of control in the soil M

Q cell area m?2

B impedance factor dimentionless
Os soil saturated water content dimensionless
Or residual water content dimensionless
Oy 6w + 6 dimensionless
Om 9W+£—V‘V9i dimensionless
Ywo soil matric potential corresponding @, <0 m

Pa reference atmospheric pressure Pa

¥ soil matric potential corresponding g m

Tm water melting temperature at atmospheric pressure 273.15 K

T* depressed water melting temperature under unsaturated conditions K

Tref reference temperature, usually sefg K

o parameter according ¥an Genuchter1980 mm—1

n parameter according ¥an Genuchter1980 dimentionless
m parameter according ¥an Genuchter1980 usually:m:=1—n~1 dimentionless
Jw volumetric liquid water flux msl

Ji volumetric ice flux msl

Ky hydraulic conductivity msl

AT total thermal conductivity of soil wmlk-1

Asp thermal conductivity of the soil grains wmk—1

A water thermal conductivity 0.6 wmk-1

Aj ice thermal conductivity 2.29 wmt k-1

dw water thermal diffusivity U3x10~7 m2s~1

d; ice thermal diffusivity 113x 1076 m2s-1

Ly latent heat of fusion 333.7 kJ kg

CH hydraulic capacity of soil mi

CT total volumetric thermal capacity of soil JMK1

Ca volumetric apparent thermal capacity of soil IRk 1L

¢i specific thermal capacity of ice 2117 JigK 1

cw specific thermal capacity of water 4188 -1

csp specific thermal capacity of soil particles Tl 1

U volumetric internal energy of soil JT

Sen sink term of energy losses Wi

Sw sink term of mass losses -§

G heat conduction flux in the ground WTA

J heat flux due to water advection W

H Heaviside function dimentionless
Q Area of the soil column "

€ tolerance on the Newton method W

10} impedance factor dimentionless

The Cryosphere, 5, 46884, 2011
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In the thawing case the frozen and thawed parts are belovEndrizzi, S., Quinton, W. L., and Marsh, P.: Modelling the spatial
and above; = Z(¢) respectively, and the analytical solution  pattern of ground thaw in a small basin in the arctic tundra, The

of v1 andv, becomes: Cryosphere Discuss., 5, 367-4@hi:10.5194/tcd-5-367-2011
2011.
01t,7) =T ——L=Tm __ erfc—2_if 7> Z(?) Farouki, O. T.: The thermal properties of soils in cold regions, Cold
erf ¢ (;J%) 2/dit Reg. Sci. Technol., 5, 67—75, 1981.

(C4) Fuchs, M., Campbell, G., and Papendick, R.: An analysis of sensi-
ble and latent heat flow in a partially frozen unsaturated soil, Soil

Tm—T: , ;
v2(t,2) = Ts+ gz - erf5 if z<Z() Sci. Soc. Am. J., 42(3), 379385, 1978.
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