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Abstract. A parameterization for the motion of ice-shelf
fronts on a Cartesian grid in finite-difference land-ice mod-
els is presented. The scheme prevents artificial thinning of
the ice shelf at its edge, which occurs due to the finite reso-
lution of the model. The intuitive numerical implementation
diminishes numerical dispersion at the ice front and enables
the application of physical boundary conditions to improve
the calculation of stress and velocity fields throughout the
ice-sheet-shelf system. Numerical properties of this subgrid
modification are assessed in the Potsdam Parallel Ice Sheet
Model (PISM-PIK) for different geometries in one and two
horizontal dimensions and are verified against an analytical
solution in a flow-line setup.

1 Introduction

Ice shelf fronts are predominantly observed to have an almost
vertical cliff-like shape with a typical ice thickness of a few
hundred meters (idealized sketch in Fig.1a). Bending of this
ice wall imposes strong tensile and shear stresses close to
the terminus and promotes crevassing (Reeh, 1968; Scambos
et al., 2009). Calving icebergs are cut off from the shelf along
intersecting crevasses (Kenneally and Hughes, 2006) and are
swept away onto the open ocean where they melt.

As a precondition for the computational treatment of calv-
ing processes and for imposing the correct boundary condi-
tions and thereby properly computing the stress field within
the shelf, we focus here on the subgrid-scale motion of the
ice front on a fixed rectangular grid. One challenge arises
through the finite resolution when the ice front advances sea-
ward. Without special treatment the ice flux into a newly
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occupied grid cell is spread out over the entire horizontal do-
main of the grid cell (Fig.1b). Thus, the finite-difference
ice-transport scheme (here first-order upwind) can produce
grid cells of only a few meters ice thickness (or even less). In
numerical models these cells are considered as floating ice-
shelf grid cells whose front propagates one grid cell ahead at
each time step. This is generally faster than the motion of
the actual moving ice-shelf margin and has no proper physi-
cal basis. The model hence produces a situation in which the
ice front has no sharp vertical profile as it should have but an
unphysical extension in the direction of the open ocean. In
such a situation also the corresponding ice-thickness gradient
which drives the ice flow is unrealistic. The dispersion effect
depends mainly on the time step and spatial discretization
length. It should be distinguished from the numerical diffu-
sion of an upwind mass-transport scheme, which is often ap-
plied in finite difference models and takes the form of an ad-
ditional diffusion term due to the asymmetry of the scheme.

The dispersion effect of the ice-thickness discontinuity at
the front of the ice shelf is also purely numerical and does not
agree with observations nor is it consistent with the underly-
ing physical equation. Here we present a parameterization
of ice-front motion on a Cartesian grid that avoids this un-
desirable phenomenon. There are elaborate concepts such
as Immersed Boundary Methods (e.g.,Mittal and Iaccarino,
2005) or Sharp Interface Methods (e.g.,Marella et al., 2005),
which were developed for moving boundaries in turbulent
flow simulations. Our subgrid method for the slow motion
of an ice front enables the application of a proper boundary
condition for the stress field within the ice shelf denoted here
as “calving front boundary condition” or CFBC (Weertman,
1957). Furthermore, most of the recent iceberg calving the-
ories (e.g.,Warren, 1992; Kenneally and Hughes, 2002; Van
der Veen, 2002; Benn, 2007) require a steep ice wall, which
is guaranteed by the proposed concept. Calving rates can be
applied adequately.
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Fig. 1. (a) Schematic of a discretized ice shelf is shown in lateral view with decreasing ice thickness in
positive i-direction. The local calving front is located at the interface between the last shelf grid cell [i]
and the adjacent open ocean cell [i+1]. (b) In every time step a volume increment is calculated for each
grid cell according to the scheme approximating Eq. (1). Thus, in every time step, the marginal cliff
moves one grid cell further into the open ocean and may thin out relatively fast.
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Fig. 1. (a) Schematic of a discretized ice shelf is shown in lateral view with decreasing ice thickness in positive i-direction. The local calving
front is located at the interface between the last shelf grid cell[i] and the adjacent open ocean cell[i+1]. (b) In every time step a volume
increment is calculated for each grid cell according to the scheme approximating Eq. (1). Thus, in every time step, the marginal cliff moves
one grid cell further into the open ocean and may thin out relatively fast.

The paper is organized in three main parts. In Sect.2 the
features of PISM-PIK that are directly relevant for the calv-
ing front are briefly summarized. Section3 introduces the
proposed subgrid-parameterization of ice-front motion in the
flow-line case and its generalization to flow in two horizontal
dimensions. In Sect.4 the parameterization is tested in sim-
ulations with PISM-PIK for a flow-line setup as well as for
the Larsen and Ross Ice Shelves. We conclude in Sect.5.

2 Model description

The parameterization for subgrid-scale ice-front motion, in-
troduced in Sect.3, is applied in the Potsdam Parallel Ice
Sheet Model, PISM-PIK, which is based on the thermo-
mechanically coupled open-source Parallel Ice Sheet Model
(PISM stable 0.2 byBueler et al., 2008). Within the model,
the stress balance for a floating ice shelf with negligible basal
friction is computed according to the Shallow Shelf Ap-
proximation (SSA,Morland, 1987; MacAyeal, 1989; Weis
et al., 1999) on a fixed rectangular grid. Solving the stress-
balance equations in SSA with appropriate boundary condi-
tions yields vertically integrated velocities, which are used
for horizontal ice-transport. A full description of the model
is provided byWinkelmann et al.(2010) and its performance
in a setup of the Antarctic ice sheet under present-day bound-
ary conditions is discussed byMartin et al.(2010). Here we
summarize some aspects relevant for the parameterization.

The mass-transport scheme is particularly important for
the ice-front motion. It approximates the ice-flux equation.
In order to illustrate the general idea we restrict ourselves to
the one-dimensional (flow-line) case

∂V

∂t
= a

∂H

∂t
= −a

∂(vxH)

∂x
, (1)

with V , H , vx anda being ice volume, thickness, velocity
and area of a grid cell (variables summarized in Table1).
For simplicity we ignore surface and bottom mass balance.

In the vicinity of a discontinuity like a propagating ice-shelf
front the appropriate numerical discretization is an upwind
transport scheme. PISM base code (Bueler and Brown, 2009)
uses a combination of an upwind and a centered scheme in
the SSA region which does not conserve the total numerical
ice mass. In PISM-PIK we introduce a first-order upwind
scheme on a staggered grid which is based on the finite vol-
ume method (as generally discussed inMorton and Mayers,
2005). At the ice-front boundary the scheme has to be ad-
justed since there are no ice velocities on the open ocean.
In accordance with the applied conservative upwind scheme
we get for the flux through the boundary (with terminal ice
thicknessHc and terminal velocityvc) into the adjacent grid
cell on the seaward side of the ice-shelf front

1H = vcHc1t/1x. (2)

The Courant-Friedrichs-Lewy criterion (CFL,Courant et al.,
1928, 1967) guarantees numerical stability, i.e., the volume
increment advected to the ocean grid cell is always smaller
than the ice volume of the last shelf cell,

|1V | = aHc

(
|vc|1t

1x

)
≤ aHc. (3)

This will play a role in the discussion of the treatment of
residual ice volume in Sect.3.

The solution of the SSA equations as a linear second order
elliptical boundary-value problem requires boundary condi-
tions. The boundary condition for the calving front (CFBC)
has been implemented in most finite-difference ice-sheet and
ice-shelf models in a simplified way. The ice shelves are
extended artificially beyond the actual ice front with an ice
thickness extrapolated from the existing ice shelf or are sim-
ply reduced to 1 m thickness (MacAyeal et al., 1996; Ritz
et al., 2001). At the rectilinear boundaries of the computa-
tional domain the artificial calving front is always perpendic-
ular to one of the two coordinate axes (x and y with indices i
and j) and the dynamic Neumann boundary condition is eas-
ily imposed. Generally, for an ice front facing to the direction
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Table 1. Table of variables and abbreviations.

variable description

a=1x×1y grid cell area
A0 ice softness
cell [i] grid cell at positioni

B0=A
−1/3
0 ice hardness parameter

(e.g.,B0=1.9×108Pa s1/3)
c calving rate magnitude
C constant in Weertman solution

(C=2.45×10−18m−3s−1)
CFBC calving front boundary condition
CFL stability criterion for upwind scheme
1x, 1y grid cell lengths
g acceleration due to gravity (g=9.81 m s−2)
H , Hi ice thickness, at positioni
Hc ice thickness at calving front
Hcr threshold for calving rule
Hr temporary reference ice thickness
Hr,red reduced reference thickness
H0 fixed ice thickness at boundary
i, j grid cell indices in x- and y-direction
n flow law parameter (n = 3)
ν̄ vertically averaged effective viscosity
Q0 ice flux at upstream boundary

(e.g.,Q0=5.7×10−3m2 s−1)
ρ, ρw density of ice and sea water

(ρ = 910,ρw = 1028 kg m−3)
R, Ri fraction of ice coverage
SSA shallow shelf approximation
t,1t time, time step
v, vx , vy SSA ice velocity
vc terminal ice velocity
V , Vi volume of ice, at positioni
dV , 1V volume increment
Vlim=V/(aHr) maximal volume in subgrid cell
Vres residual ice volume

of the positivex-axis the physical stress balance for the two
coordinate directions reads

(ν̄Hc)|
j

i+ 1
2

(
2
∂vx

∂x
+

∂vy

∂y

)j

i+ 1
2

=
ρg

2

(
1−

ρ

ρw

)
H c

2
|
j
i ,

(ν̄Hc)|
j

i+ 1
2

(
∂vx

∂y
+

∂vy

∂x

)j

i+ 1
2

= 0. (4)

At these positions the hydrostatic pressure term of the bound-
ary condition (right-hand side of the equations) substitutes
the velocity gradients used in the SSA equations (withν̄ as
vertically averaged effective viscosity). In PISM-PIK we ap-
ply the dynamic boundary condition for each shelf grid cell
facing the ocean to at least one side (for details seeWinkel-
mann et al., 2010), Our subgrid parameterization guarantees
a steep calving front and hence yields the correct stress bal-
ance.

In order to test the general idea of calving front advance
and to find steady-state front positions using our parameter-
ization we apply a simple calving condition that has been
used in a number of previous model studies (Ritz et al., 2001;
Peyaud et al., 2007; Paterson, 1994). It is based on the fact
that observed ice thicknesses at calving fronts in Antarctica
vary mostly between 150 and 250 m. We thus eliminate ice
in any grid cell that (1) is located at the calving front and
(2) has ice thickness less than a critical thresholdHcr. The
results are qualitatively independent of the specific choice of
Hcr for which we use a value of 250 m throughout the paper.

3 Parameterization

In this section we describe the subgrid parameterization of
ice-front motion for both the flow-line case (one horizontal
dimension) and generalize to ice flux in two horizontal di-
mensions. For the discretized ice-shelf model with clear-cut
terminal cliff at grid cell[i] (as illustrated in Fig.1a) the dis-
cretized flux equation Eq. (2) yields an ice-volume increment
to be added to the adjacent ocean grid cell[i+1] with hori-
zontal areaa. The corresponding volume increment1Vi+1
is, without our scheme, associated with a thin ice layer of
thickness1Hi+1=1Vi+1/a covering the whole surface of
the grid cell. In our implementation a volume increment is
associated with a slab ice block adjacent to the cliff (Fig.2a).
To that end, we define a field that has the valueR=1 on shelf
grid cells andR=0 on ice-free ocean grid cells. Scalar values
0<R<1 in grid cells at the interface between shelf and ice-
free ocean are associated with the ratio of ice covered hori-
zontal area in a grid cell with a defined reference ice thick-
nessHr to the total grid-cell areaa, which is calculated as

R =
V

aHr
, (5)

whereV is the current ice volume within the partially-filled
grid cell [i+1]. Thus, the slab ice block of ice thickness
Hr covers an areaaR of the grid cell. In the flow-line case
we choose this reference value to be equal to the ice thick-
nessHr≡Hc of the adjacent shelf cell of the previous time
step. In a dynamic simulation a positive ice flux through the
boundary yields a new volume increment at each time step
that is added to the boundary grid cell[i+1]. Consequently,
the area in the grid cell covered with ice and hence the ratio
R increases. An increasingR is interpreted as an advancing
front within a grid cell, i.e., on subgrid scale.

When the ice volume in grid cell[i+1] exceeds the thresh-
old Vlim=aHr, this ice-shelf grid cell is considered to be
full with R=1. In the next time step the adjacent grid cell
[i+2] can start growing in ice volume (Fig.2b). During
this forward propagation of the front boundary the terminal
ice thicknessHc might change. Hence, the ratioR changes
sinceHr is updated each time step even if there is no ice flux
through the boundary during that particular time step.
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Fig. 2. Lateral view of discretized ice shelf with subgrid-scale parameterization. (a) The volume incre-
ment in grid cell [i+1] is associated with a slab of ice of the same ice thickness as the adjacent full shelf
grid cell [i]. (b) When the grid cell [i+1] at the calving front is full of ice according to the associated
reference thickness, the next following cell [i+2] can gain in ice volume.

20

Fig. 2. Lateral view of discretized ice shelf with subgrid-scale parameterization.(a) The volume increment in grid cell[i+1] is associated
with a slab of ice of the same ice thickness as the adjacent full shelf grid cell[i]. (b) When the grid cell[i+1] at the calving front is full of
ice according to the associated reference thickness, the next following cell[i+2] can gain in ice volume.

Retreat of the ice-shelf front in response to a continuous
calving rate (e.g.,Benn, 2007, Eq. 1) can be treated in a sim-
ilar fashion as the ice advance. In the following experiments
we use a simple calving condition as prescribed in Sect.2.
A generalization to other calving laws is straight forward. In
such a situation, a partially filled grid cell is drained with
a negative fluxQ− = −c Hr , wherec is the magnitude of
the calving rate. If the grid cell is empty withVi+1≤0, fur-
ther ice loss acts onto the adjacent ice-shelf grid cell with
Ri=1+Vi+1/(aHc)≤1. Analogous to the CFL-limited nu-
merical propagation speed of the front also the retreat is
thereby restricted to at most one grid cell per time step for the
simple calving rule as well as for more sophisticated calving-
rate parameterizations. Negative ice volumes are set to zero
after this procedure.

The generalization of Eq. (1) to two-dimensional horizon-
tal ice volume flux is simply

∂V

∂t
= a

∂H

∂t
= −a div(vH), (6)

with a generalized CFL-criterion as in the PISM base code

1tadapt= min
i,j

(
|ui,j |

1x
+

|vi,j |

1y
+

ε

1x +1y

)−1

, (7)

whereε is a small factor to avoid division by zero. As an ex-
ample, grid cell[i,j ] in Fig.3borders two ice-shelf cells with
velocity components directed to this grid cell on the ice-free
ocean. Here, the reference ice thicknessHr is the average
of the ice thicknesses of those two neighboring shelf cells
(or better a flux-weighted average). The volume flux through
the two boundaries together with the volume of the previous
time step adds up to the new volumeVi,j . Herewith the ratio
Ri,j of ice-covered area in this grid cell is evaluated.

When a subgrid ice front advances and a grid cell at the
boundary is considered to become full (R=1) according to
the reference thicknessHr it is possible that some residual
ice volume remains unaccounted for

Vres= V −Vlim . (8)

A convenient way to treat this remaining volume is to sim-
ply omit it (variant 1). Obviously this has the disadvantage
of an artificial ice loss but the advantage that it does not in-
terfere with the ice-shelf dynamics upstream of the moving
ice front becauseHc is properly represented. Hence, the im-
posed CFBC, which is evaluated at the ice-shelf front and de-
pends sensitively on the boundary ice thicknessHc (Eq. 4),
enables the accurate computation of velocities according to
the SSA throughout the ice shelf.

In order to conserve numerical ice mass and to still keep
the numerical treatment as simple as possible, the residual ice
mass can alternatively be equally redistributed to the neigh-
boring grid cells on the ice-free ocean (variant 2). For these
adjacent cellsHr must be determined. Using adaptive time
steps according to the CFL-stability criterion (Eq.3) guar-
antees that the size of the volume increments1V advected
to the next ocean grid cell is limited. In the model of an
unconfined ice shelf (e.g., flow-line case) a special problem
occurs because the largest velocities are typically found at
the evolving front. There, the advection of the ice-thickness
discontinuity as in Eq. (2) has maximum propagation speed
of one grid length1x per time step1t . Hence, we have
max(Vres)=aHc, which is redistributed to the adjacent grid
cell [i+2]. If we chooseHr=Hc this cell at the interface be-
tween ice shelf and ice-free ocean is completely filled within
one time step (Ri+2=1), and the ice shelf evolves with an ice
wall at the front that does not decrease in ice thickness, which
has a strong impact on the dynamics throughout the ice shelf.
In order to avoid this problem for variant 2 we reduce the ref-
erence thickness toHr,red and make a linear guess according
to the analytical solution (Eq.11), which is described in the
next section. The expected slope at the front depends mainly
on the power law of the marginal ice thicknessHc and typical
constant ice parameterC and boundary valuesQ0

Hr,red≡ Hr +
∂H

∂x

∣∣∣∣
c

1x = Hr −
C

Q0
H 5

c 1x. (9)
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Fig. 3. A bird’s eye view of the ice shelf calving front approximated by a rectangular mesh grid. Gray
shaded area denotes ice-free ocean, the ice shelf area is white with exemplary velocity vectors defined
on the regular grid. Velocity components directed to the open ocean are shown in green.
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Fig. 3. A bird’s eye view of the ice shelf calving front approxi-
mated by a rectangular mesh grid. Gray shaded area denotes ice-
free ocean, the ice shelf area is white with exemplary velocity vec-
tors defined on the regular grid. Velocity components directed to
the open ocean are shown in green.

This solves the problem of the unrealistic thick ice wall at
the front for adaptive time steps. Note that even an inaccurate
guess for the reference ice thickness jeopardizes neither mass
conservation nor the basic idea of the parameterization.

4 Application in numerical simulations

As mentioned before, the membrane-stress balance in SSA is
a non-local boundary-value problem and its over-all solution
is controlled by the boundary conditions. Thus the introduc-
tion of a numerical method that alters the boundaries requires
verification against an analytical solution. It is a robust fea-
ture of unconfined ice shelves that the thinning rate becomes
smaller with increasing distance from the grounding line. In
the model the position of the calving front of a certain ice
thickness (e.g., 250 m) is sensitive to this ice thickness itself
and hence small variations in ice transport have a noticeable
effect. This makes the flow-line setup with applied calving
rule to be a strong sensitivity test of the proposed parameter-
ization.

For a first assessment we apply a simple ice-shelf setup,
where the flow is one-dimensional in the sense that all quan-
tities perpendicular to the flow line are constant and only the
unidirectional spreading of ice is considered. We apply peri-
odic boundary conditions at the lateral boundaries, which is
associated with an infinitely broad unconfined ice shelf. At
the upstream boundary, ice thickness and velocity are pre-
scribed to 600 m and 300 m/yr. The bathymetry can be cho-

sen to any arbitrary value deep enough to fulfill the floatation
condition. Neither accumulation nor melting are taken into
account here. There is no thermocoupling since a constant
ice hardness ofB0=1.9×108Pa s1/3 according toMacAyeal
et al.(1996) is used.

The model solution is compared with the following
analytical solution of the flow-line case. We choose the
x-axis as the direction of the main ice flow with constant
ice inflow Q0=vx,0H0 and with vanishing transversal com-
ponents. In the flow-line case the stress equilibrium equa-
tions in SSA simplify considerably. Since ice is treated as a
non-linearly viscous, isotropic fluid with a constitutive rela-
tion of Arrhenius-Glen-Nye form (Paterson, 1994) the equa-
tions can be integrated and rearranged with constant hardness
B0=A

−1/n

0 and flow-law exponentn=3. The solution for the
spreading rate was first found byWeertman(1957) to be

∂vx

∂x
=

(
ρg

4B0

(
1−

ρ

ρw

)
H

)3

= CH 3. (10)

Inserting this into the ice-thickness Eq. (1), we obtain af-
ter integration the ice thickness and velocity profiles for the
steady state (Van der Veen, 1999),

H(x) =

(
4C

Q0
x +

1

H 4
0

)−1/4

, (11)

vx(x) =
Q0

H(x)
= Q0

(
4C

Q0
x +

1

H 4
0

)1/4

. (12)

There is no ice-shelf front considered in the analytical steady
state, since lim

x→∞
H(x)=0. But when appropriate boundary

conditions are applied we can assume that the modeled tran-
sient profile is congruent to the analytical profile up to the
advancing front at positionxc. This theoretical position of
the free boundary at timet can be derived from integration
of Q0t=

∫ xc

0 H(x′)dx′, which yields

xc(t) =
Q0

4C

(3Ct +
1

H 3
0

)4/3

−
1

H 4
0

. (13)

The implementation of the calving front boundary condition
(CFBC) in PISM-PIK was an essential step on the path to-
wards reliable velocity distributions within the ice shelf. In
the PISM standard code an ice-shelf extension scheme is
used, where the product of effective viscosity and ice thick-
ness is held constant. This is problematic since the calcula-
tion of the SSA yields velocities on the ice-free ocean. Due
to the non-locality of the SSA equations this will generally
influence velocities on the ice shelf. Its effect on the ice-
shelf propagation is shown in comparison to a model result
with applied CFBC in the flow-line case (Fig.4). For this
experiment the subgrid parameterization (variant 1) and the
simple calving rule are applied.
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Fig. 4. Profiles of ice thickness (top) and velocity (bottom) in flow-
line case in lateral view after evolution time 1000 yr. Fixed Dirich-
let boundary on the left and calving front on the right hand side of
the computational domain. Blue: the result with applied CFBC al-
ready in steady state. Green: with shelf-extension scheme and still
advancing. Black dashed is the expected profile from analytical so-
lution in steady state when cut off at 250 m ice thickness. In both
cases a resolution of 101×5 km, adaptive time stepping and vari-
ant 1 of residual mass treatment are used.

When using the standard extension scheme with vanish-
ing velocities at the boundary of the computational domain,
the experiment shows that the velocity profile underestimates
the analytical solution by more than 100 m/yr in the outer re-
gions of the ice shelf (>100 km). Consequently, with con-
stant ice flux across the profile, the ice thickness profile can
be expected to be too thick, here about 60 m at the termi-
nus. When applying the CFBC, however, the profile of the
velocity is steeper and on average only 9 m/yr less than the
the exact solution profile. Thus, calving front ice thickness
of 250 m is reached at a position 10 km close to the position
expected from the analytical solution (Fig.4a, dashed). Ice-
shelf velocities are calculated independently of velocities on
the ice-free ocean, which enhances the performance.

The CFBC gives best results when the calving front has a
rectangular shape (in side view, as in Fig.2). This shape is
guaranteed with the examined subgrid treatment at the calv-
ing front. Without the subgrid parameterization though, we
observe a disperion of the steep ice front with grid cells of
very thin ice at the front (Fig.1b). Hence, the CFBC is
applied at a false position for a false terminal ice thickness
Hc. Accordingly, the velocity calculation gives false results
throughout the whole ice shelf.
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Fig. 5. Steady-state flow-line ice thickness and velocity profiles in
lateral view calculated with different resolution but constant size
of computational domain. Calving front position (145 km) and ter-
minal velocity (720 m/yr) as expected from the analytical solution
with constant ice hardness for 250 m terminal ice thickness are
shown as black dashed line. Adaptive time steps and variant 1 of
residual ice treatment are used.

In the following experiment we assess the influence of res-
olution on the steady state ice shelf for the flow-line setup
with applied CFBC. We describe a three-step refinement path
and divide the computational box of 505 km length into 51,
101 and 201 grid cells. When ice calves off at ice thickness
250 m the resulting profiles (Fig.5a) show that ice fronts sta-
bilize at distances between 160 km from the upstream bound-
ary for coarse resolution (1x=10 km) and 145 km on a fine
grid (1x=2.5 km). The latter matches the expected calv-
ing front position of 145 km calculated from the analytical
solution (Eq. 11). The resulting velocity distributions in-
crease monotonically in downstream direction with largest
values at the terminus. For the coarse-resolution case this
value reaches 730 m/yr, while for the fine-resolution case
the terminal velocity equals the analytical value of 720 m/yr
(Fig. 5b). The deviation of the front position is probably due
to the transport scheme which becomes more inaccurate for
coarse resolution (truncation error in Taylor approximation),
especially in the steep region close to the upstream bound-
ary. Since ice thicknesses are computed on the regular grid
half a grid cell (several kilometers) upstream of the defined
staggered velocities, slightly stronger mass fluxes can be as-
sumed than for finer resolution. Furthermore, the used calv-
ing rule is quite rough since ice of whole grid cells is cut
off. Nevertheless, for all tested resolutions a good match of
the profiles can be seen upstream of the calving front. Thus,
at the expected calving front position (vertical dashed), cal-
culated velocities underestimate the analytical value by less
than 1%.
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Fig. 6. Transient flow-line ice thickness and velocity profiles in
lateral view after 300 yr of time evolution, calculated using three
different variants of residual mass treatment. The model result with
adaptive time stepping is shown in blue, i.e.,1t≈6–10 yr. The re-
sult with fixed short time step1t=1 yr is plotted in green. Magenta
dashed is the analytical profile after evolution timet=300 yr. A res-
olution of 101×5 km is used. CFBC and subgrid parameterization
are not applied for the control case variant 0.

For the transient part of the simulations in the flow-line
case, when the calving front propagates downstream initiated
at the boundary, different effects of the two variants of treat-
ment of residual ice volumes are revealed. For comparison a
simulation is shown where none of the two described variants
of subgrid calving front treatment is used (denoted as “vari-
ant 0”), so basically the PISM extension scheme with vanish-
ing velocities at the boundary of the computational domain.
In this case, the propagating calving front suffers from strong
numerical dispersion (ice thickness declines by 250 m over
a distance of 80 km) especially for small time steps about
10 times shorter than adaptive time steps (Fig.6a, green,
1t=1 yr). Thus, grid cells of very thin ice occur in the ter-
minus region and the related velocities decrease in flow-line
direction (Fig.6b, green) influenced by velocity calculation
in the region of the ice-free ocean and the by the shape of
the dispersed front. For adaptive time steps though (Fig.6a,
blue) the front is much steeper, but a rather small numeri-
cal effect at the front is observed, so called “wiggles”, which
will be discussed later. Upstream of the front, in both tran-
sient cases the computed ice thickness profiles overestimate
the analytical solution, which can be expressed in terms of
the coefficient of determination, which is for adaptive time
stepsr2

= 0.81 and for short time steps slightly better (value
1 means perfect match). Consequently, with application of
calving at a certain ice thickness, a steady-state front posi-
tion far beyond the analytical one can be anticipated. This
is analogous to the first experiment result (Fig.4) where the
shelf-extension scheme was applied.

If we use the subgrid parameterization and cut off the oc-
curring residual ice volumes (variant 1) we get accurately
shaped profiles according to the analytical solution both in
the transient phase (Fig.6c, d) and in steady state (Fig.5)
with a coefficient of determination ofr2>0.97 close to 1.
The big advantage of this procedure is the rectangular shape
of the calving front without any disturbing wiggles through-
out the whole transient phase. This leads to a proper appli-
cation of the CFBC and accurate velocity profiles (Fig.6d).
Variant 1 produces a certain mass loss, which can be easily
reported and discussed (it is not caused by the actual trans-
port scheme). The mass loss is negligible for small time steps
(green) but it is quite large in a shelf propagating with max-
imal time steps according to the CFL-criterion (blue), which
can be seen in the deviation of the front position in relation
to the analytical front.

The mass-conserving variant 2 yields a very accurate pro-
file (green) for short time steps (1t=1 yr) with r2

= 0.98.
Also the front position is very close to the transient analytical
solution (magenta dashed), with a deviation of not more than
one grid cell length. Generally, adaptive time stepping is
used in order to decrease computational cost. In this special
case CFL stability condition yields1t=1x/vc≈ 6–10 yr and
round-off errors cannot be efficiently damped in the front re-
gion. Thus, we can observe during time evolution small wig-
gles at the calving front (Fig.6e, blue profile). In this case
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Fig. 7. Realistic steady-state model simulation of Larsen A and B Ice shelf (light gray) with grounded
parts (dark gray) and the ice-free ocean (white). Values ofR at the propagating ice shelf front are colored.
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Fig. 7. Snapshot of a realistic steady state model simulation of
Larsen A and B Ice shelf (light gray) with grounded parts (dark
gray) and the ice-free ocean (white). Values ofR at the propagating
ice shelf front are colored.

the CFBC evaluated at the last shelf grid cell leads to under-
estimated velocity values along the ice shelf (Fig.6f, blue),
which gives a smallerr2

= 0.84. Hence, the ice shelf is on
average 37 m too thick and the front lags behind the analyti-
cally calculated front position (magenta dashed).

The subgrid-parameterization of ice-front motion with
both variants of residual mass treatment is designed to be
applied in two-dimensional and realistic setups as for Larsen
A and B Ice Shelf as shown in Fig.7 and for the Ross Ice
Shelf in Fig.8. Along the smooth ice front theR-field has
values of 0≤R<1, while the ice shelf with valuesR=1 is
shaded in light gray and grounded areas in dark gray. The
figures show a steady state snapshot with applied continuous
physical calving rate, but details are discussed elsewhere
(Levermann et al., 2011).

In a two-dimensional realistic setup of a confined ice
shelf or even in a setup of the Antarctic ice sheet with sev-
eral ice shelves attached the adaptive time steps are deter-
mined according to the maximal velocity magnitude of the
whole computational domain (Eq.7). The generalized CFL-
criterion is used to limit the amount of residual ice mass,
which is redistributed equally to the neighbor grid cells in
an unphysical way with regard to the physical flow across
the boundary. We could apply a more rigorous criterion, but
simulations in realistic setups confirm that the error is small.
The maximal flux through the boundary for a certain adap-

Fig. 8. Realistic steady-state model simulation of Ross Ice shelf (light gray) with grounded parts (dark
gray) and the ice-free ocean (white). Values of R at the propagating ice shelf front are colored.
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Fig. 8. Snapshot of a realistic steady state model simulation of Ross
Ice shelf (light gray) with grounded parts (dark gray) and the ice-
free ocean (white). Values ofR at the propagating ice shelf front
are colored.

tive time step occurs for a single pair of cells, which is lo-
cated probably at the ice front with distance from confine-
ments, whereas along the rest of the ice-shelf front velocities
are lower than the maximal value. Numerical damping is rel-
atively efficient in most front regions as well as in the inner
parts of the ice shelf. Hence, transient phenomena like wig-
gles at the front are rarely observed.

5 Discussion and conclusions

In this paper we presented a numerical method that enables
the subgrid motion of ice-shelf fronts in a finite-difference
model. This prevents the steep margin from being numer-
ically dispersed and allows for a proper application of the
Neumann boundary condition for the approximated stress-
balance calculations. Flow-line simulations with the Pots-
dam Parallel Ice Sheet Model (PISM-PIK) for different res-
olution have been compared with the exact analytical solu-
tions. The modification of the transport scheme at the ice-
front boundary, which implicates a redistribution of residual
ice volumes at this moving front has been assessed and dis-
cussed. The proposed procedure opens the way to an ap-
propriate determination and application of calving rates in
realistic models of combined ice-sheet/ice-shelf dynamics.

In the simple flow-line case a very good match of the cal-
culated velocity profile and the analytical solution confirm
a correct application of the CFBC. Comparison of a sim-
ulation with a realistic setup of the Ross Ice Shelf against
observed velocity data from the Ross Ice Shelf Geophysi-
cal and Glaciological Survey (RIGGS,Thomas et al., 1984;
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Bentley, 1984) verifies the proper implementation also in two
horizontal dimensions even when the boundary line is not
straight (not discussed in this paper). An additional bene-
fit in using the implemented CFBC is that velocity calcula-
tion is independent of information outside of the ice-shelf
boundaries. Thus, velocities on the ice-free ocean can be ig-
nored, which simplifies the calculation of SSA-velocities and
reduces computational cost. Very well approximated steady-
state ice thickness and velocity profiles with a coefficient of
determination ofr2>0.99 are observed for all of the three
tested resolution. The steady-state front position converges
to the analytical solution for resolution refinement. In sim-
ulations of the Antarctic ice sheet (e.g.,Martin et al., 2010),
coarse resolution of about 20 km grid length or more are used
and marginally overestimated mass fluxes can be expected
here in the ice-stream and shelf region.

The subgrid parameterization of ice-shelf-front motion
implicates the handling of residual ice-volume increments
that arise from the restrictionR≤1 of the ice coverage ra-
tio. We show in transient simulations that variant 1 yields
very accurate flow-line profiles for both ice thickness and ve-
locity, although the modeled front lags behind the analytical
front due to the cut-off of residual ice volumes. We use this
variant for the application of calving rates that depend sen-
sitively on the velocity field in the vicinity of the front (e.g.,
Levermann et al., 2011). Thereby, the residual ice volumes
are reported as additional mass loss, although they are not
physically motivated. Note that in the flow line case with
adaptive time stepping (Fig.6c, blue) variant 1 can produce
large mass losses. In a more realistic case, however, these
mass losses are far smaller, comparable to the flow-line case
of shorter time steps (as in Fig.6c, green) since the residual
ice volumes are generally much smaller and the cut-off oc-
curs less often. The mass-conservative variant 2, however,
yield accurate results and does not increase computational
cost distinguishably since the CFL-criterion limits the size
of the volume increments and the numerical redistribution of
residual ice volumes to adjacent grid cells on the ocean is
generally executed only once each time step.
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